TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 1: Basic concentration inequalities

Exercise 1 (Recap: Markov's inequality and direct corollaries).

- Suppose that X is a random variable, a > 0. Show that P[|X| ≥ a] ≤ E[|X|]/a.
 Prove extended version of Markov's inequality. Namely, if φ : R₊ → R₊ is monotonically increasing function, then P[|X| ≥ c] ≤ E[φ(|X|)]/φ(c) for all c > 0 such that φ(c) ≠ 0.
- Conclude Chebyshev's inequality. More precisely, assume that X is an integrable random variable with mean μ and a finite non-zero variance σ^2 , a > 0 and show that $\mathbb{P}[|X - \mu| \ge a] \le \frac{\sigma^2}{a^2}$. Recall that the variance is given by $\sigma^2 = \mathbb{E}[(X - \mu)^2]$. • (Exponential inequalities) Let X be a random variable, $b \in \mathbb{R}$. Prove (using Markov's
- inequality applied to suitable non-negative random variables) that $\mathbb{P}[X > b] < e^{-tb}M(t)$ for all $t \geq 0$ and $\mathbb{P}[X \leq b] \leq e^{-tb}M(t)$ for all $t \leq 0$, where $M(t) = \mathbb{E}[e^{tX}]$ is the moment generating function (MGF) of X.

Note that we can optimize the bounds by taking in the above inequalities infimum over $t \geq 0, t \leq 0,$ respectively. The resulting inequalities are called Chernoff bounds in some literature (sometimes more specific results are called that, see Exercise 4).

Proof. 1)-2) Let us directly prove the more general second statement, which implies the first one by taking $\phi(x) = x$. Since ϕ is non-negative and monotonically increasing,

$$\phi(|X|) \ge \phi(|X|) \mathbf{1}_{\{|X| \ge c\}} \ge \phi(c) \mathbf{1}_{\{|X| \ge c\}}.$$

By taking expectation and dividing all sides of inequality by $\phi(c)$ we get the result.

- 3) Apply 2) with random variable $X \mu$ and $\phi(x) = x^2$.
- 4) Let $t \geq 0, s \leq 0$, then by strict monotonicity of exponential function and 1),

$$\mathbb{P}[X \ge b] = \mathbb{P}[e^{tX} \ge e^{tb}] \le e^{-tb}M(t),$$

$$\mathbb{P}[X \le b] = \mathbb{P}[e^{sX} \ge e^{sb}] \le e^{-sb}M(s).$$

Exercise 2 (p-moments via tails and applications).

Let X be a random variable, $p \in (0, \infty)$. Show that

$$\mathbb{E}[|X|^p] = \int_0^\infty pt^{p-1} \mathbb{P}[|X| > t] dt$$

whenever the rhs is finite.

Suppose now that X is a random variable satisfying $\mathbb{P}[|X| \geq t] \leq 2e^{-bt}$ for some b > 0. Show that $\mathbb{E}[|X|^n] \leq 2b^{-n}n!$ and conclude that $||X||_{L^n} \leq \frac{cn}{b}$ for some uniform constant c > 0(Stirling's formula might be helpful).

Proof. Let us first prove that for a non-negative random variable Y, $\mathbb{E}[Y] = \int_0^\infty \mathbb{P}[X > t] dt$. This follows easily since for any $x \geq 0$, $x = \int_0^x 1 dt = \int_0^\infty \mathbf{1}_{t < x} dt$. By substituting x with Y

and taking the expectation on both sides gives the claim.

Now by the claim and the change of variable $u = t^{1/p}$ we obtain

$$\mathbb{E}[|X|^p] = \int_0^\infty \mathbb{P}[|X|^p > t] dt = \int_0^\infty p u^{p-1} \mathbb{P}[|X| > u] du.$$

Assume now that $\mathbb{P}[|X| \geq t] \leq 2e^{-bt}$ for some b > 0. Then,

$$\mathbb{E}[|X|^n] = \int_0^\infty nu^{n-1} \mathbb{P}[|X| > u] du \le 2n \int_0^\infty u^{n-1} e^{-bu} du$$
$$= 2nb^{-n} \int_0^\infty y^{n-1} e^{-y} dy = 2nb^{-n} \Gamma(n) = 2b^{-n} n!.$$

By Stirling's approximation we have $n! = \sqrt{2\pi n} n^n e^{-n} e^{R_n}$, where R_n is some number satisfying $0 \le R_n \le 1/(12n)$. Combining with the above bound we get

$$||X||_{\mathbf{L}^n} \le (2b^{-n}n!)^{1/n} = (2\sqrt{2\pi n}e^{R_n})\frac{n}{be} \le \frac{cn}{b}.$$

The last inequality follows for some universal constant since R_n is bounded and $n^{1/(2n)}$ is bounded universally since as $n \to \infty$, it converges to 1.

Exercise 3 (Tails of normal distribution).

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ be a Gaussian random variable.

- Using Chernoff bounds (optimized exponential inequalities) estimate $\mathbb{P}[X \mu \geq c]$ for $c \geq 0$.
- Now suppose that that $\mu = 0, \sigma^2 = 1$. Show that for all c > 0,

$$\left(\frac{1}{c} - \frac{1}{c^3}\right) \frac{1}{\sqrt{2\pi}} e^{-c^2/2} \le \mathbb{P}[X \ge c] \le \frac{1}{c} \frac{1}{\sqrt{2\pi}} e^{-c^2/2}.$$

Hint: use density function, for the lower bound $g(x) = (1 - 3x^{-4})\mathbf{1}_{x>c} \le 1$ might be helpful.

Compare bounds of first and second bullet points in the case $\mu = 0, \sigma^2 = 1$.

Proof. • By Chernoff bounds,

$$\mathbb{P}[X - \mu \ge c] \le \inf_{t \ge 0} (e^{-t(\mu + c)} M(t)) = \exp\left(-\sup_{t \ge 0} ((\mu + c)t - \log M(t))\right)$$
$$= \exp\left(-\sup_{t \ge 0} (ct - \sigma^2 t^2 / 2)\right) = \exp\left(-\frac{c^2}{2\sigma^2}\right).$$

Verify the last inequality by finding the critical point of the function $t \mapsto ct - \sigma^2 t^2/2$.

• Let us start by showing the upper bound,

$$\mathbb{P}[X \ge c] = \frac{1}{\sqrt{2\pi}} \int_{c}^{\infty} e^{-x^{2}/2} dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-c^{2}/2} e^{-cy} e^{-y^{2}/2} dy$$
$$\le \frac{e^{-c^{2}/2}}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-cy} dy = \frac{1}{c} \frac{1}{\sqrt{2\pi}} e^{-c^{2}/2}.$$

The lower bound follows from the identity

$$\int_{c}^{\infty} (1 - 3x^{-4})e^{-x^{2}/2} dx = \left(\frac{1}{c} - \frac{1}{c^{3}}\right)e^{-c^{2}/2}.$$

The second upper bound is sharper for large c's, but for very small c's it is weaker.

Exercise 4 (Large deviations from LLN, Chernoff).

Let $X_i \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ be iid random variables with expectation μ and MGF $M(t) = \mathbb{E}[e^{tX_1}]$. Let $S_n := \sum_{i=1}^n X_i$. Show that for all $n \in \mathbb{N}$ and $a \in \mathbb{R}$,

$$\begin{cases} \mathbb{P}\left[\frac{S_n}{n} \geq a\right] \leq e^{-nI(a)} & \text{if } a \geq \mu, \\ \mathbb{P}\left[\frac{S_n}{n} \leq a\right] \leq e^{-nI(a)} & \text{if } a \leq \mu, \end{cases}$$

where $I(a) := \sup_{t \in \mathbb{R}} (at - \log M(t))$. Note that the supremum is taken over all \mathbb{R} . You can follow the following steps:

- Reduce to the case $\mu = 0$;
- Exponential Markov inequality;
- Use Jensen's inequality to conclude that the supremum in I(a) can be taken over all of \mathbb{R} .

Proof. Let us prove the case $a \ge \mu$. The other case follows fully analogously. We proceed in three steps:

- We can assume wlog that $\mu = 0$, since otherwise we can consider $Y_i = X_i \mu$, which are again iid random variables, but now centered. And the statement for Y_i with $a \geq 0$ rewritten in terms of X_i looks like $\mathbb{P}\left[\frac{S_n}{n} \geq a + \mu\right] \leq e^{-nI(a+\mu)}$, so for $a' = a + \mu \geq \mu$ we get the result.
- For all $t \geq 0, n \in \mathbb{N}$ by exponential Markov's inequality,

$$\mathbb{P}\left[\frac{S_n}{n} \ge a\right] = \mathbb{P}[S_n \ge na] \le e^{-tna} \mathbb{E}[e^{tS_n}] = e^{-tna} M(t)^n = e^{-(at - \log M(t))n}.$$

• Now we want to optimize the bound over $t \geq 0$. Namely,

$$\mathbb{P}\left[\frac{S_n}{n} \ge a\right] \le \inf_{t \ge 0} e^{-(at - \log M(t))n} = \exp\left(-n \sup_{t \ge 0} (at - \log M(t))\right).$$

It is left to check that $\sup_{t\geq 0} (at - \log M(t)) = \sup_{t\in\mathbb{R}} (at - \log M(t)) = I(a)$. The latter is true since for t<0 and $a\geq \mu=0$ and by Jensen's inequality we get

$$at - \log M(t) \le -\log \mathbb{E}[e^{tX_1}] \le \mathbb{E}[-\log(e^{tX_1})] = -t\mu = 0 = a \cdot 0 - \log M(0).$$

Thus, it suffices to consider the supremum over non-negative numbers.