
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 1: Basic concentration inequalities

Exercise 1 (Recap: Markov’s inequality and direct corollaries).
• Suppose that X is a random variable, a > 0. Show that P[|X| ≥ a] ≤ E[|X|]

a
.

• Prove extended version of Markov’s inequality. Namely, if ϕ : R+ → R+ is monoton-
ically increasing function, then P[|X| ≥ c] ≤ E[ϕ(|X|)]

ϕ(c)
for all c > 0 such that ϕ(c) ̸= 0.

• Conclude Chebyshev’s inequality. More precisely, assume that X is an integrable
random variable with mean µ and a finite non-zero variance σ2, a > 0 and show that
P[|X − µ| ≥ a] ≤ σ2

a2
. Recall that the variance is given by σ2 = E[(X − µ)2].

• (Exponential inequalities) Let X be a random variable, b ∈ R. Prove (using Markov’s
inequality applied to suitable non-negative random variables) that P[X ≥ b] ≤ e−tbM(t)
for all t ≥ 0 and P[X ≤ b] ≤ e−tbM(t) for all t ≤ 0, where M(t) = E[etX ] is the
moment generating function (MGF) of X.
Note that we can optimize the bounds by taking in the above inequalities infimum over
t ≥ 0, t ≤ 0, respectively. The resulting inequalities are called Chernoff bounds in
some literature (sometimes more specific results are called that, see Exercise 4).

Proof. 1)-2) Let us directly prove the more general second statement, which implies the first
one by taking ϕ(x) = x. Since ϕ is non-negative and monotonically increasing,

ϕ(|X|) ≥ ϕ(|X|)1{|X|≥c} ≥ ϕ(c)1{|X|≥c}.

By taking expectation and dividing all sides of inequality by ϕ(c) we get the result.
3) Apply 2) with random variable X − µ and ϕ(x) = x2.
4) Let t ≥ 0, s ≤ 0, then by strict monotonicity of exponential function and 1),

P[X ≥ b] = P[etX ≥ etb] ≤ e−tbM(t),

P[X ≤ b] = P[esX ≥ esb] ≤ e−sbM(s).

□

Exercise 2 (p-moments via tails and applications).
Let X be a random variable, p ∈ (0,∞). Show that

E[|X|p] =
∫ ∞

0

ptp−1P[|X| > t]dt

whenever the rhs is finite.
Suppose now that X is a random variable satisfying P[|X| ≥ t] ≤ 2e−bt for some b > 0.

Show that E[|X|n] ≤ 2b−nn! and conclude that ∥X∥Ln ≤ cn
b

for some uniform constant c > 0
(Stirling’s formula might be helpful).

Proof. Let us first prove that for a non-negative random variable Y , E[Y ] =
∫∞
0

P[X > t]dt.
This follows easily since for any x ≥ 0, x =

∫ x

0
1dt =

∫∞
0

1t<xdt. By substituting x with Y
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and taking the expectation on both sides gives the claim.
Now by the claim and the change of variable u = t1/p we obtain

E[|X|p] =
∫ ∞

0

P[|X|p > t]dt =

∫ ∞

0

pup−1P[|X| > u]du.

Assume now that P[|X| ≥ t] ≤ 2e−bt for some b > 0. Then,

E[|X|n] =
∫ ∞

0

nun−1P[|X| > u]du ≤ 2n

∫ ∞

0

un−1e−budu

= 2nb−n

∫ ∞

0

yn−1e−ydy = 2nb−nΓ(n) = 2b−nn!.

By Stirling’s approximation we have n! =
√
2πnnne−neRn , where Rn is some number

satisfying 0 ≤ Rn ≤ 1/(12n). Combining with the above bound we get

∥X∥Ln ≤ (2b−nn!)1/n = (2
√
2πneRn)

n

be
≤ cn

b
.

The last inequality follows for some universal constant since Rn is bounded and n1/(2n) is
bounded universally since as n → ∞, it converges to 1. □

Exercise 3 (Tails of normal distribution).
Let X ∼ N (µ, σ2) be a Gaussian random variable.

• Using Chernoff bounds (optimized exponential inequalities) estimate P[X−µ ≥ c] for
c ≥ 0.

• Now suppose that that µ = 0, σ2 = 1. Show that for all c > 0,(
1

c
− 1

c3

)
1√
2π

e−c2/2 ≤ P[X ≥ c] ≤ 1

c

1√
2π

e−c2/2.

Hint: use density function, for the lower bound g(x) = (1− 3x−4)1x>c ≤ 1 might be
helpful.

Compare bounds of first and second bullet points in the case µ = 0, σ2 = 1.

Proof. • By Chernoff bounds,

P[X − µ ≥ c] ≤ inf
t≥0

(e−t(µ+c)M(t)) = exp

(
− sup

t≥0
((µ+ c)t− logM(t))

)
= exp

(
− sup

t≥0
(ct− σ2t2/2)

)
= exp

(
− c2

2σ2

)
.

Verify the last inequality by finding the critical point of the function t 7→ ct−σ2t2/2.
• Let us start by showing the upper bound,

P[X ≥ c] =
1√
2π

∫ ∞

c

e−x2/2dx =
1√
2π

∫ ∞

0

e−c2/2e−cye−y2/2dy

≤ e−c2/2

√
2π

∫ ∞

0

e−cydy =
1

c

1√
2π

e−c2/2.

The lower bound follows from the identity∫ ∞

c

(1− 3x−4)e−x2/2dx =

(
1

c
− 1

c3

)
e−c2/2.
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The second upper bound is sharper for large c’s, but for very small c’s it is weaker. □

Exercise 4 (Large deviations from LLN, Chernoff).
Let Xi ∈ L1(Ω,F ,P) be iid random variables with expectation µ and MGF M(t) = E[etX1 ].

Let Sn :=
∑n

i=1Xi. Show that for all n ∈ N and a ∈ R,{
P
[
Sn

n
≥ a

]
≤ e−nI(a) if a ≥ µ,

P
[
Sn

n
≤ a

]
≤ e−nI(a) if a ≤ µ,

where I(a) := supt∈R(at− logM(t)). Note that the supremum is taken over all R.
You can follow the following steps:

• Reduce to the case µ = 0;
• Exponential Markov inequality;
• Use Jensen’s inequality to conclude that the supremum in I(a) can be taken over all

of R.

Proof. Let us prove the case a ≥ µ. The other case follows fully analogously. We proceed in
three steps:

• We can assume wlog that µ = 0, since otherwise we can consider Yi = Xi − µ,
which are again iid random variables, but now centered. And the statement for Yi

with a ≥ 0 rewritten in terms of Xi looks like P
[
Sn

n
≥ a+ µ

]
≤ e−nI(a+µ), so for

a′ = a+ µ ≥ µ we get the result.
• For all t ≥ 0, n ∈ N by exponential Markov’s inequality,

P
[
Sn

n
≥ a

]
= P[Sn ≥ na] ≤ e−tnaE[etSn ] = e−tnaM(t)n = e−(at−logM(t))n.

• Now we want to optimize the bound over t ≥ 0. Namely,

P
[
Sn

n
≥ a

]
≤ inf

t≥0
e−(at−logM(t))n = exp

(
−n sup

t≥0
(at− logM(t))

)
.

It is left to check that supt≥0(at − logM(t)) = supt∈R(at − logM(t)) = I(a). The
latter is true since for t < 0 and a ≥ µ = 0 and by Jensen’s inequality we get
at− logM(t) ≤ − logE[etX1 ] ≤ E[− log(etX1)] = −tµ = 0 = a · 0− logM(0).

Thus, it suffices to consider the supremum over non-negative numbers.
□
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