TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 1: BASIC CONCENTRATION INEQUALITIES

Exercise 1 (Recap: Markov’s inequality and direct corollaries).

e Suppose that X is a random variable, a > 0. Show that P[|X| > a] <
e Prove extended version of Markov’s inequality. Namely, if o : Ry — Ry is monoton-

ically increasing function, then P[|X| > ] < ]EWle for all ¢ > 0 such that ¢(c) # 0.

o Conclude Chebyshev’s inequality. More preczsely, assume that X s an integrable
random variable wzth mean [ and a finite non-zero vamance 0%, a > 0 and show that

P[|X — u| > a] < %. Recall that the variance is given by o* = ]E[(X — u)?l.

e (Ezponential mequalztzes) Let X be a random variable, b € R. Prove (using Markov’s
inequality applied to suitable non-negative random variables) that P[X > b] < e M (t)
for allt > 0 and P[X < b < e ®M(t) for all t < 0, where M(t) = Ele!X] is the
moment generating function (MGF) of X.

Note that we can optimize the bounds by taking in the above inequalities infimum over
t > 0,1t <0, respectively. The resulting inequalities are called Chernoff bounds in
some literature (sometimes more specific results are called that, see Exercise /).

E[X]

Proof. 1)-2) Let us directly prove the more general second statement, which implies the first
one by taking ¢(z) = x. Since ¢ is non-negative and monotonically increasing,

AIX]) = o(IXDLgxzey 2 ()L {1x120)-
By taking expectation and dividing all sides of inequality by ¢(c) we get the result.
3) Apply 2) with random variable X — p and ¢(z) = z2.
4) Let t > 0,s < 0, then by strict monotonicity of exponential function and 1),
P[X > b] = Ple™™ > ] < e M(t),
P[X < b] = Ple®™ > e®] < e™*"M(s).

Exercise 2 (p-moments via tails and applications).
Let X be a random variable, p € (0,00). Show that

E[|X]7] = / 1P| X| > f]dt
0

whenever the rhs is finite.

Suppose now that X is a random variable satisfying P[|X| > t] < 27" for some b > 0.
Show that E[| X |"] < 2b7"n! and conclude that || X||,, < ¢ for some uniform constant ¢ > 0
(Stirling’s formula might be helpful).

Proof. Let us first prove that for a non-negative random variable Y, E[Y’ fo P[X > t]dt.
This follows easily since for any # > 0, x = [ 1dt = [;* 1,,dt. By substltutlng x Wlth Y
1



and taking the expectation on both sides gives the claim.
Now by the claim and the change of variable u = t'/? we obtain

E[|X]7] = /Ooo]pnxw > fdt = /Oopup_l]P’[|X| > u]du.

0
Assume now that P[|X| > t] < 2e7* for some b > 0. Then,

E[|X]|"] :/ nu P[] X > uldu < Zn/ u" e du
0 0

= 2nb_”/ y"te ¥dy = 2nb "T'(n) = 2b" "n!.
0

By Stirling’s approximation we have n! = v/2mnn"e "ef*", where R, is some number

satisfying 0 < R,, < 1/(12n). Combining with the above bound we get

Xl < (26~ n)Vm = (2\/27mel%)bﬁ < %
e
The last inequality follows for some universal constant since R, is bounded and n'/(" is
bounded universally since as n — 0o, it converges to 1. U

Exercise 3 (Tails of normal distribution).
Let X ~ N (u,0%) be a Gaussian random variable.

e Using Chernoff bounds (optimized exponential inequalities) estimate P[X — p > ¢| for

c>0.
e Now suppose that that i = 0,02 = 1. Show that for all ¢ > 0,
1 1 1 2 1 1 2
S ) — e P PIX > < = —c*/2
e c e :
(c 03) V2or SPX 2d < c\2rm

Hint: use density function, for the lower bound g(z) = (1 — 327 %) 1,5, < 1 might be
helpful.

Compare bounds of first and second bullet points in the case = 0,0% = 1.
Proof. e By Chernoff bounds,

P[X — p > ¢] < inf(e "™ IM(t)) = exp (— sup((p + ¢)t — log M(t)))

t>0 t>0

2
= — t—ot?/2) ) = —— .
exp( ilzlg)(c ot?/ )) exp( 202)

Verify the last inequality by finding the critical point of the function t — ct — o?t?/2.
e Let us start by showing the upper bound,

1 [ s
PX > = E/ e 2 dy = Wor / e~ eV 2y
v c Y 0

—c2/2 e8]
< e Ydy = EL6702/2.
2 Jo CA/2m

The lower bound follows from the identity

e 1 1
/ (1-— 31‘_4>6_$2/le‘ = (— — —3) e /2,
. c ¢
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The second upper bound is sharper for large ¢’s, but for very small ¢’s it is weaker. O

Exercise 4 (Large deviations from LLN, Chernoff).

Let X; € LY(Q, F,P) be iid random variables with expectation p and MGF M (t) = E[eX1].
Let S, =", X;. Show that for alln € N and a € R,
{IP (52> ] <@ ifa>p,

n

P [S—" < a] <e ™M@ ifa < p,

n

where I(a) = sup,cp(at —log M(t)). Note that the supremum is taken over all R.
You can follow the following steps:
e Reduce to the case p = 0;
e Fxponential Markov inequality;
o Use Jensen’s inequality to conclude that the supremum in I(a) can be taken over all

of R.
Proof. Let us prove the case a > u. The other case follows fully analogously. We proceed in

three steps:

e We can assume wlog that ;1 = 0, since otherwise we can consider Y; = X; — p,
which are again iid random variables, but now centered. And the statement for Y;
with @ > 0 rewritten in terms of X, looks like P [Sn—" >q+ ,u] < e nlatn) 5o for
a =a+ p > p we get the result.

e For all t > 0,n € N by exponential Markov’s inequality,

P |:& > CL:| — ]P)[Sn > na} < eftnaE[etSn] — eftnaM<t)n — ef(atflogM(t))n.
n
e Now we want to optimize the bound over ¢ > 0. Namely,

Sh

P {— > a] < inf e~ (@t-loe MEDn — oy, (—n sup(at — log M(t))) :

n t>0 t>0
It is left to check that sup,sq(at —log M(t)) = sup,cg(at —log M(t)) = I(a). The
latter is true since for t < 0 and a > p = 0 and by Jensen’s inequality we get
at —log M (t) < —log E[e'*'] < E[-log(e")] = —tp = 0=a -0 — log M(0).

Thus, it suffices to consider the supremum over non-negative numbers.



	Exercise sheet 1: Basic concentration inequalities

