TOPICS IN PROBABILITY. PART III: PHASE TRANSITION

EXERCISE SHEET 11: SHARP PHASE TRANSITION AND HYPERCONTRACTIVITY

Exercise 1 (Russo’s almost 0 — 1 law). Consider a product measure P, on {0,1}": each 1
is assigned weight p. Prove the following result: for any e > 0, there exists 6 > 0 such that
for any increasing event A with the associated ith influence satisfying I7(A)(= P,[14(X) #
14(X D)) < 6§ for all i,p, there exists p. such that for all p > p. + ¢, P,[A] > 1 —¢, and for

allp <p.—e¢, PylA] <e.

Proof. Let € > 0, and 6 = d(e) > 0 (to be specified later). Let A be an arbitrary increasing
event such that I7(A) < ¢ for all 7, p. We choose p. (depending on A) such that P, [A] = 1/2.
Note that the latter p. indeed exists and is in (0,1) since p — P,[A] is increasing with
{Po[A],P1[A]} = {0,1}. Consider gy := min(1 — p.,p.)/2. By monotonicity, it suffices to
prove that P i cneo[A] > 1 —e Aegp and Py, _cre[A] < € A gp. By Talagrand’s inequality, for
an appropriate absolute constant ¢ > 0,

1 a IP(A)
Var,[14] < clo L
plLa) < clog (77— 5) 2 o1/ ()
1 1 - 1 -
<clo IP(A) < c(pe)———= > IP(A
< elog (75 ) iy 2 H ) < el gz )
for all p € [p. — €0, pc + €0]. By Lemma 2.3,
eENE eNeq
Ppc-l-a/\m [A] >1- CXp ( - log(l/é) C(p )0> =1- 56(%);

ENE
]Ppc—s/\eo [A] S 647%0) .

Choose § = (g A g9)°Pe)/e %0 then as desired for all p > p. +¢, P,[A] > 1 —¢c A gy and for all
p<p.—e¢, PlA] <eAeop. O

Exercise 2 (Heat semigroup on the hypercube).

Let = 111 ®...Qpu, = (%5_1 + %51)®n be the uniform measure on the hypercube {—1,1}".
Define the process Xy = (X},..., X[ )i>0 as follows. To each coordinate i, we attach an
independent Poisson process (Nf)i>o of intensity one'. Then,

e draw Xy ~ p independently from the PP N = (N ... N™);
e cach time N} jumps for some i, replace the current value of X} by an independent
sample from u; while keeping the remaining coordinates fixed.
We define P.f(x) = E[f(X;)|Xo = x|]. Prove the following properties of (X;); and its
associated semigroup (P;);:

IPoisson process (Ni)¢>o of intensity A > 0 on Ry is the counting process that satisfies Ny = 0, has
independent increments and Ny — Ny ~ Poisson(A(t — s)) for any t > s > 0. Recall that such a process
can be constructed, for instance, in the following way: let (T;); be i.i.d. exponential random variables of
intensity A, then N; := #{n € Ng: Y. | T; <t} is the Poisson process of intensity \.
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(1) (Xy); satisfies the Markov property;
(2) p is its stationary measure, i.e., that [ E[f(X:)|Xo = z]u(dz) = [ fu(dz);

(3) Puf(2) = St (1 — €S0 [ oy, ) Tl pulcdr);

77777

(4) Each f : {—1,1} — R can be written as f = Zscg n} F(S)us for appropriate

-----

coefficients f(S) and ug(z) = [Ticgzi®. Recall that using this representation, you
defined in class an operator T« f(x) = ZSc{l *t|S‘f(S)uS for any t > 0. Show

-----

that Teft = Pt'
(5)

Lf ::i P, f(x) ::limptft_f:—z&f,
i=1

dt],_o, t0

.....

where 0; f (x) V= F@1, oy @) a(dy;) = fx)— f@1elyes Hf( """

Note that 0; 5 = 5 and 0;0; = ;0;, hence, —> . 0; is a discrete Laplaczan Thus, let

us write A instead of L.
(6) Conclude that 4 4P f=APf;

Proof. Let (X' )z<n men be iid Rademacher variables independent of N. Then (X;); has the

1
same law as <XN1""’

X}%,tn)t. Using this observation, the Markov property follows directly

from the 1ndependence of increments of the Poisson process, and stationarity of u from the
independence of X' ’s and N and identical distribution of (X" ),,’s (use tower property). Let

us determine the transition semigroup and the generator of (Xj);,

Pif(z) = E[f(X:)|Xo = 2] = Z Eo[f(Xe)(Lni50 for ies1Ni=0 for igs)]

Sc{1,...,
— Z (1 — e7t)lSle=tn=15D /f $1,---,$n)Hui(d$i)
Sc{1,...,n} iesS
= > N - ethsletn |S>/H T st
Sc{l,...,n} S'c{1,...n} €8’ €S
- ¥ 5 e [ I [
Sci{l,..n} S'C{l,..., €S\ jesns’
*l{SmS’ 0}
— Z f S/ H I‘Z Z (1 — e—t)|S|6—t(n—|S|)
S'c{1,..., ies’ Sc{1,...,n}\s’

v~

*e*t‘sl‘z \S' (n \5’)(1 e—t)k(e—t)n—IS'|—k=g—t|5’|

=Y (S s =T

Lf(z)=—-nf(x)+ Z/f(xl, ooy ) g (dag) = — Z(Sif(x).

2this definition of ug might differ from the one used in class by a factor of (—1)!5!
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By Markov property (and time homogeneity), we further get that P f(x) = E[E[f(Xips)|(Xu)u<t]| Xo =

] = E[E[f(X,)|Xo = Xi]|Xo = 2] = E[Pf(Xy)|Xo = 2] = P(P,f)(z). Thus, $Pf =
lim,, o W = limuww = L(P,f) = AP, f. Since Py = Id, this in turn implies
that P, = e'®, but since all §;’s commute with one another, it follows that P, = H?:l e %,
Clearly, P, and §; commute. * L]
* For fun.

Exercise 3 (Hypercontractivity and log-Sobolev on the hypercube). Let P, pu be as in the
previous exercise. Prove that the following are equivalent:

(1) (log-Sobolev) Ent,,[f?] < LE,[>-",(26;f)?]
(2) (Hypercontractwity) || Pif|yawy < [[fllpag, for all ¢ = 1, >0, f € LYu) and
qt) =1+ (g — 1)e*.
To show the implication (1) = (2) you may proceed as follows:
e Reduce to the case f > 0.
o Consider log || P, flliq«x and compute its derivative.

e Show that the derivative is non-positive by reducing to the following problem: for a
function g >0, p = q(t) and p' = ¢'(t),

(0.1) En: <E [(97’/2 - 92/)2>2] - %E[gp‘15ig]) <0.

=1

Hint: apply log-Sobolev in this step.

2

2 _ _
e Prove (0.2) using (bP/Z:ZW) < 4(;’_1) b Z:Zp - (check this) and the previous exercise.

To show the converse implication you may want to re-use the above second step.

Proof. Let ¢ > 1 and ¢(t) = 1+ (¢—1)e*. Note that |P,f| < P;|f|, therefore, we can restrict
to the case f > 0. Note that log || P.f || ) = ﬁ log E[(P, £)?®] and so,

5 (o oeBLRA1 )

S (ORI P I ()10 1 d
q2(t) log E[(P:f)""] + "0 E[(Ptf)Q(t)]E {(Ptf) (q (t) log(F:f) —l—q(t)Ptf dt(Ptf))}
= q() n q(t) M q(t)-1
g (B SRR en )
log-Sobolev q/(t) n a2 a(t)/2 2 B M (15
< e 2 (|G - )| = S Eir ).

where fi)(Y) = f(Y',..., YL YL Y . Y™), where Y; is an independent copy of Y;.
Note that the coefficient in front of the sum is positive. Thus, to prove that the derivative

3Note that to prove the latter two bullet-points of the exercise, one may also proceed differently and use
an explicit form obtained in (4).
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is non-positive, it suffices to show that for g > 0, p = ¢(t) and p’ = ¢'(t),

02) > (B[ (- )] - Beigaal) <o

i=1

R

Note that for a, b > 0, by Cauchy-Schwarz, (b?/2—a?/?)? ( f uP/?>~ 1du> <

Pl-a)'—ar )

1) . Hence, by (0.2) it suffices to show that

n 2

> sy | Bl s -] - B e

N

-~

=E [g(gpflfgf}l)]

=3 g ot -] (1- 2 <o

20 -1) p
Note that 1 —2(p —1)/p' =1 — 2(q —1)e**/(2e*(¢ — 1)) = 0. All together, we have shown
that log || P f||;.a» is non-increasing; ¢(0) = q. Therefore | Pef |y < || fllLa as desired.
For the reverse implication, note that by (2), 4 |t:0 log | P f|l;a» < 0. And hence by the
above and the previous exercise with ¢ = 2 (hence, ¢(0) = 2,¢'(0) = 2), we get that

=E [g(g”*1 —g0 " )}

1 ) 1
OEW(Ent[fH—ﬂE[fﬁf]) = & (Ent —QZ]Eféf)
[

We may yield the desired result since 2E[fd; f] = E[fd;:f] — E[f*0; f] = 2E[(d;f)?], where f*
stands for f with flipped ith coordinate. O
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