
TOPICS IN PROBABILITY. PART III: PHASE TRANSITION

Exercise sheet 11: Sharp phase transition and Hypercontractivity

Exercise 1 (Russo’s almost 0 − 1 law). Consider a product measure Pp on {0, 1}n: each 1
is assigned weight p. Prove the following result: for any ε > 0, there exists δ > 0 such that
for any increasing event A with the associated ith influence satisfying Ipi (A)(= Pp[1A(X̄) ̸=
1A(X̄

(i)]) ≤ δ for all i, p, there exists pc such that for all p ≥ pc + ε, Pp[A] ≥ 1− ε, and for
all p ≤ pc − ε, Pp[A] ≤ ε.

Proof. Let ε > 0, and δ = δ(ε) > 0 (to be specified later). Let A be an arbitrary increasing
event such that Ipi (A) ≤ δ for all i, p. We choose pc (depending on A) such that Ppc [A] = 1/2.
Note that the latter pc indeed exists and is in (0, 1) since p 7→ Pp[A] is increasing with
{P0[A],P1[A]} = {0, 1}. Consider ε0 := min(1 − pc, pc)/2. By monotonicity, it suffices to
prove that Ppc+ε∧ε0 [A] ≥ 1− ε ∧ ε0 and Ppc−ε∧ε0 [A] ≤ ε ∧ ε0. By Talagrand’s inequality, for
an appropriate absolute constant c > 0,

Varp[1A] ≤ c log
( 1

p(1− p)

) n∑
i=1

Ipi (A)

log(1/Ipi (A))

≤ c log
( 1

p(1− p)

) 1

log(1/δ)

n∑
i=1

Ipi (A) ≤ c(pc)
1

log(1/δ)

n∑
i=1

Ipi (A)

for all p ∈ [pc − ε0, pc + ε0]. By Lemma 2.3,

Ppc+ε∧ε0 [A] ≥ 1− exp
(
− log(1/δ)

ε ∧ ε0
c(pc)

)
= 1− δ

ε∧ε0
c(pc) ;

Ppc−ε∧ε0 [A] ≤ δ
ε∧ε0
c(pc) .

Choose δ = (ε ∧ ε0)
c(pc)/ε∧ε0 , then as desired for all p ≥ pc + ε, Pp[A] ≥ 1− ε ∧ ε0 and for all

p ≤ pc − ε, Pp[A] ≤ ε ∧ ε0. □

Exercise 2 (Heat semigroup on the hypercube).
Let µ = µ1⊗. . .⊗µn :=

(
1
2
δ−1 +

1
2
δ1
)⊗n be the uniform measure on the hypercube {−1, 1}n.

Define the process Xt = (X1
t , . . . , X

n
t )t≥0 as follows. To each coordinate i, we attach an

independent Poisson process (N i
t )t≥0 of intensity one1. Then,

• draw X0 ∼ µ independently from the PP N = (N1, . . . , Nn);
• each time N i

t jumps for some i, replace the current value of X i
t by an independent

sample from µi while keeping the remaining coordinates fixed.
We define Ptf(x) := E[f(Xt)|X0 = x]. Prove the following properties of (Xt)t and its
associated semigroup (Pt)t:

1Poisson process (Nt)t≥0 of intensity λ > 0 on R+ is the counting process that satisfies N0 = 0, has
independent increments and Nt − Ns ∼ Poisson(λ(t − s)) for any t ≥ s ≥ 0. Recall that such a process
can be constructed, for instance, in the following way: let (Ti)i be i.i.d. exponential random variables of
intensity λ, then Nt := #{n ∈ N0 :

∑n
i=1 Ti ≤ t} is the Poisson process of intensity λ.
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(1) (Xt)t satisfies the Markov property;
(2) µ is its stationary measure, i.e., that

∫
E[f(Xt)|X0 = x]µ(dx) =

∫
fµ(dx);

(3) Ptf(x) =
∑

S⊂{1,...,n}(1− e−t)|S|e−t(n−|S|) ∫ f(x1, . . . , xn)
∏

i∈S µi(dxi);
(4) Each f : {−1, 1}n → R can be written as f =

∑
S⊂{1,...,n} f̂(S)uS for appropriate

coefficients f̂(S) and uS(x) =
∏

i∈S xi
2. Recall that using this representation, you

defined in class an operator Te−tf(x) =
∑

S⊂{1,...,n} e
−t|S|f̂(S)uS for any t ≥ 0. Show

that Te−t = Pt.
(5)

Lf :=
d

dt

∣∣∣∣
t=0+

Ptf(x) := lim
t↓0

Ptf − f

t
= −

n∑
i=1

δif,

where δif(x) = f(x)−
∫
f(x1, . . . , yi, . . . , xn)µi(dyi) = f(x)−f(x1,...,1,...,xn)+f(x1,...,−1,...,xn)

2
.

Note that δiδi = δi and δiδj = δjδi, hence, −
∑

i δi is a discrete Laplacian. Thus, let
us write ∆ instead of L.

(6) Conclude that d
dt
Ptf = ∆Ptf ;

(7) δiPtf = Ptδif .
Proof. Let (X i

m)i≤n,m∈N be iid Rademacher variables independent of N . Then (Xt)t has the
same law as (X1

N1
t
, . . . , Xn

Nn
t
)t. Using this observation, the Markov property follows directly

from the independence of increments of the Poisson process, and stationarity of µ from the
independence of X i

m’s and N and identical distribution of (X i
m)m’s (use tower property). Let

us determine the transition semigroup and the generator of (Xt)t,

Ptf(x) = E[f(Xt)|X0 = x] =
∑

S⊂{1,...,n}

Ex[f(Xt)(1N i
t>0 for i∈S1N i

t=0 for i ̸∈S)]

=
∑

S⊂{1,...,n}

(1− e−t)|S|e−t(n−|S|)
∫

f(x1, . . . , xn)
∏
i∈S

µi(dxi)

=
∑

S⊂{1,...,n}

∑
S′⊂{1,...,n}

f̂(S ′)(1− e−t)|S|e−t(n−|S|)
∫ ∏

i∈S′

xi

∏
i∈S

µi(dxi)

=
∑

S⊂{1,...,n}

∑
S′⊂{1,...,n}

f̂(S ′)(1− e−t)|S|e−t(n−|S|)
∏

i∈S′\S

xi

∏
j∈S∩S′

∫
xjµj(dxj)︸ ︷︷ ︸

=1{S∩S′=∅}

=
∑

S′⊂{1,...,n}

f̂(S ′)
∏
i∈S′

xi

∑
S⊂{1,...,n}\S′

(1− e−t)|S|e−t(n−|S|)

︸ ︷︷ ︸
=e−t|S′| ∑n−|S′|

k=0 (n−|S′|
k )(1−e−t)k(e−t)n−|S′|−k=e−t|S′|

=
∑

S′⊂{1,...,n}

e−t|S′|f̂(S ′)uS′ = Te−tf ;

Lf(x) = −nf(x) +
n∑

k=1

∫
f(x1, . . . , xn)µk(dxk) = −

n∑
k=1

δif(x).

2this definition of uS might differ from the one used in class by a factor of (−1)|S|
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By Markov property (and time homogeneity), we further get that Pt+sf(x) = E[E[f(Xt+s)|(Xu)u≤t]|X0 =

x] = E[Ẽ[f(X̃s)|X̃0 = Xt]|X0 = x] = E[Psf(Xt)|X0 = x] = Pt(Psf)(x). Thus, d
dt
Ptf =

limu↓0
Pt+uf−Ptf

u
= limu↓0

Pu(Ptf)−Ptf
u

= L(Ptf) = ∆Ptf . Since P0 = Id, this in turn implies
that Pt = et∆, but since all δj’s commute with one another, it follows that Pt =

∏n
j=1 e

−tδj .
Clearly, Pt and δi commute. 3 □

⋆ For fun.

Exercise 3 (Hypercontractivity and log-Sobolev on the hypercube). Let Pt, µ be as in the
previous exercise. Prove that the following are equivalent:

(1) (log-Sobolev) Entµ[f
2] ≤ 1

2
Eµ[
∑n

i=1(2δif)
2]

(2) (Hypercontractivity) ∥Ptf∥Lq(t)(µ) ≤ ∥f∥Lq(µ) for all q ≥ 1, t ≥ 0, f ∈ Lq(µ) and
q(t) = 1 + (q − 1)e2t.

To show the implication (1) ⇒ (2) you may proceed as follows:
• Reduce to the case f ≥ 0.
• Consider log ∥Ptf∥Lq(t) and compute its derivative.
• Show that the derivative is non-positive by reducing to the following problem: for a

function g ≥ 0, p = q(t) and p′ = q′(t),
n∑

i=1

(
E
[(

gp/2 − g
p/2
(i)

)2]
− p2

p′
E[gp−1δig]

)
≤ 0.(0.1)

Hint: apply log-Sobolev in this step.

• Prove (0.2) using
(

bp/2−ap/2

b−a

)2
≤ p2

4(p−1)
bp−1−ap−1

b−a
(check this) and the previous exercise.

To show the converse implication you may want to re-use the above second step.

Proof. Let q ≥ 1 and q(t) = 1+(q−1)e2t. Note that |Ptf | ≤ Pt|f |, therefore, we can restrict
to the case f ≥ 0. Note that log ∥Ptf∥Lq(t) = 1

q(t)
logE[(Ptf)

q(t)] and so,

d

dt

(
1

q(t)
logE[(Ptf)

q(t)]

)
=

−q′(t)

q2(t)
logE[(Ptf)

q(t)] +
1

q(t)

1

E[(Ptf)q(t)]
E
[
(Ptf)

q(t)

(
q′(t) log(Ptf) + q(t)

1

Ptf

d

dt
(Ptf)

)]
=

q′(t)

q(t)2E[(Ptf)q(t)]

(
Ent[(Ptf)

q(t)] +
q(t)2

q′(t)
E[(Ptf)

q(t)−1L(Ptf)]

)
log-Sobolev

≤ q′(t)

q(t)2E[(Ptf)q(t)]

n∑
i=1

(
E
[(

(Ptf)
q(t)/2 − (Ptf)

q(t)/2
(i)

)2]
− q(t)2

q′(t)
E[(Ptf)

q(t)−1δi(Ptf)]

)
,

where f(i)(Y ) = f(Y 1, . . . , Y i−1, Ỹ i, Y i+1, . . . , Y n), where Ỹi is an independent copy of Yi.
Note that the coefficient in front of the sum is positive. Thus, to prove that the derivative

3Note that to prove the latter two bullet-points of the exercise, one may also proceed differently and use
an explicit form obtained in (4).
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is non-positive, it suffices to show that for g ≥ 0, p = q(t) and p′ = q′(t),
n∑

i=1

(
E
[(

gp/2 − g
p/2
(i)

)2]
− p2

p′
E[gp−1δig]

)
≤ 0.(0.2)

Note that for a, b ≥ 0, by Cauchy-Schwarz, (bp/2−ap/2)2 =
(

p
2

∫ b

a
up/2−1du

)2
≤ p2(b−a)

4

∫ b

a
up−2 =

p2(b−a)(bp−1−ap−1)
4(p−1)

. Hence, by (0.2) it suffices to show that

n∑
i=1

p2

2(p− 1)

1

2
E
[
(g − g(i))(g

p−1 − gp−1
(i) )

]
︸ ︷︷ ︸

=E
[
g(gp−1−gp−1

(i)
)
]

−2(p− 1)

p′
E[gp−1δig]︸ ︷︷ ︸

=E
[
g(gp−1−gp−1

(i)
)
]


=

n∑
i=1

p2

2(p− 1)
E
[
g(gp−1 − gp−1

(i) )
](

1− 2(p− 1)

p′

)
≤ 0.

Note that 1− 2(p− 1)/p′ = 1− 2(q − 1)e2t/(2e2t(q − 1)) = 0. All together, we have shown
that log ∥Ptf∥Lq(t) is non-increasing; q(0) = q. Therefore, ∥Ptf∥Lq(t) ≤ ∥f∥Lq as desired.

For the reverse implication, note that by (2), d
dt

∣∣
t=0

log ∥Ptf∥Lq(t) ≤ 0. And hence by the
above and the previous exercise with q = 2 (hence, q(0) = 2, q′(0) = 2), we get that

0 ≥ 1

2E[f 2]

(
Ent[f 2] + 2E[fLf ]

)
=

1

2E[f 2]

(
Ent[f 2]− 2

∑
i

E[fδif ]

)
.

We may yield the desired result since 2E[fδif ] = E[fδif ] − E[f iδif ] = 2E[(δif)2], where f i

stands for f with flipped ith coordinate. □
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