
TOPICS IN PROBABILITY. PART III: PHASE TRANSITION

Exercise sheet 10: Monotonicity and sharp transitions

Exercise 1 (Why monotonicity assumption?).
Recall that from Margulis-Russo lemma you have concluded that p 7→ Ep[f ] is nondecreas-

ing whenever f is monotone, i.e. f(x) ≤ f(y) whenever xi ≤ yi for all i. Conclude this
result easier in the following way:

• Let p ≤ p′. Show that there exists a coupling (X,X ′) of Pp and Pp′ such that Xi ≤ X ′
i

a.s. for every i = 1, . . . , n. Conclude that p 7→ Ep[f ] is non-decreasing whenever f is
monotone.

When f is not monotone, the map p 7→ Ep[f ] can be essentially arbitrary, as the following
exercise shows:

• Given any continuous function h : [0, 1] → [0, 1], construct functions fn : {0, 1}n →
{0, 1} so that Ep[fn] → h(p) as n → ∞ for all p ∈ (0, 1).

For this reason, there is no meaningful notion of a (sharp) transition in general, unless an
assumption such as monotonicity is made.

Proof. Let us first prove the monotonicity of p 7→ Ep[f ]: Let (Ui)i be a family of independent
random variables that are uniformly distributed over [0, 1]. Set X = (Xi)i := (1Ui≤p) and
X ′ = (X ′

i)i := (1Ui≤p′). Then clearly X ∼ Pp and X ′ ∼ Pp′ . Moreover, P[X ≤ X ′] =
P[1Ui≤p ≤ 1Ui≤p′ ∀i] = 1. In particular, for any monotone function f , Ep[f ] = E[f(X)] ≤
E[f(X ′)] = Ep′ [f ] as desired.

Let n ∈ N be fixed, define En
i to be the subset of {0, 1}n which consists of elements

with exactly i coordinates being 1. Note that {0, 1}n =
⋃̇

iEi. Order the elements of En
i

in lexicographical order (e.g., 001 ≤ 010 ≤ 100 in E3
1). Denote the

⌊
h(i/n)

(
n
i

)⌋
’s element

in this chain by Un
i . Then fn on each En

i is given by 1(xj)j≤Un
i
. Using this and Stirling’s

formula, we get the following

Ep[fn] =
n∑

i=0

Ep[fn1En
i
] =

n∑
i=0

∑
(xj)j∈En

i

fn((xj)j)p
i(1− p)n−i

=
∑
i

⌊
h(i/n)

(
n

i

)⌋
pi(1− p)n−i

n→∞∼
n−1∑
i=1

h(i/n)√
2πn

1√
(i/n)(1− i/n)

((pn
i

)i/n( 1− p

1− i/n

)1−i/n
)n

n→∞∼
∫ 1

1/n

h(x)

√
n

2π

1√
x(1− x)

((p
x

)x(1− p

1− x

)1−x
)n

dx.

Note that x 7→
(
p
x

)x ( 1−p
1−x

)1−x is strictly increasing on (0, p) and strictly decreasing on (p, 1).
It attains its maximum 1 at x = p. Therefore, since outside of (p − ε, p + ε) (ε to be
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determined, it tends to 0 as n → ∞) the above integrand decays uniformly exponentially
fast, we get

Ep[fn]
n→∞∼

∫ p+ε

p−ε

h(x)

√
n

2π

1√
x(1− x)

((p
x

)x(1− p

1− x

)1−x
)n

dx

n→∞∼
∫ p+ε

p−ε

h(x)

√
n

2π

1√
x(1− x)

(
1− (x− p)2

2p(1− p)

)n

dx

≈ h(p)
1√

p(1− p)

√
n

2π

∫ +ε

−ε

(
1− x2

2p(1− p)

)n

︸ ︷︷ ︸
≈exp(−x2n/(2p(1−p)))

dx

n→∞∼ h(p)

√
n

2π

1√
p(1− p)

∫ +ε
√
n/
√

p(1−p)

−ε
√
n/
√

p(1−p)

√
p(1− p)√

n
exp

(
−y2/2

)
dx

n→∞∼ h(p)
1√
2π

∫ +ε
√
n/
√

p(1−p)

−ε
√
n/
√

p(1−p)

exp
(
−y2/2

)
dx

n→∞∼ h(p),

where in the second step we expanded
(
p
x

)x ( 1−p
1−x

)1−x at x = p and in the last line we have
used that ε

√
n tends to infinity. Indeed, to determine ε > 0 such that n1/2n

(
p
x

)x ( 1−p
1−x

)1−x
< 1

uniformly outside of (p−ε, p+ε), expand
(
p
x

)x ( 1−p
1−x

)1−x at x = p and n1/2n at ∞ and compare
the coefficients. This results into ε2 > p(1− p) log n/n, so take ε = 2

√
p(1− p) log n/n. The

proof is, thus, complete. □

Exercise 2 (Examples of Boolean functions: influence and presence or absence of a phase
transition.).

Let fn : {0, 1}n → {0, 1} be one of the following Boolean functions:

(1) (Dictatorship: the first bit determines the outcome) fD
n (x1, . . . , xn) = x1;

(2) (Tribes) Partition {1, . . . , n} into subsequent blocks of length log2(n)− log2(log2(n))
with perhaps some leftovers. Define fT

n (x1, . . . , xn) = 1A, where A is the event that
at least one of the blocks consists of only 1’s;

(3) (Iterated 3-majority function) Let k ∈ N, consider a rooted 3-ary tree (the root vertex
has degree 3, leaves degree 1 and other vertices degree 4) of depth k (in particular,
there are n = 3k leaves). To each leaf we assign 0 or 1, and apply the 3-majority
function, i.e., M(x1, x2, x3) = 1{

∑
i xi>3/2}, to determine the values of the vertices at

depth k−1. We iterate this procedure until reaching the root, and define fn(x1, . . . , xn)
to be the value at the root. Example: if k = 2, we start with x = (0, 1, 1; 1, 0, 0; 0, 1, 0),
at depth 1 we get (1, 0, 0), and hence, fn(x) = 0.

For all these examples, verify that fn is monotone, compute the ith influence (for any i) and
check "by hand" whether or not there is a phase transition.

Solution. The monotonicity follows directly from the definitions.

(1) I1(p) = Pp[X1 ̸= 1 − X1] = 1 and Ii(p) = 0 for i ≥ 2. Furthermore, Ep[f
D
n ] =

Ep[X1] = p, which is linear, hence, there is no sharp phase transition;
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(2) For simplicity write g(n) := log2 n− log2 log2 n. For the indices of leftovers (since A
does not depend on them), Ii(p) = 0. These are i > i0 := ⌊ n

g(n)
⌋g(n). For i ≤ i0,

note that X̄ ∈ A, but X̄(i) /∈ A (X with ith coordinate flipped) is the event that
the only block consisting of only 1’s is the block containing index i. This event has
probability p⌊g(n)⌋(1 − p⌊g(n)⌋)⌊

n
g(n)

⌋−1. On the other hand, X̄ /∈ A, but X̄(i) ∈ A
is the event that none of the blocks consist of only 1’s, but the block containing
ith element has all 1’s except for the ith element which is 0. Its probability is
p⌊g(n)⌋−1(1− p)(1− p⌊g(n)⌋)⌊

n
g(n)

⌋−1. Therefore,

Ii(p) = Pp[X̄ ∈ A, X̄(i) /∈ A] + Pp[X̄ /∈ A, X̄(i) ∈ A] = p⌊g(n)⌋−1(1− p⌊g(n)⌋)⌊
n

g(n)
⌋−1.

To determine whether there is a sharp phase transition, consider and compute

Ep[f
T
n ] = Pp[A] = 1− (Pp[all blocks have zeroes])⌊

n
g(n)

⌋ = 1− (1− p⌊g(n)⌋)⌊
n

g(n)
⌋.

We find that pc(n) = (1 − 2−1/⌊n/g(n)⌋)1/⌊g(n)⌋ (such that Epc(n)[f
T
n ] = 1/2). One can

check that pc(n) converges to 1/2 as n tends to infinity. Let εn be a positive sequence
converging to zero (the rate of convergence is to be determined). Using Taylor’s
expansion of log(1± x) at x = 0, we obtain

Epc(n)(1+εn)[f
T
n ] = 1− exp

(⌊ n

g(n)

⌋
log(1− (1− 2−1/⌊n/g(n)⌋)(1 + εn)

⌊g(n)⌋)
)

≥ 1− exp
(
−
⌊ n

g(n)

⌋
(1− 2−g(n)/n)(1 + εn)

⌊g(n)⌋
)

≥ 1− exp
(
− 1

2

n

g(n)
(1− (log2 n/n)

1/n)(1 + εn)
g(n)
)
.

Let us show that n
g(n)

(1− (log2 n/n)
1/n) → log 2 as n tends to infinity:

lim
n

(1− e
1
n
log(log2 n/n))

g(n)/n
= log 2 lim

n

(1− e
1
n
log(log2 n/n))

log n/n

L’Hosp.
= − log 2 lim

n
e

1
n
log(log2 n/n) lim

n

( 1

log n
+

log log n− log n− log log 2

log n− 1

)
= log 2elimn

1
n
log(log2 n/n) = log 2.

Therefore, lim infn Epc(n)(1+εn)[f
T
n ] ≥ 1 − exp(− log 2

2
limn(1 + εn)

g(n)) with limn(1 +

εn)
g(n) = +∞ as long as εng(n) → ∞. For instance, take εn = 1/

√
g(n), then

lim infn Epc(n)(1+εn)[f
T
n ] = 1. Fully analogously, with the same choice of εn, one gets

lim supn Epc(n)(1−εn)[f
T
n ] = 0. Hence, the model exhibits a sharp phase transition.

(3) Let us introduce some notations. We label vertices of the tree using Ulam-Harris
labeling, meaning that the root has index ∅, the first generation has labels in N (in
our case, just 1, 2 and 3), in the next generation the labels are of the form i1, i2, i3
for ancestors of the vertex i, and so on (see the figure below). We further write Mu

for the value at vertex u (u is an index as described above); note that for u, an index
of length k (corresponding to leaves of the tree), Mu = X1+

∑k
j=1(uj−1)3k−j , and that

Mu is the majority function evaluated at Mu1,Mu2,Mu3. Note that fn(X̄) ̸= fn(X̄
(i))

if and only if the swap of the value of Xi affects the change of the value at the
root, which in turn can only happen if all vertices along the branch from the leaf to
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the root have "siblings" taking two different values (on the figure, vertices marked
with red crosses at each given generation must be of different values). Wlog (up to
reindexing of the events), assume that the ith coordinate is exactly the leaf of the
central branch, i.e., i = ⌊3k/2⌋+ 1. Then, the above observation results into

Ii(p) = Pp[M1 ̸= M3,M21 ̸= M23, . . . ,M22...21(= Xi−1) ̸= M22...23(= Xi+1)] =
k∏

j=1

Pj,

where Pj is the probability of M1 ̸= M3 in a 3ary tree of depth j (note that P1 =
Pp[Xi−1 ̸= Xi+1]). Here we used independence of sub-trees that arise when we erase
the branch from the ith leaf to the root. Let us further write pj for the probability
of the event M1 = 1 in a 3ary tree of depth j, then Pj = 2pj(1− pj). It only remains
to find pj. To this end, notice that M1 = 1 iff at least two of M11,M12,M13 are
1’s; and since each M1l has the law of M1 in the tree of depth j − 1, we obtain that
pj = p3j−1 + 3p2j−1(1− pj−1). Altogether,

Ii(p) =
k∏

j=1

(2pj(1− pj)) with pj = p3j−1 + 3p2j−1(1− pj−1) for 2 ≤ j ≤ k, p1 = p.

Let
us now move to the question of existence of a sharp phase transition. Observe first
that for p = 1/2, pj = 1/2 for all j ≤ k, and Ep[fn] = p3k+3p2k(1−pk)(=: pk+1) = 1/2.
Furthermore, note that l 7→ pl is strictly increasing if p1 = p ∈ (1/2, 1), and
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strictly decreasing if p ∈ (0, 1/2). Let us focus on the former case (the latter fol-
lows analogously): namely, assume that p1 = 1/2 + εn for some εn > 0. Let
ε > 0, either for all n sufficiently large there exists j0(n, εn) < k = log3 n such
that pj0 ≥ 1 − ε (and by monotonicity, this holds also for all indices larger than
j0) — in this case we get as desired that E1/2+εn [f] = pk+1 ≥ 1 − ε for all n suffi-
ciently large; or there exists a subsequence (nl)l (with abuse of notation still write
just n) converging to infinity such that pk ≤ 1 − ε (and hence all pl for l ≤ k).
In the latter case, on the one hand, pk+1 ≤ 1 − 3ε2 + 2ε3. On the other hand,
pk+1 = p

∏k
j=1 pj+1/pj = p

∏k
j=1 pj(3 − 2pj) ≥ (1/2 + εn)(1 + εn − 2ε2n)

k, where we
used that h : x ∈ [0, 1] 7→ x(3−2x) is increasing on [0, 3/4] and decreasing on [3/4, 1]
(and so, minx∈[1/2+εn,1−εn] h(x) = min(h(1/2+εn), h(1−εn)) = (1−εn)(1+2εn)). By
choosing εn = 1/

√
log n, for instance, we get that 1/2(1+(1−o(1))/

√
log n)log3 n ≫ 1,

which is clearly a contradiction since pk+1 must be smaller than 1. Therefore, the
model exhibits a sharp phase transition with pc = 1/2 and εn ≥ 1/

√
log n (not

optimal).
□
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