TOPICS IN PROBABILITY. PART III: PHASE TRANSITION

EXERCISE SHEET 10: MONOTONICITY AND SHARP TRANSITIONS

Exercise 1 (Why monotonicity assumption?).

Recall that from Margulis-Russo lemma you have concluded that p — E,[f] is nondecreas-
ing whenever f is monotone, i.e. f(x) < f(y) whenever x; < y; for all i. Conclude this
result easier in the following way:

o Letp < p'. Show that there exists a coupling (X, X') of P, and Py such that X; < X]
a.s. for every i =1,...,n. Conclude that p — E,|[f] is non-decreasing whenever f is
monotone.

When f is not monotone, the map p — E,[f] can be essentially arbitrary, as the following
exercise shows:
e Given any continuous function h : [0,1] — [0, 1], construct functions f, : {0,1}" —
{0,1} so that E,[f,] — h(p) as n — oo for allp € (0,1).
For this reason, there is no meaningful notion of a (sharp) transition in general, unless an
assumption such as monotonicity is made.

Proof. Let us first prove the monotonicity of p — E,[f]: Let (U;); be a family of independent
random variables that are uniformly distributed over [0,1]. Set X = (X;); = (1y,<p) and
X' = (X]); = (ly,<p). Then clearly X ~ P, and X’ ~ P,. Moreover, P[X < X'| =
P[1ly,<, < 1y,<p Vi| = 1. In particular, for any monotone function f, E,[f] = E[f(X)] <
E[f(X")] = Ey[f] as desired.

Let n € N be fixed, define E! to be the subset of {0,1}" which consists of elements
with exactly ¢ coordinates being 1. Note that {0,1}" = (J,E;. Order the elements of E
in lexicographical order (e.g., 001 < 010 < 100 in E3). Denote the |A(i/n)(")]’s element
in this chain by U". Then f, on each E}' is given by 1(,,),<yr. Using this and Stirling’s
formula, we get the following
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Note that x — ( ) (}_Z ) is strictly increasing on (0, p) and strictly decreasing on (p, 1).

It attains its maximum 1 at © = p. Therefore, since outside of (p — &,p 4+ ¢) (¢ to be
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determined, it tends to 0 as n — oo) the above integrand decays uniformly exponentially
fast, we get
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where in the second step we expanded (g)x (i_;;’)lfz at x = p and in the last line we have

used that £,/n tends to infinity. Indeed, to determine € > 0 such that n'/?" (2)* ({=2) T

1—x

uniformly outside of (p—¢, p+¢), expand (g)x (i_;i)lfx at z = p and n'/?" at oo and compare

the coefficients. This results into e > p(1 —p)logn/n, so take ¢ = 24/p(1 — p) logn/n. The
proof is, thus, complete. 0

Exercise 2 (Examples of Boolean functions: influence and presence or absence of a phase
transition.).

Let f, : {0,1}™ — {0, 1} be one of the following Boolean functions:

(1) (Dictatorship: the first bit determines the outcome) fP(xy, ..., z,) = x1;

(2) (Tribes) Partition {1,...,n} into subsequent blocks of length logs(n) — logy(logy(n))
with perhaps some leftovers. Define fI(xy,...,x,) = 14, where A is the event that
at least one of the blocks consists of only 1’s;

(3) (Iterated 3-majority function) Let k € N, consider a rooted 3-ary tree (the root vertex
has degree 3, leaves degree 1 and other vertices degree 4) of depth k (in particular,
there are n = 3% leaves). To each leaf we assign 0 or 1, and apply the 3-majority
function, i.e., M(xq,x9,23) = 152, 25372y, to determine the values of the vertices at
depth k—1. We iterate this procedure until reaching the root, and define f,,(x1,...,xy,)
to be the value at the root. Example: if k = 2, we start with x = (0,1,1;1,0,0;0,1,0),
at depth 1 we get (1,0,0), and hence, f,(x)=0.

For all these examples, verify that f, is monotone, compute the ith influence (for any i) and
check "by hand" whether or not there is a phase transition.
Solution. The monotonicity follows directly from the definitions.

(1) Ii(p) = P)[X: # 1 — X;] = 1 and I;(p) = 0 for i > 2. Furthermore, E,[fP] =
E,[X1] = p, which is linear, hence, there is no sharp phase transition;
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(2) For simplicity write g(n) := logy, n — log, log, n. For the indices of leftovers (since A
does not depend on them), I;(p) = 0. These are i > iy = L#jg(n) For i < iy,

note that X € A, but X ¢ A (X with ith coordinate flipped) is the event that
the only block consisting of only 1’s is the block containing index ¢. This event has
probability pls™!(1 — pla®I)latm=! " On the other hand, X ¢ A, but X® € A
is the event that none of the blocks consist of only 1’s, but the block containing
1th element has all 1’s except for the ith element which is 0. Its probability is
plamI=1(1 —p)(1 — ptg(””)tﬁj*l. Therefore,

L(p) =P [X € A, XD ¢ A +P,[X ¢ A, XD € A] = ploI=1(1 — plotml)lstm )1,
To determine whether there is a sharp phase transition, consider and compute
E,[f!] = P,[A] = 1 — (P,[all blocks have zeroes]) s =1 — (1 — plst]ylatn !,

We find that p.(n) = (1 — 27V//9N9M] (such that E, o [f] = 1/2). One can
check that p.(n) converges to 1/2 as n tends to infinity. Let &, be a positive sequence
converging to zero (the rate of convergence is to be determined). Using Taylor’s
expansion of log(1 £+ z) at x = 0, we obtain

n - n n n
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1
2 1= exp (= 55 (1= (logyn/n) M) (1+2,)7)).
Let us show that ﬁ(l — (logyn/n)Y™) — log 2 as n tends to infinity:
1 — %log(logQ n/n) 1— %log(logQ n/n)
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n g(n)/n n logn/n
L'Hosp. log 2 i e ogoga n/n) 1y, ( 1 n loglogn — logn — log log 2)

n

logn logn — 1

_ IOg 2elimn % log(logy n/n) _ lOg 9.

Therefore, liminf, E, (e[ fl] > 1 — exp(—log2 lim,, (1 + £,)9™) with lim, (1 +
£,)9" = +o0 as long as €,9(n) — oo. For instance, take ¢, = 1/1/g(n), then
liminf, E,, () ten)f] = 1. Fully analogously, with the same choice of €, one gets
lim sup,, By, (n)(1—e) [fif] = 0. Hence, the model exhibits a sharp phase transition.

(3) Let us introduce some notations. We label vertices of the tree using Ulam-Harris
labeling, meaning that the root has index (), the first generation has labels in N (in
our case, just 1,2 and 3), in the next generation the labels are of the form 1,23
for ancestors of the vertex i, and so on (see the figure below). We further write M,
for the value at vertex u (u is an index as described above); note that for u, an index
of length k (corresponding to leaves of the tree), M, = X1+Zf_1(uj—1)3k—ﬂ and that

M, is the majority function evaluated at M,;, Mo, M,3. Note that f,(X) # f,,(X®)
if and only if the swap of the value of X, affects the change of the value at the

root, which in turn can only happen if all vertices along the branch from the leaf to
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the root have "siblings" taking two different values (on the figure, vertices marked
with red crosses at each given generation must be of different values). Wlog (up to
reindexing of the events), assume that the ith coordinate is exactly the leaf of the
central branch, i.e., i = |3¥/2| 4+ 1. Then, the above observation results into

k
Ii(p) = IP317[1\41 # Ms, Moy # Mo, ..., Mo o1(= X;_1) # Moy _23(= Xiy1)] = HP;;

J=1

where P; is the probability of M; # Mj; in a 3ary tree of depth j (note that P, =
P,[Xi—1 # X;+1]). Here we used independence of sub-trees that arise when we erase
the branch from the ¢th leaf to the root. Let us further write p; for the probability
of the event M; = 1 in a 3ary tree of depth j, then P; = 2p;(1 — p;). It only remains
to find p;. To this end, notice that M; = 1 iff at least two of My, Mys, M3 are
1’s; and since each My; has the law of M; in the tree of depth 7 — 1, we obtain that
p; =151 +3p;_(1 —pj_1). Altogether,

k
Lip) = [ [2ps(1 = p;)) withp; =p}  +3p] ;(1—pjy) for2<j<k p =p.
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Let
us now move to the question of existence of a sharp phase transition. Observe first
that for p = 1/2, p; = 1/2 for all j < k, and E,[f,] = p} +3pi(1—pr) (= prs1) = 1/2.
Furthermore, note that [ — p; is strictly increasing if p; = p € (1/2,1), and
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strictly decreasing if p € (0,1/2). Let us focus on the former case (the latter fol-
lows analogously): namely, assume that p; = 1/2 + ¢, for some ¢, > 0. Let
e > 0, either for all n sufficiently large there exists jo(n,e,) < k = logyn such
that p;, > 1 — ¢ (and by monotonicity, this holds also for all indices larger than
Jo) — in this case we get as desired that Eq/oi., [fj = prr1 > 1 — € for all n suffi-
ciently large; or there exists a subsequence (n;); (with abuse of notation still write
just n) converging to infinity such that p, < 1 — e (and hence all p; for [ < k).
In the latter case, on the one hand, py; < 1 — 32 + 2¢3. On the other hand,
Prt1 = pH§:1 Pi+1/Pj = przlpj(i% —2p;) > (1/2+€,)(1 + e, — 2¢2)*, where we
used that h : x € [0, 1] — x(3 —2x) is increasing on [0, 3/4] and decreasing on [3/4, 1]
(and so, mingep /a+4e,,1-6,] (@) = min(h(1/2+¢e,), h(1 —¢,)) = (1 —&,)(1+2¢,)). By
choosing ¢,, = 1/+/logn, for instance, we get that 1/2(1+(1—o0(1))/+/logn)&s™ > 1,
which is clearly a contradiction since piy; must be smaller than 1. Therefore, the
model exhibits a sharp phase transition with p. = 1/2 and ¢, > 1/y/logn (not
optimal).
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