
TOPICS IN PROBABILITY. PART I: CONCENTRATION

Exercise sheet 3: Efron-Stein and Poincaré inequalities, Subgaussianity

1. Efron-Stein and Poincaré inequalities

Exercise 1 (Extending Gaussian Poincaré to C1 functions).
Let f : R → R be any continuously differentiable function and X be a standard normal

random variable. Show that
Var[f(X)] ≤ E[(f ′(X))2].

Exercise 2 (Gaussian Poincaré for Lipschitz functions is better than direct Efron-Stein).
Let X be a standard Gaussian vector, f be L-Lipschitz function and set Z = f(X).

Compare the bounds for Var[Z] obtained using Gaussian Poincaré inequality to the ones
that you get by applying Efron-Stein inequality (in the most obvious way). What important
feature does Poincaré inequality have compared to Efron-Stein in this situation?

(1) Prove that for any Gaussian vector Y ,

Var[
n

max
i=1

Yi] ≤
n

max
i=1

Var[Yi]

(2) Recall Exercise 2 Sheet 2. Use Gaussian Poincaré inequality to prove that
√
D − 1 ≤ E[Z],

where Z be a non-negative random variable such that Z2 has a chi-squared distribution
with D degrees of freedom.

Can you get these bounds using Efron-Stein inequality?

Exercise 3 (Poisson Poincaré inequality).
Let f : N0 → R be a real-valued function defined on non-negative integers, denote its

discrete derivative as Df(x) = f(x + 1) − f(x). Let X be a Poisson random variable with
intensity µ. Prove that

Var[f(X)] ≤ µE[(Df(X))2].

Hint: infinite divisibility of Poisson distribution and Efron-Stein inequality might be useful.

2. Subgaussianity

Exercise 4 (Subgaussian properties).
Let X be a random variable. Show that the following properties are equivalent so that the

parameters Ci > 0 appearing in the properties below differ from each other by an absolute
constant factor, meaning that there exists C > 0 such that property i implies property j with
parameter Cj ≤ CCi for all i, j = 1, . . . , 5

(1) The tails of X satisfy

P[|X| ≥ t] ≤ 2e−t2/C2
1 for all t ≥ 0.
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(2) The moments of X satisfy

∥X∥Lp ≤ C2
√
p for all p ≥ 1.

(3) The MGF of X2 satisfies

E
[
eλ

2X2
]
≤ eC

2
3λ

2

for all |λ| ≤ 1

C3

.

(4) The MGF of X2 is bounded at some point, namely

E
[
eX

2/C2
4

]
≤ 2.

Moreover if E[X] = 0, then the above properties are also equivalent to
(5) The MGF of X satisfies

E
[
eλX

]
≤ eC

2
5λ

2

for all λ ∈ R.

More precisely, show that
• (1) ⇒ (2) with C2 ≥

√
πC1;

• (2) ⇒ (3) with C3 ≥ 2
√
eC2;

• (3) ⇒ (4) with C4 ≥ C3/
√
log 2;

• (4) ⇒ (1) with C1 ≥ C4;
• (3) ⇒ (5) with C5 ≥ C3 (under mean zero assumption);
• (5) ⇒ (1) with C1 ≥ 2C5 (under mean zero assumption).

A random variable satisfying one of the above equivalent properties is called subgaussian.
To be more specific, we will call a random variable σ2-subgaussian if property (5) holds for
X − E[X] with C2

5 = σ2/2. The constant σ2 is called the variance proxy. The smallest
such σ2 is called the optimal variance proxy.

Exercise 5 (Hoeffding lemma).
Let a ≤ X ≤ b a.s. for some a, b ∈ R. Then E

[
eλ(X−E[X])

]
≤ eλ

2(b−a)2/8. That is, X is
(b− a)2/4-subgaussian.
Hint: consider function ψ(λ) = logE

[
eλ(X−E[X])

]
. Show that ψ′′(λ) can be interpreted as a

variance of X − E[X] with respect to a new appropriately chosen probability measure. Use
some suitable bound for variances that you know (sheet 2 might be helpful).
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