## TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 3: EFRON-STEIN AND POINCARÉ INEQUALITIES, SUBGAUSSIANITY

1. EFRON-STEIN AND POINCARÉ INEQUALITIES

**Exercise 1** (Extending Gaussian Poincaré to  $C^1$  functions).

Let  $f: \mathbb{R} \to \mathbb{R}$  be any continuously differentiable function and X be a standard normal random variable. Show that

$$Var[f(X)] \le \mathbb{E}[(f'(X))^2].$$

Exercise 2 (Gaussian Poincaré for Lipschitz functions is better than direct Efron-Stein).

Let X be a standard Gaussian vector, f be L-Lipschitz function and set Z = f(X). Compare the bounds for Var[Z] obtained using Gaussian Poincaré inequality to the ones that you get by applying Efron-Stein inequality (in the most obvious way). What important feature does Poincaré inequality have compared to Efron-Stein in this situation?

(1) Prove that for any Gaussian vector Y,

$$\operatorname{Var}[\max_{i=1}^{n} Y_i] \le \max_{i=1}^{n} \operatorname{Var}[Y_i]$$

(2) Recall Exercise 2 Sheet 2. Use Gaussian Poincaré inequality to prove that

$$\sqrt{D} - 1 \le \mathbb{E}[Z],$$

where Z be a non-negative random variable such that  $Z^2$  has a chi-squared distribution with D degrees of freedom.

Can you get these bounds using Efron-Stein inequality?

Exercise 3 (Poisson Poincaré inequality).

Let  $f: \mathbb{N}_0 \to \mathbb{R}$  be a real-valued function defined on non-negative integers, denote its discrete derivative as Df(x) = f(x+1) - f(x). Let X be a Poisson random variable with intensity  $\mu$ . Prove that

$$\operatorname{Var}[f(X)] \le \mu \mathbb{E}[(Df(X))^2].$$

Hint: infinite divisibility of Poisson distribution and Efron-Stein inequality might be useful.

## 2. Subgaussianity

Exercise 4 (Subgaussian properties).

Let X be a random variable. Show that the following properties are equivalent so that the parameters  $C_i > 0$  appearing in the properties below differ from each other by an absolute constant factor, meaning that there exists C > 0 such that property i implies property j with parameter  $C_i \leq CC_i$  for all  $i, j = 1, \ldots, 5$ 

(1) The tails of X satisfy

$$\mathbb{P}[|X| \ge t] \le 2e^{-t^2/C_1^2} \quad \text{for all } t \ge 0.$$

(2) The moments of X satisfy

$$||X||_{\mathbf{L}^p} \leq C_2 \sqrt{p}$$
 for all  $p \geq 1$ .

(3) The MGF of  $X^2$  satisfies

$$\mathbb{E}\left[e^{\lambda^2 X^2}\right] \le e^{C_3^2 \lambda^2} \quad for \ all \ |\lambda| \le \frac{1}{C_3}.$$

(4) The MGF of  $X^2$  is bounded at some point, namely

$$\mathbb{E}\left[e^{X^2/C_4^2}\right] \le 2.$$

Moreover if  $\mathbb{E}[X] = 0$ , then the above properties are also equivalent to

(5) The MGF of X satisfies

$$\mathbb{E}\left[e^{\lambda X}\right] \le e^{C_5^2 \lambda^2} \quad for \ all \ \lambda \in \mathbb{R}.$$

More precisely, show that

- $(1) \Rightarrow (2)$  with  $C_2 \geq \sqrt{\pi}C_1$ ;
- $(2) \Rightarrow (3)$  with  $C_3 \geq 2\sqrt{e}C_2$ ;
- $(3) \Rightarrow (4)$  with  $C_4 \ge C_3/\sqrt{\log 2}$ ;
- $(4) \Rightarrow (1)$  with  $C_1 \geq C_4$ ;
- (3)  $\Rightarrow$  (5) with  $C_5 \geq C_3$  (under mean zero assumption);
- (5)  $\Rightarrow$  (1) with  $C_1 \geq 2C_5$  (under mean zero assumption).

A random variable satisfying one of the above equivalent properties is called **subgaussian**. To be more specific, we will call a random variable  $\sigma^2$ -subgaussian if property (5) holds for  $X - \mathbb{E}[X]$  with  $C_5^2 = \sigma^2/2$ . The constant  $\sigma^2$  is called the **variance proxy**. The smallest such  $\sigma^2$  is called the **optimal variance proxy**.

## Exercise 5 (Hoeffding lemma).

Let  $a \leq X \leq b$  a.s. for some  $a, b \in \mathbb{R}$ . Then  $\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2(b-a)^2/8}$ . That is, X is  $(b-a)^2/4$ -subgaussian.

Hint: consider function  $\psi(\lambda) = \log \mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right]$ . Show that  $\psi''(\lambda)$  can be interpreted as a variance of  $X - \mathbb{E}[X]$  with respect to a new appropriately chosen probability measure. Use some suitable bound for variances that you know (sheet 2 might be helpful).