TOPICS IN PROBABILITY. PART I: CONCENTRATION

EXERCISE SHEET 1: BASIC CONCENTRATION INEQUALITIES

Exercise 1 (Recap: Markov's inequality and direct corollaries).

- Suppose that X is a random variable, a > 0. Show that $\mathbb{P}[|X| \ge a] \le \frac{\mathbb{E}[|X|]}{a}$.
- Prove extended version of Markov's inequality. Namely, if $\phi: \mathbb{R}_+ \to \mathbb{R}_+$ is monotonically increasing function, then $\mathbb{P}[|X| \geq c] \leq \frac{\mathbb{E}[\phi(|X|)]}{\phi(c)}$ for all c > 0 such that $\phi(c) \neq 0$.
- Conclude Chebyshev's inequality. More precisely, assume that X is an integrable random variable with mean μ and a finite non-zero variance σ^2 , a > 0 and show that $\mathbb{P}[|X \mu| \ge a] \le \frac{\sigma^2}{a^2}$. Recall that the variance is given by $\sigma^2 = \mathbb{E}[(X \mu)^2]$.
- (Exponential inequalities) Let X be a random variable, $b \in \mathbb{R}$. Prove (using Markov's inequality applied to suitable non-negative random variables) that $\mathbb{P}[X \geq b] \leq e^{-tb}M(t)$ for all $t \geq 0$ and $\mathbb{P}[X \leq b] \leq e^{-tb}M(t)$ for all $t \leq 0$, where $M(t) = \mathbb{E}[e^{tX}]$ is the moment generating function (MGF) of X.

Note that we can optimize the bounds by taking in the above inequalities infimum over $t \geq 0$, $t \leq 0$, respectively. The resulting inequalities are called Chernoff bounds in some literature (sometimes more specific results are called that, see Exercise 4).

Exercise 2 (p-moments via tails and applications).

Let X be a random variable, $p \in (0, \infty)$. Show that

$$\mathbb{E}[|X|^p] = \int_0^\infty pt^{p-1} \mathbb{P}[|X| > t] dt$$

whenever the rhs is finite.

Suppose now that X is a random variable satisfying $\mathbb{P}[|X| \geq t] \leq 2e^{-bt}$ for some b > 0. Show that $\mathbb{E}[|X|^n] \leq 2b^{-n}n!$ and conclude that $||X||_{L^n} \leq \frac{cn}{b}$ for some uniform constant c > 0 (Stirling's formula might be helpful).

Exercise 3 (Tails of normal distribution).

Let $X \sim \mathcal{N}(\mu, \sigma^2)$ be a Gaussian random variable.

- Using Chernoff bounds (optimized exponential inequalities) estimate $\mathbb{P}[X \mu \geq c]$ for $c \geq 0$.
- Now suppose that that $\mu = 0, \sigma^2 = 1$. Show that for all c > 0,

$$\left(\frac{1}{c} - \frac{1}{c^3}\right) \frac{1}{\sqrt{2\pi}} e^{-c^2/2} \le \mathbb{P}[X \ge c] \le \frac{1}{c} \frac{1}{\sqrt{2\pi}} e^{-c^2/2}.$$

Hint: use density function, for the lower bound $g(x) = (1 - 3x^{-4})\mathbf{1}_{x>c} \le 1$ might be helpful.

Compare bounds of first and second bullet points in the case $\mu = 0, \sigma^2 = 1$.

Exercise 4 (Large deviations from LLN, Chernoff).

Let $X_i \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ be iid random variables with expectation μ and MGF $M(t) = \mathbb{E}[e^{tX_1}]$. Let $S_n := \sum_{i=1}^n X_i$. Show that for all $n \in \mathbb{N}$ and $a \in \mathbb{R}$,

$$\begin{cases} \mathbb{P}\left[\frac{S_n}{n} \ge a\right] \le e^{-nI(a)} & \text{if } a \ge \mu, \\ \mathbb{P}\left[\frac{S_n}{n} \le a\right] \le e^{-nI(a)} & \text{if } a \le \mu, \end{cases}$$

where $I(a) := \sup_{t \in \mathbb{R}} (at - \log M(t))$. Note that the supremum is taken over all \mathbb{R} . You can follow the following steps:

- Reduce to the case $\mu = 0$;
- Exponential Markov inequality;
- Use Jensen's inequality to conclude that the supremum in I(a) can be taken over all of \mathbb{R} .