TOPICS IN PROBABILITY. PART III: PHASE TRANSITION

EXERCISE SHEET 11: SHARP PHASE TRANSITION AND HYPERCONTRACTIVITY

Exercise 1 (Russo's almost 0-1 law). Consider a product measure \mathbb{P}_p on $\{0,1\}^n$: each 1 is assigned weight p. Prove the following result: for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any increasing event A with the associated ith influence satisfying $I_i^p(A) (= \mathbb{P}_p[\mathbf{1}_A(X) \neq$ $\mathbf{1}_A(\bar{X}^{(i)}) \leq \delta$ for all i, p, there exists p_c such that for all $p \geq p_c + \varepsilon$, $\mathbb{P}_p[A] \geq 1 - \varepsilon$, and for all $p \leq p_c - \varepsilon$, $\mathbb{P}_p[A] \leq \varepsilon$.

Exercise 2 (Heat semigroup on the hypercube).

Let $\mu = \mu_1 \otimes \ldots \otimes \mu_n := \left(\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1\right)^{\otimes n}$ be the uniform measure on the hypercube $\{-1,1\}^n$. Define the process $X_t = (X_t^1, \ldots, X_t^n)_{t \geq 0}$ as follows. To each coordinate i, we attach an independent Poisson process $(N_t^i)_{t>0}$ of intensity one¹. Then,

- draw $X_0 \sim \mu$ independently from the PP $N = (N^1, \dots, N^n)$;
- each time N_t^i jumps for some i, replace the current value of X_t^i by an independent sample from μ_i while keeping the remaining coordinates fixed.

We define $P_t f(x) := \mathbb{E}[f(X_t)|X_0 = x]$. Prove the following properties of $(X_t)_t$ and its associated semigroup $(P_t)_t$:

- (1) $(X_t)_t$ satisfies the Markov property;
- (2) μ is its stationary measure, i.e., that $\int \mathbb{E}[f(X_t)|X_0 = x]\mu(\mathrm{d}x) = \int f\mu(\mathrm{d}x);$ (3) $P_t f(x) = \sum_{S \subset \{1,...,n\}} (1 e^{-t})^{|S|} e^{-t(n-|S|)} \int f(x_1,...,x_n) \prod_{i \in S} \mu_i(\mathrm{d}x_i);$
- (4) Each $f: \{-1,1\}^n \to \mathbb{R}$ can be written as $f = \sum_{S \subset \{1,\dots,n\}} \hat{f}(S)u_S$ for appropriate coefficients $\hat{f}(S)$ and $u_S(x) = \prod_{i \in S} x_i^2$. Recall that using this representation, you defined in class an operator $T_{e^{-t}}f(x) = \sum_{S \subset \{1,\dots,n\}} e^{-t|S|} \hat{f}(S)u_S$ for any $t \geq 0$. Show that $T_{e^{-t}} = P_t$.

(5)

$$\mathcal{L}f := \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0+} P_t f(x) := \lim_{t \downarrow 0} \frac{P_t f - f}{t} = -\sum_{i=1}^n \delta_i f,$$

where $\delta_i f(x) = f(x) - \int f(x_1, \dots, y_i, \dots, x_n) \mu_i(\mathrm{d}y_i) = f(x) - \frac{f(x_1, \dots, x_n) + f(x_1, \dots, x_n) + f(x_1, \dots, x_n)}{2}$. Note that $\delta_i \delta_i = \delta_i$ and $\delta_i \delta_j = \delta_j \delta_i$, hence, $-\sum_i \delta_i$ is a discrete Laplacian. Thus, let us write Δ instead of \mathcal{L} .

- (6) Conclude that $\frac{d}{dt}P_tf = \Delta P_tf$;
- (7) $\delta_i P_t f = P_t \delta_i f$.

¹Poisson process $(N_t)_{t>0}$ of intensity $\lambda>0$ on \mathbb{R}_+ is the counting process that satisfies $N_0=0$, has independent increments and $N_t - N_s \sim \text{Poisson}(\lambda(t-s))$ for any $t \geq s \geq 0$. Recall that such a process can be constructed, for instance, in the following way: let $(T_i)_i$ be i.i.d. exponential random variables of intensity λ , then $N_t := \#\{n \in \mathbb{N}_0 : \sum_{i=1}^n T_i \le t\}$ is the Poisson process of intensity λ .

²this definition of u_S might differ from the one used in class by a factor of $(-1)^{|S|}$

* For fun.

Exercise 3 (Hypercontractivity and log-Sobolev on the hypercube). Let P_t , μ be as in the previous exercise. Prove that the following are equivalent:

- (1) (log-Sobolev) $\operatorname{Ent}_{\mu}[f^2] \leq \frac{1}{2} \mathbb{E}_{\mu} \left[\sum_{i=1}^{n} (2\delta_i f)^2 \right]$ (2) (Hypercontractivity) $\|P_t f\|_{\operatorname{L}^{q(t)}(\mu)} \leq \|f\|_{\operatorname{L}^{q}(\mu)}$ for all $q \geq 1, t \geq 0, f \in \operatorname{L}^{q}(\mu)$ and $q(t) = 1 + (q-1)e^{2t}.$

To show the implication $(1) \Rightarrow (2)$ you may proceed as follows:

- Reduce to the case $f \geq 0$.
- Consider $\log \|P_t f\|_{L^{q(t)}}$ and compute its derivative.
- Show that the derivative is non-positive by reducing to the following problem: for a function $g \ge 0$, p = q(t) and p' = q'(t),

(0.1)
$$\sum_{i=1}^{n} \left(\mathbb{E} \left[\left(g^{p/2} - g_{(i)}^{p/2} \right)^{2} \right] - \frac{p^{2}}{p'} \mathbb{E}[g^{p-1} \delta_{i} g] \right) \leq 0.$$

Hint: apply log-Sobolev in this step.

• Prove (0.1) using $\left(\frac{b^{p/2}-a^{p/2}}{b-a}\right)^2 \leq \frac{p^2}{4(p-1)} \frac{b^{p-1}-a^{p-1}}{b-a}$ (check this) and the previous exercise.

To show the converse implication you may want to re-use the above second step.