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Section 1

Introduction
Our look at the concept of universality starts from the Central Limit Theorem: if we add

i.i.d. random variables Xi of finite variance and zero mean, then the law of this sums, when
rescaled properly convergences to the Gaussian law.

Theorem 1.1 (Central limit theorem). Let X1, X2, . . . be i.i.d. random variables of finite
variance σ2. Then n−1/2

∑n
i=1(Xi − EXi) converges in law to N(0, σ2).

CLT is an example of the phenomenon of universality because the resulting law, the
Gaussian law, depends very little on the exact details of the initial law of Xi - indeed only
the variance counts.

One of the proofs that explains this universality rather well is is called the Lindeberg
exchange principle.

The basic idea comes in two observations:
(1) The Gaussian law itself is a stable law: if we take Y1, Y2, . . . to be i.i.d Gaussians of

zero mean, then for every n ≥ 1, the law of n−1/2
∑

i=1 Yi has the same Gaussian law.
(2) Starting now from general i.i.d. random variables Xi, one observes that if we swap

the variables Xi one by one for Gaussians Yi of the same mean and variance, then
the error by doing so at every step is so small that in fact it is negligible in the limit!

This key step is encapsulated in the following proposition, which we state for convenience
for variables with unit variance.

Proposition 1.2 (Lindeberg Exchange Principle). Let X1, X2, . . . be i.i.d. zero mean unit
variance random variables, let Y ∼ N(0, 1). Define Sn := n−1/2

∑n
i=1 Xi. Then for any

δ > 0, there is a nδ ∈ N so that for all n > nδ and for all f : R → R smooth with uniformly
bounded derivatives up to third order, we have that

|Ef(Sn)− Ef(Y )| < 2δ(sup
x∈R

|f ′(x)|+ sup
x∈R

|f ′′(x)|+ sup
x∈R

|f ′′′(x)|).

Before proving the proposition, let us see how CLT follows from this proposition. In
fact there are many ways to argument this. For example one could just argue that smooth
functions of compact support are dense in the space of continuous functions. Let us here
give a very direct argument:

Proof of the CLT:. By subtracting the mean and rescaling we can assume that Xi are zero
mean and unit varaince.

Let us denote by Sn := n−1/2
∑n

i=1 Xi. Then we have that P(Sn ≤ x) = E(1{Sn≤x}). Now
we can bound 1{Sn≤x} from above by smooth functions fϵ that are equal to 1 in (−∞, x] are
equal to 0 in [x+ ϵ,∞) such that the third derivative is bounded by Cϵ−3.

Thus using the proposition we have that for n large enough

P(Sn ≤ x) ≤ Efϵ(Y ) + 6Cδϵ−3,

where Y ∼ N(0, 1). In particular Y has bounded density and thus Efϵ(Y ) ≤ P(Y ≤ x) + cϵ
for some c > 0. Hence

P(Sn ≤ x) ≤ P(Y ≤ x) + 6Cϵ−3δ + cϵ.
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Now, given δ we can choose ϵ = δ1/4 to get

P(Sn ≤ x) ≤ P(Y ≤ x) + C̃δ1/4

for all n large enough. By taking δ arbitrarily small, we conclude that lim supn∈N P(Sn ≤
x) ≤ P(Y ≤ x). We can similarly prove a lower bound to conclude that limn→∞ P(Sn ≤ x) =
P(Y ≤ x) and the theorem follows. □

We now prove the proposition. The exchange principle itself would come out a bit more
cleanly if we assumed bounded third moments, but it is also nice how it mixes together with
the so called truncation method.

Proof of Lindeberg Exchange Principle: Let Y1, Y2 . . . be i.i.d. standard Gaussians. For k ≥
1, write

Sn,k :=

∑k−1
i=1 Xi +

∑n
i=k Yi

n1/2
,

Notice that Sn,n+1 = Sn and Sn,1 ∼ N(0, 1). Thus we can write

(1.1) f(Sn)− f(Y ) =
n∑

k=1

f(Sn,k+1)− f(Sn,k).

Our aim will be to control each individual summand. To do this write further

S0
n,k :=

∑k−1
i=1 Xi +

∑n
i=k+1 Yi

n1/2
,

where we have omitted the k-th term altogether.
By third-order Taylor’s approximation we can write a.s.

f(Sn,k+1) = f(S0
n,k) +

Xk

n1/2
f ′(S0

n,k) +
X2

k

2n
f ′′(S0

n,k) +
X3

k

6n3/2
f ′′′(xL),

with xL between Sn,k+1 and S0
n,k and similarly

f(Sn,k) = f(S0
n,k) +

Yk

n1/2
f ′(S0

n,k) +
Y 2
k

2n
f ′′(S0

n,k) +
X3

k

6n3/2
f ′′′(xL),

We would want to take expectations now and conclude by summing up. Indeed, the
two first moments would then just cancel, because of matching moments of Xk and Yk and
independence of S0

n,k from both Yk and Xk (check that you know how to conclude in this
case!). However, a priori we don’t know that the third moment exists and thus the third
order term could cause us problems.

To circumvent this problem we use a truncation method: for δ > 0 small, write

Xk = Xk1{|Xk|≤δn1/2} +Xk1{|Xk|>δn1/2}.

Denote the first term by X̃k and the second term by Xk,>. We will use the exchange principle
above for X̃k instead of Xk and control the contribution of the second terms separately.

So set S̃n = n−1/2
∑n

k=1 X̃k. Notice that EX̃k ̸= 0 and EX̃2
k ̸= 1, so by the end of

telescoping in (1.1) with X̃k instead of Xk, we are left with

(1.2) |Ef(S̃n)− f(Y )| ≤ n1/2| sup
x∈R

f ′(x)||EX̃k|+ | sup
x∈R

f ′′(x)|EX̃2
k + n−1/2| sup

x∈R
f ′′′(x)|E|X̃k|3.

Now observe that E|X̃k|3 ≤ δn1/2E|X̃k|2 = δn1/2, as EX̃2
k ≤ EX2

k . Moreover we claim that:
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Claim 1.3. For n large enough |EX̃2
k − 1| < δ2 and |EX̃k| = |EXk,>| < δn−1/2.

These two things together imply that the RHS of Equation (1.2) can be bounded by

δ| sup
x∈R

f ′(x)|+ δ2| sup
x∈R

f ′′(x)|+ δ| sup
x∈R

f ′′′(x)|.

Moreover, this claim also helps us deal with the part coming from the tails Xk,>. Denote
En = n−1/2

∑n
k=1 Xk,>. Then again by Taylor expansion and the claim

|Ef(Sn)− Ef(S̃n)| ≤ | sup
x∈R

f ′(x)||EEn| ≤ | sup
x∈R

f ′(x)|n−1/2

n∑
k=1

|EXk,>| ≤ | sup
x∈R

f ′(x)|δ.

Thus we conclude the proposition by proving the claim:

Proof of claim: The first part just comes from the fact that EX2
k = 1, the fact that |X̃k| →

|Xk| as n → ∞ and the monotone convergence theorem. Notice that this also implies that
E|Xk,>|2 < δ2.

For the second part, the equality comes from the fact that EXk = 0. Thus by Jensen it
suffices to show that E|Xk,>| < δn−1/2. But this follows from the previous part as

n1/2δE|Xk,>| ≤ E|Xk,>|2 < δ2.

□

□

In fact Proposition 1.2 also gives a rate of convergence that gets better when we control
more derivatives.

Exercise 1.1. Suppose X1, X2, . . . are i.i.d. such that for k ≥ 3 the first k − 1 moments of
X1 match with those of a standard Gaussian Y and the k-th moment is finite. Let Sn :=
n−1/2

∑n
i=1Xi as before and f be smooth with uniformly bounded derivatives.

Prove that |Ef(Sn)− f(Y )| = O(n1− k
2 ).
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