PROOF OF CLT USING LINDEBERG PRINCIPLE



SECTION 1

Introduction

Our look at the concept of universality starts from the Central Limit Theorem: if we add
i.i.d. random variables X; of finite variance and zero mean, then the law of this sums, when
rescaled properly convergences to the Gaussian law.

Theorem 1.1 (Central limit theorem). Let X, Xs,... be i.i.d. random variables of finite
variance 0. Then n~ V23" (X; — EX;) converges in law to N(0,0?).

CLT is an example of the phenomenon of universality because the resulting law, the
Gaussian law, depends very little on the exact details of the initial law of X; - indeed only
the variance counts.

One of the proofs that explains this universality rather well is is called the Lindeberg
exchange principle.

The basic idea comes in two observations:

(1) The Gaussian law itself is a stable law: if we take Y7,Y5,... to be i.i.d Gaussians of
zero mean, then for every n > 1, the law of n=1/2 > .- Y; has the same Gaussian law.
(2) Starting now from general i.i.d. random variables X;, one observes that if we swap
the variables X; one by one for Gaussians Y; of the same mean and variance, then
the error by doing so at every step is so small that in fact it is negligible in the limit!

This key step is encapsulated in the following proposition, which we state for convenience
for variables with unit variance.

Proposition 1.2 (Lindeberg Exchange Principle). Let X1, Xo,... be i.i.d. zero mean unit
variance random variables, let Y ~ N(0,1). Define S, = n~Y/23""  X;. Then for any
0 > 0, there is a ng € N so that for all n > ng and for all f : R — R smooth with uniformly
bounded derivatives up to third order, we have that
[Ef(Sn) = Ef(Y)| < 20(sup | f'(x)| + sup [ f*(x)[ + sup [ /" (2)]).
z€eR zeR zeR

Before proving the proposition, let us see how CLT follows from this proposition. In
fact there are many ways to argument this. For example one could just argue that smooth
functions of compact support are dense in the space of continuous functions. Let us here
give a very direct argument:

Proof of the CLT:. By subtracting the mean and rescaling we can assume that X; are zero
mean and unit varaince.

Let us denote by S, :=n"Y23""  X,. Then we have that P(S, < z) = E(1¢s,<s}). Now
we can bound 1g, <, from above by smooth functions f, that are equal to 1 in (—o0, z] are
equal to 0 in [z + €, 00) such that the third derivative is bounded by C'e™3.

Thus using the proposition we have that for n large enough

P(S, <) <Ef(Y) 4+ 6C5e 3,

where Y ~ N(0,1). In particular Y has bounded density and thus Ef. (V) < P(Y < z) + ce
for some ¢ > 0. Hence
P(S, <z) <P(Y <)+ 6Ce >0 + ce.
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Now, given ¢ we can choose € = §'/4 to get
P(S, <z) <P(Y < z)+ Cs'/*

for all n large enough. By taking ¢ arbitrarily small, we conclude that limsup,,cyP(S,
x) < P(Y < z). We can similarly prove a lower bound to conclude that lim,,_,,, P(S,, < x)
P(Y < z) and the theorem follows.

Ol IA

We now prove the proposition. The exchange principle itself would come out a bit more
cleanly if we assumed bounded third moments, but it is also nice how it mixes together with
the so called truncation method.

Proof of Lindeberg FExchange Principle: Let Y1,Y5 ... be ii.d. standard Gaussians. For k& >
1, write
k— n
- Zi:ll Xi + Zi:k Y;
n,k T n1/2 ’
Notice that S, ,+1 = S, and S,,; ~ N(0,1). Thus we can write

(1.1) F(Sn) = F(Y) = f(Sumsr) = [ (Sn).

Our aim will be to control each individual summand. To do this write further

k—1 n
SO . Zi:l X’L + Zi:k+1 Yz
kT ni/2 ’

where we have omitted the k-th term altogether.

By third-order Taylor’s approximation we can write a.s.
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X ! X2 " X n
F(Supen) = F(She) + 50 (i) + 5o F"(S00) + 53 (),

with 2, between Sy, ;11 and Sj ; and similarly

F(Su) = (S0 + o S840 + 2 (80,0 4 o )
" s nl/2 kT on kT 6n3/2 L

We would want to take expectations now and conclude by summing up. Indeed, the
two first moments would then just cancel, because of matching moments of X, and Y}, and
independence of S), from both Yj and X} (check that you know how to conclude in this
case!). However, a priori we don’t know that the third moment exists and thus the third
order term could cause us problems.

To circumvent this problem we use a truncation method: for ¢ > 0 small, write

Xi = Xk1{|Xk|§§n1/2} + Xk]‘{\Xkbénl/Q}'

Denote the first term by X, and the second term by X} ~. We will use the exchange principle

above for X r instead of X} and control the contribution of the second terms separately.
So set S, = n~ Y237 Xj. Notice that EX; # 0 and EX? # 1, so by the end of
telescoping in (|1.1) with X} instead of X, we are left with

(1.2) [Ef(Sy) = F(Y)] <n'/?| sup (@) |[EXy] +| sup [ () |BXE 40" sup (@) [BI X .
re xre Te

Now observe that E|X,[> < 6n!/2E|X,|2 = 6n'/2, as EX2 < EX2. Morecover we claim that:
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Claim 1.3. For n large enough |[EX2 — 1| < 62 and |[EX,| = [EXp~| < 6n=1/2.
These two things together imply that the RHS of Equation (1.2]) can be bounded by
0| sup f'(x)] + 6°|sup f"(x)| + o] sup f"()].
Tz€R r€R z€R

Moreover, this claim also helps us deal with the part coming from the tails X} ~. Denote
E,=n"123"7_ X;~. Then again by Taylor expansion and the claim

EF(S,) ~ EF(S.)] < [sup £ ()| [EE,| < [sup F(@)ln™* Y [EXy | < [sup (@)l

1 zeR
Thus we conclude the proposition by proving the claim:

Proof of claim: The first part just comes from the fact that EX? = 1, the fact that |)~( k| —
| X%| as n — oo and the monotone convergence theorem. Notice that this also implies that
E| X}~ |* < 6%

For the second part, the equality comes from the fact that EX, = 0. Thus by Jensen it
suffices to show that E| X}, ~| < én~'/2. But this follows from the previous part as

nY2 0B Xy | < E|Xps|? < 6%
0
O

In fact Proposition also gives a rate of convergence that gets better when we control
more derivatives.

Exercise 1.1. Suppose X1, X, ... are i.i.d. such that for k > 3 the first k — 1 moments of
X1 match with those of a standard Gaussian Y and the k-th moment is finite. Let S, =
n=1/? S Xi as before and f be smooth with uniformly bounded derivatives.

Prove that [Ef(S,) — f(Y)] = O(n'"2).
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