Algebraic curves Solutions sheet 11

May 29, 2024

Exercise 1. Let F be a projective plane curve.

- 1. Let $P \in \mathbb{P}^2_k$. Show that P is a multiple point of F if, and only if, $F(P) = F_X(P) = F_Y(P) = F_Z(P) = 0$.
- 2. Suppose F is irreducible. Show that F has finitely many multiple points.
- 3. Suppose F is nonsingular. Show that F is irreducible.

Now assume that F is irreducible of degree n.

4. Show that F has at most $\frac{1}{2}n(n-1)$ multiple points. (Hint: combine Bezout's theorem with previous questions.)

Solution 1.

1. Wlog, let P = [1:0:0]. P is a simple point $\iff F_*(Y,Z)$ has a simple point at (0,0). Denote $F_1(Y,Z)$ its degree 1 part. Then $F_1(Y,Z) \neq 0 \iff (F_*)_Y(0,0) \neq 0$ or $(F_*)_Z(0,0) \neq 0$. Moreover, $(F_*)_Y = (F_Y)_*$, $(F_*)_Z = (F_Z)_*$. Note that by the formula

$$dF = XF_X + YF_Y + ZF_Z$$

F(P) = 0 and $F_Y(P) = F_Z(P) = 0$ together with $P \in \{X \neq 0\}$ implies $F_X(P) = 0$.

- 2. Suppose $F \neq 0$. F and F_{\bullet} share an irreducible component iff $F_{\bullet} = 0$ for degree reason (F_{\bullet} denotes any partial derivative). As F is non zero, the formula above implies that one of the partial derivative is non zero. Then F has finitely many multiple points.
- 3. Suppose F reducible. $F = F_1F_2$. Then by Bezout $V(F_1)$ and $V(F_2)$ intersects at least in one point P, and F can not be smooth at P.
- 4. Wlog assume $F_X \neq 0$. Let P be a multiple point of F. Wlog, restrict to 2 cases:
 - P = [1:0:0]. As $P \in F$, we can write $F = X^{n-1}F_1(Y,Z) + \cdots + F_n(Y,Z)$. Then $F_X = (n-1)X^{n-2}F_1(Y,Z) + \cdots + F_{n-1}(Y,Z)$. then either $m_P(F_X) = m_P(F)$ if $char \ k \nmid n-1$, either $m_P(F_X) \geq m_P(F) + 1$ if $char \ k \mid n-1$.

• $P \in U_Y \cup U_Z$, wlog $P \in U_Y$. We write $P = [x_P : 1 : z_P]$. Then : $F_*(x_P + X, z_P + Z) = F_m(X, Z) + \dots$ $(F_X)_*(x_P + X, z_P + Z) = (F_m)_X(X, Z) + \dots$ so that in general, $m_P(F_X) \ge m_P(F) - 1$.

We use Bézout's theorem for F and F_X , hence

$$n(n-1) = \sum_{P} I(P, F \cap F_X) \ge \sum_{P} m_P(F) m_P(F_X)$$

Then $\sum_{P} m_P(F) m_P(F_X) \ge \sum_{P} m_P(F) (m_P(F) - 1) \ge 2\#\{\text{multiple points of F}\}.$

Exercise 2. Let F be an affine plane curve.

1. Show that a line L is tangent to F at P if, and only if, $I(P, F \cap L) > m_P(F)$. This justifies the definition of tangent lines for projective plane curves.

Now, let F be a projective plane curve and P a simple point on F.

2. Show that the tangent line to F at P has equation $F_X(P)X + F_Y(P)Y + F_Z(P)Z = 0$.

Solution 2.

- 1. From properties of intersection numbers, $I(P, F \cap L) \ge m_P(F) m_P(L) = m_P(F)$ with equality if the L is not a tangent line of F at P.
- 2. Wlog assume $P \in U_X$. $P = [1:y_P:z_P]$. In U_X , the tangent line has equation

$$(F_*)_Y(P)(Y - y_P) + (F_*)_Z(P)(Z - Z_P) = 0$$

And recall that $(F_*)_{\bullet}(P) = (F_{\bullet})_*(P) = F_{\bullet}(P)$. We also have $F_X(P) + y_P F_Y(P) + z_P F_Z(P) = 0$ so the affine equation of the tangent line is given by $F_X(P) + F_Y(P)Y + F_X(P)Z = 0$. Its homogenisation gives the answer.

Exercise 3. Show that the following projective plane curves are irreducible; find their multiple points and the tangents at multiple points with their multiplicities:

- 1 $XY^4 + YZ^4 + XZ^4$
- 2. $X^2Y^3 + X^2Z^3 + Y^2Z^3$
- 3. $Y^2Z X(X Z)(X \lambda Z), \ \lambda \in k$
- 4. $X^n + Y^n + Z^n$, n > 0

Solution 3.

1. $XY^4 + (X+Y)Z^4$ is irreducible since it is irreducible in k(X,Y)[Z] (it is a UFD and $\frac{XY^4}{X+Y}$ is not a 4th power, and X+Y, XY^4 are coprime in k[X,Y].

Multiple points : $F_X = Y^4 + Z^4$, $F_Y = 4Y^3X + Z^4$, $F_Z = 4Z^3Y + 4Z^3X$.

 $F(P) = F_X(P) = F_Y(P) = F_Z(P) = 0$ implies $yz^4 = 0$ and then y = z = 0 so P = [1:0:0] is the only multiple point.

Tangent lines: $F_* = Y^4 + Z^4 + YZ^4$. $Y^4 + Z^4 = (Y + \zeta Z)(Y - \zeta Z)(Y + i\zeta Z)(Y - i\zeta Z)$. with ζ primitive 8th root of unity. Hence F has 4 tangent lines at P.

2. $F = X^2(Y^3 + Z^2) + Y^2Z^3$ is irreducible since it is irreducible in k(Z,Y)[X] ($\frac{Z^3Y^2}{Z^3+Y^3}$ is not a square, and $Z^3 + Y^3$, Z^3Y^2 are coprime in k[Y,Z].

multiple point:

- char k = 2:3 multiple points [1:0:0] (double point with double tangent line X + Y), [0:1:0] (triple point with 3 tangents $Y j^n \zeta Z$, ζ primitive 6th root) and [0:0:1] (double point with a double tangent line X).
- char k = 3:3 multiple points [1:0:0] (triple point with triple tangent line X + Y), [0:1:0] (triple point with 3 tangents $Y j^n \zeta Z$, ζ primitive 6th root) and [0:0:1] (double point with 2 tangent liness $X \pm iY$).
- char $k \neq 2, 3$: same multiple points, distinct tangent lines.
- 3. $F = Y^2Z X(X Z)(X \lambda Z)$ irreducible since irreducible in k(X, Z)[Y] and $Z, X(X Z)(X \lambda Z)$ coprime in k[X, Z].
 - char $k \neq 2$: [0:0:1] double point, with tangent lines Y + iX, Y iX and [1:0:1] double point with tangent lines Y X, Y + X.
 - char k = 2. P = [0:0:1] double point with double tangent line Y + X. P = [x:y:1] double point with double tangent line Y.
- 4. $X^n + Y^n + Z^n$, n > 0. Irreducible by Gauss's lemma.

In char $k \nmid n$ no multiple points.

char k = p, $n = p^r q$, $p \nmid q$. $X^n + Y^n + Z^n = (X^q + Y^q + Z^q)^{p^r}$. It gives directly the tangent line, with multiplicity p^r

Exercise 4. Find the intersection points and the intersection numbers of the following pairs of projective plane curves:

1.
$$Y^2Z - X(X - 2Z)(X + Z)$$
 and $Y^2 + X^2 - 2XZ$

2.
$$(X^2 + Y^2)Z + X^3 + Y^3$$
 and $X^3 + Y^3 - 2XYZ$

3.
$$Y^5 - X(Y^2 - XZ)^2$$
 and $Y^4 + Y^3Z - X^2Z^2$

4.
$$(X^2 + Y^2)^2 + 3X^2YZ - Y^3Z$$
 and $(X^2 + Y^2)^3 - 4X^2Y^2Z^2$

Solution 4.

1. Intersection : P = [0:0:1]. $char \ k \neq 2: I(P, F \cap G) = 2$ (look at deshomogenized poly, \tilde{P} simple point of F_* , Y uniformizer of $\mathcal{O}_{\tilde{P}}(F_*)$.

char
$$k = 2$$
: $I(P, F \cap G) = 6 = \dim k[X, Y]/(X^3, Y^2 - X^2)$.

- 2. Intersection point : [0:0:1], $I(P,F\cap G)=I((0,0),F_*\cap G_*)=4$ $[1:\zeta j^n:0], \ \zeta \ \text{primitive 6th root. Transversal intersection}, \ I=1.$
- 3. degFdegG=20. Intersection points $(char\ k\neq 2)$:

$$[0:0:1], I=9,$$

$$[1:0:0], I=9,$$

$$[(1-u)^{-2}:1:u(1-u)^2], I=1 \text{ with } u^2-2u-1=0.$$

4.