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Solutions — week 9

Exercise 1. Nullstellensatz via Chevalley.

(1)

Let m be maximal in k[z1,...,x,]. Suppose by contradiction that
pi = k[z;]Nm! is not maximal, because it is prime, we have p; = (0).
The image of the map Spec(k(m)) — A,ﬁm is p;. But by Chevalley,
the image of the map Spec(k(m)) — A}“ 2, 18 constructible, but by our
hypothesis, also contains the generic point, and therefore contains
an open set. But an open in A,lg contains infinitely many points, way
much than our singleton {p;}, leading to a contradiction.

We see by successive quotients, because each p; is maximal in k[z;],
that (p1,...,pn) is maximal. But has it is contained in m we have
our claimed equality. Also if we denote by k[z;]/(p;) = k(«a;) where
«; is therefore an algebraic element over k. Then

klxy,...,zp)/m=k(ag,...,an)

and therefore a finite extension.

First, note that from the last point, we deduce that every residue
field of a finite type k-algebra at a closed point is a finite extension
of k. Let m be maximal in Spec(B). Then we have injections

k— A/f(m) — B/m.

Because B/m is finite dimensional over k, so is A/f(m). But then
the multiplication by every non-zero element is injective, but then
surjective because it is a self of a finite dimensional k-vector space.
We conclude that A/ f(m) is a field, leading to the desired conclusion.
It suffices to show that every element which is not nilpotent is con-
tained in some maximal ideal. If f is not nilpotent, then Ay # 0. So
there is a maximal ideal in Ay. By the previous point, the preimage
of this ideal is maximal in A, concluding.

Exercise 2. Dual.
For (2) and (3), the key is to consider the natural maps in the sense that
for any map & — £’ we have commuting diagrams

Fp—- EV @0y F —— Homoy (€', F)
g —— VY EY ®oy F —— Homo (E,F)

1This is the projection to the i-th coordinate.
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To show that these natural horizontal maps are isomorphisms, we can prove
that the map is an isomorphism locally. But then, locally these shaves are
isomorphic to a finite sum of O, where for those the statement follows from
standard linear algebra. Using the above squares, we get the general claim.

Exercise 3. Compatibilities between f*, fi and ®.
For (1), one may show first that

Homop, (F®,G,H) = Homp, (F, Homo (G, H)).

Then the claim follows by combining adjunctions.

For (2), we proceed as in the previous exercise, meaning we construct a
natural morphism between the implicit functors in £, and then using this
naturality we are allowed to show the claim locally. The natural map cor-
respond by adjunction to tensoring the counit map f*€ ® (f* foF — F).

Exercise 4. Fibre dimension (of coherent sheaves).

Because each question is local, say X = Spec(A), where A is Noetherian
and we work with M global sections of F, which is a finitely generated A-
module. Let p € Spec(A). For (1), note that if M(p) is of dimension n, say

with basis m1,...,m;,, then we have a surjective map by Nakayama
Ay — M.

Find some a € A such that this surjections lifts to a map
Ay — M,.

The coker K of this map is finitely generated and satsfies K, = 0. Therefore
we may localize further to have K, = 0 for some b € A and concluding that
we have a surjective map

Ag — Mb.
This implies that complements of sets in the statement are open.
For (2), note that ¢ is continuous to the discrete topology on N if F is locally
free. Therefore only one fiber can be non-empty because fibers are disjoint
opens and the union of all fibers cover the space.
As for (3), proceed as in (1) to get a surjective map

AZ — Mb.
An element in the kernel is a vector (a,...,ay,) where each element is in
every prime ideal of Ap. Indeed, for any prime ideal p of Ay, looking at
k(p)" — M(p)

we have a surjective map between to k(p)-vector spaces of the same dimen-
sion so also injective. Because Aj is reduced, the intersection of all primes
is the zero ideal, concluding.
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Exercise 5. Fibre dimension (of finite type morphisms) We recall some
results along the way that you can assume.

Lemma 1 (Krull’s height theorem). Let R be a Noetherian ring. Suppose
that p is a minimal prime of (fi,..., fn). Then

ht(p) < n.

(1) Let R be a Noetherian ring and p be a prime ideal. Using Krull’s
height theorem, show by induction on the height that for every prime
p of height n there is (f1,..., fn) C p such that p is a minimal prime
of (f1,..., fn) and every minimal prime of (f1,..., f,) has height n.

(2) Let f: X — Y be a morphism between locally Noetherian schemes
and Y’ C Y a closed irreducible subset. Show that for every irre-
ducible component Z C f~1(Y”) that dominates Y’ we have

codim(Z, X) < codim(Y",Y).

Hint: This is a local problem so you can reduce to affines and use
item (1).

Lemma 2. Let k be a field, A be a finite type k-algebra which is also a
domain and p € Spec(A). Then

dim(A) = trdeg; (Frac(A))
and codim(Spec(A/p), Spec(A4)) = ht(p) = dim(A) — dim(A/p).

(3) Let f: X — Y be a map between finite type integral k-schemes.
Show that for every y € f(X) and Z irreducible component of X,
we have

dim(X) — dim(Y) < dim(Z) < dim(X).

Hint: Use item (2) with Y' = {y}. Use lemma 2 and the additivity
of transcendence degree with k | k(y) | K(Z). Namely

trdeg, (K (Z)) = trdegy (k(y)) + trdegy, (K(Z)).

(4) Let f: X — Y be a dominant map between finite type integral k-
schemes. Show that there is an open dense U C X such that for all
y € f(U) we have dim(X,) = dim(X) — dim(Y') and f(U) is open.
Hint: show that you can reduce to the affine case Spec(B) — Spec(A)
with t1,...,te € B, where e = dim(X) —dim(Y"), such that ty, ..., te
form a transcendence basis of K(X) over K(Y). Then factor the
morphism by Spec(A[t1,...,tn]). Note that X — Spec(Alti, ..., t])
induces a finite morphism at fraction fields and that Spec(A[t1, ..., te]) —
Spec(A) is isomorphic to A% — Spec(A) which is open by exercise
2. Use exercise 1.(2) to conclude.
Remark. You are free to prove the following weaker version of the
statement: show that there is an open dense U C X such that for all
y € f(U) we have dim(U,) = dim(X) — dim(Y’) and f(U) is open.

(5) Let f: X — Y be a dominant map between finite type integral k-
schemes. For h € N, let E}, be the set of points x of X such that



there is an irreducible component of Xy ,) with dimension at least
h, which contains z. Show that Ej, is closed.?

Hints: If h < e, then Ep, = X by (3). If h > e, note that E, C
X \ U where U is the open of item (4). Proceed by induction on the
dimension of X.

(6) Let f: X — Y be a closed map between finite type integral k-
schemes. For h € N, let Fj, be the set of points of y of Y such that
there is an irreducible component of X, with dimension at least h.
Show that F}, is closed.

Hint: Show that Fy, = f(Ep).

This exercise was hand in in a previous year and therefore solutions are
attributed to students who wrote them.

(1)(Joel) Suppose we have proved the statement for n = k, and let p be a
prime of height £ + 1. Choose a prime q C p of height k, so by induction
there exist { f1, ..., fx} such that q is a minimal prime of I = (fi,..., fx) and
ht(q) = k. Let {g;} be the minimal primes of I (so ht(g;) = k by induction).
As ht(q;) < ht(p) for all 4, p € g;, so by prime avoidance p ¢ Uq;. Hence,
there exists some fr11 € p \ Uq;. Define I’ = (f1,..., fxr1), and let p’ be a
minimal prime of I’. By Krull’s height theorem ht(p’) < k+1. As q; C p’
for some q; (as by our choice of fi11), we have ht(p’) > ht(q;), and hence
ht(p’) = k+1 for any minimal prime p’ of I’. As p contains all the generators
of I’ and is of height k+ 1 by assumption, p is a minimal prime of I’, as else
we could fit a minimal prime ¢’ of height k£ + 1 in I’ C ¢’ C p, contradicting
ht(p) =k + 1.

(2)(Joel) As codim(Z,X) = dim Oy, for the generic point n of Z’, and
similarly for Y/ C Y, the question is local and we can reduce to the case
where f: X = Spec B—Y = Spec A and ¢ : A — B is the corresponding
ring map. Let p € Spec A be such that V(p) = Y’ and Z C f~!(p) be an
irreducible component of f~!(p) = p¢, where p® denotes the extension of p by
©. Suppose p has height n, so by part (1) there exist fi,..., fn, € A such that
p is a minimal prime of I = (fi,..., fn). Then p® O I° = (¢(f1),...,¢(fn))-
Let g be a minimal prime of p® corresponding to the irreducible component
Z. Next, we show that q 2 p© is a minimal prime of /¢, which by Krull’s
height theorem implies that ht(q) < n = ht(p), which is equivalent to the
inequality codim(Z, X) < codim(Y”",Y).

First, we may assume that p® D I¢, as if p® = I, the result is immediate as
q is a minimal prime of p¢. Now, suppose there exists v € Spec B such that
q 2t 2I% Then o 1(q) 2 ¢ l(v) 2 ¢ 1(I¢) D I. As Z dominates Y,
¢ 1(q) = p, and furthermore as p is a minimal prime of I. As q is a minimal
prime of p¢ = p~1(¢)¢ C v, and t is by assumption prime, we see that q = t,
and hence codim(Z, X) < codim(Y",Y).

(3)(Joel) Again, the question is local, so let f : X = Spec B — Spec A=Y
be a morphism of affine schemes, and y € Y be a point corresponding to

2The statement is true for any f: X — Y between X and Y finite type k-schemes
without the dominant hypothesis. This can be shown by an easy reduction to the case of
the exercise.



5

p € Spec A. Set Y’ := {y}, the closure of y in Y. Let ¢ : A — B be the ring
map corresponding to f.

B is a finitely generated A—algebra, so B ()4 k(y) is a finitely generated
k(y)-algebra, and hence dim Z = trdegy,)(K(Z)) for any any irreducible
component Z of f~1(y), as Z is of finite type over k(y) and the trace formula
holds.

If Z is an irreducible component of X, we want to show that Z is an irre-
ducible component of f~1(Y”). Z is contained in some irreducible component
W of f71(Y’"). As Z C W and Z C X, the image of W contains y € Y. Let
7 be the generic point of W. Then f(W) C Y” is a dense inclusion with both
W and Y’ irreducible, and so f(n) = y, the generic point of Y’. Note that
the closure of 7 intersected with X, is irreducible and contains Z, and hence
W ={n} C Z,son € Z. By part (2) we have codim(Z, X) < codim(Y",Y).
As Z is dense in Z, K(Z) = K(Z, and similarly for K(y) and K(Y”). Us-
ing the trace formula for & — k(y) — k(Z), we get trdegg () K(Z) =
trdegy, K(Z) — trdegy, K(y) = trdeg, K(Z) — trdeg, K(Y"'). Using the in-
equality for codimensions we get dimX — dimY < dimZ — dimY’ =
trdegy, K(Z) — trdegy, K(Y') = trdeg .y K(Z) = trdegy () K(Z) = dim Z.
As X, ~ f1(y) C X, we get that dim Z < dim X, and hence in total we
have

dim X —dimY <dimZ < dim X.

(4)(Héloise) We prove the following.

Lemma. Let f: X — Y be a dominant map between finite type integral k-
schemes. There is an open dense subset V. C X such that for all y € f(V),

dim(X,) = dim(X) — dim(Y")
and f(V') is open.
We begin by proving the following weaker statement.

Lemma. Let f : X — Y be a dominant map between finite type integral
k-schemes. There is an open dense set U C X such that for all y € f(U)

dim(Uy) = dim(X) — dim(Y").

Proof. Note that we are free to reduce Y to an affine dense open and also
U can be taken to be inside a dense affine open of X, so we can reduce to
the affine case, as we do in what follows.

Proof of the affine case. We denote by ¢ : A — B the ring map correspond-
ing to f. Note that since f is a morphism between k-schemes, ¢ is injective.
Let € := dim(X) — dim(Y).

By using the additivity of the trenscendance degree (since f is a dominant
map between finite type integral k-schemes) to the field extensions K (X) |
K(Y) | k induced by ¢, we get that

e =dim(X) — dim(Y)
— trdeg, (K (X)) — trdeg, (K ()
= trdeg(y) (K (X)).
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Let {t1,...,t.} be a transcendence basis of K(X) over K(Y). Note that
the elements t; € K(X) may be seen as fractions with numerators in A and
denominators in B therefore, by considering f to be the product of all the
denominators of the ¢;’s (which is finite since e < o0), and localizing A at
f, we get that the t;’s are elements of Ay. From there, we get the following
commutative diagram

S

which induces the following diagram on affine schemes.

Spec(B

\/

Since we are looking for a dense open subset, we sloppily rename Spec(A) :=
D(f) for the rest of the proof. By exercise 2 of sheet 8, the map ¢ : A} =
Spec(Blt1,...,t]) — Spec(B) is open, while the map n : Spec(4) — Ag
induced by j is dominant since j is injective. Morevoer, 7 is finite type
since it is a map of finite type integral k-schemes. By noting that the field
extension

K(Y)(t1...ty) C K(X) = Frac(A)

is finite, since trdegy (yy(K (X)) = e < oo, we conclude by exercise 1.2 of
sheet 8 that there exists a non-empty open set V' C A% such that the re-
striction of the morphism 1 to n~!(W) is finite and dominant since 7 is
dominant. In particular, it is closed. Then, since the map is dominant and
closed, it is surjective.

Moreover, since 7 is surjective, n(n~1(W)) = W and therefore, f(n=1(W)) =
ton(nt(W)) = «(W) which is open since ¢ is an open map. Finally, since
A is an integral domain, it is in particular irreducible and we conclude that
n~1(W) is dense.

Now for any p € f(n~t(W)) = «(W), since finitness and surjectivity of a
morphism is stable under base change, the morphism ¢ coming from the
following base change is finite and surjective.



(1 (W) n~ (W)
g n
(1) W xy k(p) y W le
k(p) Y
Therefore,
dim(n =" (W))p) = dim(W xy k(p)) < dim(Af,) = e.
Now note that Blti,...,t,] is an integral domain, hence A% is an integral

scheme. Therefore, dim(W) = dim(A%) = dim(B) + e. Furthermore, since
the restriction of the morphism 7 to n~ (W) is dominant, hence finite and
surjective, dim(n~t(W)) = dim(W).

By applying the result from question 3 to the restriction of f to n~1(W),
then for any irreducible component Z of the fibre (n=1(W)),, we get

dim(B) + e — dim(B) < dim(Z).

Since the above holds for any irreducible component, we conclude that e <
dim((nfl(W))p). Thus

dim((n " (W))y) = ¢
and we can pick U = n~1(W). O

This lemma does not yet allow to generalize to the the whole fiber X, as
the equality dim(U,) = dim(X,) might not hold for any open dense set U.
We therefore need to further refine U using the following lemma.

Lemma. Let f : X — Y be a map between finite type integral k-schemes.
Then, there exists a dense open set V C'Y such that for ally €Y, U, C X,
s dense.

Proof. Reduction to the affine case. Up to shrinking Y, we may assume that
Y is an affine scheme Y := Spec(A).

Now, suppose that we have proven the statement when X is an affine scheme.
For a general scheme X, consider an affine open cover X = (J; W; where
W, are affine schemes. For each W;, there exists an open dense set V; C Y
such that for any y € Vi, (UNW;), C (W;)y, is dense. Consier V' := |J; Vi.
Then for any y € V, U, C X is dense. Indeed, the fiber X, is a glueing of
the (W;),’s while U, is a glueing of the (U N W;)’s, where each (U NW;), is
dense in (W;),.

Proof of the affine case. Suppose that f : Spec(B) — Spec(A) is a map
between finite type integral k-schemes. Since the principal open sets form a
basis for the topology on Spec(B), up to shrinking U, we may assume that
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U is of the form D(t) with ¢ € B.
Consider the short exact sequence

2) 0 » B t B B/(t) ———— 0 .

By the Generic flatness theorem, there exists a dense open set V' C Spec(A)
such that for any y € V, the morphism B ®4 k(y) — B ®4 k(y) is injective
because B/(t) can be supposed to be flat on this open, which implies that
the morphism (D(t)), — X, is dominant. O

Let V be as in the previous lemma. By considering U’ := U N f~1(V), we
have proven the general case.

(5) (Alissa) Let f : X — Y a dominant map between finite type integral
k-schemes. For h a positive or 0 integer we define

Ex = {r € X[3Z C Xy(,) an irreducible component which contains x s.t.

Show that Ex , is closed.

We see that if A < dim X —dim Y then by part 3 we conclude that Ex j = X,
hence it is closed. Now if we consider the case h > dim X — dim Y then we
see that if take the U obtained in Part 4 then EFx ), € X \ U. We proceed
by induction on the dimension of X to prove that Ex j, is closed. (take the
version of Part 4 with X, and not only U,)

Suppose that dim X = 0. Then we see that 0 < dimZ < dimX, =
dim f~1(y) < dim X = 0. So Ex, is just (). For the induction step, suppose
that the result is true for every X of dimension d — 1 or less. Suppose that
dim X = d. Then if we consider Ex j we see that Exj € X \ U which is
closed. So now we can consider the decomposition of X \ U in a union of
irreducible closed subsets C;. The latter will have dimension strictly smaller
than X since they are irreducible in X which is itself irreducible. Since
X is a fintie type k-scheme, we see that there must be only finitely many
Ci’s. We would like to show that Ex j = (J;; Ec, . To do so, notice first
that we can endow each C; with a reduced scheme structure. Since it is
irreducible, we get that C; is integral. If we show the above equality, we
would like to use induction since the C;’s have strictly lower dimension than
d. However, to apply induction we have to be in the good conditions. So
we need an integral image and a dominant map. Furthermore, we need C;
and the image to be finite type k-schemes. So let us consider the morphism

flg, : Ci — f(C;) where we endow f(C;) with the reduced scheme structure.
Since C; is irreducible, then f(C;) is too and so is f(C;). It is direct that
the morphism is dominant. Since X and Y are finite type k-schemes, then
C; and f(C;) are finite type k-schemes. As before, f ’Ci is finite type since
it is a morphism between finite type k-schemes.

First, let € E¢, . We would like to show that |J;; Ec,» € Exp. Re-
member that we have

Cijw) = [ (f(@)NC C fH(f(2) = Xp

dim Z > h}
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Since the C;’s are closed, f~!(f(z)) N C; is a closed subset of f=1(f(z)).
Hence an irreducible component of Cj ¢(,) containing z is also an irreducible

closed subset of f~!(f(z)) containing .

Now for the other inclusion let € Ex j,. Then we notice that

Xpwy = [7H(f(2) = U [ (f(2) N G
We see that the irreducible components of X (,) are the irreducible compo-
nents of each f~!(f(z)) N C;. This is how we get Ex C UL, Ec; h-
O
(6) (Alissa) Let f : X — Y a closed map between finite type integral
k-schemes. For h € N we define

Fy, :={y € Y|3Z C X, an irreducible component s.t. dimZ > h}
Show that Fj, is closed.

To show this, we will rather prove that f(Ej) = Fp. Since f is closed and
using Part 5, it follows immediately that Fj, is closed.
We will show that f(E}) = Fj, by showing each inclusion.

f(Ep) C Fy: Let y € f(ER). Then there exists x € Ej such that f(z) = y.
This implies that there exists an irreducible component of X, = X, of
dimension at least h. Hence f(x) € F}, by definition.

Fn, C f(Eh): Let y € Fy. If y ¢ f(X) we see that the fiber must be the
empty set since X, ~ f~!(y). Hence we see that y € f(X). We know that
there exists an irreducible component Z of X, such that it has dimension at
least h. Now we only have to prove that Z contains at least one x € f~1(y).
However, we remember that X, ~ f~!(y), hence necessarily Z contains an
element z of f~!(y) and so Z is an irreducible component of X f(z) = Xy of
dimension at least h.



