Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Solutions – week 9

Exercise 1. Nullstellensatz via Chevalley.

- (1) Let \mathfrak{m} be maximal in $k[x_1,\ldots,x_n]$. Suppose by contradiction that $\mathfrak{p}_i=k[x_i]\cap\mathfrak{m}^1$ is not maximal, because it is prime, we have $\mathfrak{p}_i=(0)$. The image of the map $\operatorname{Spec}(k(\mathfrak{m}))\to \mathbb{A}^1_{k,x_i}$ is \mathfrak{p}_i . But by Chevalley, the image of the map $\operatorname{Spec}(k(\mathfrak{m}))\to \mathbb{A}^1_{k,x_i}$ is constructible, but by our hypothesis, also contains the generic point, and therefore contains an open set. But an open in \mathbb{A}^1_k contains infinitely many points, way much than our singleton $\{\mathfrak{p}_i\}$, leading to a contradiction.
- (2) We see by successive quotients, because each \mathfrak{p}_i is maximal in $k[x_i]$, that $(\mathfrak{p}_1, \ldots, \mathfrak{p}_n)$ is maximal. But has it is contained in \mathfrak{m} we have our claimed equality. Also if we denote by $k[x_i]/(\mathfrak{p}_i) = k(\alpha_i)$ where α_i is therefore an algebraic element over k. Then

$$k[x_1,\ldots,x_n]/\mathfrak{m}=k(\alpha_1,\ldots,\alpha_n)$$

and therefore a finite extension.

(3) First, note that from the last point, we deduce that every residue field of a finite type k-algebra at a closed point is a finite extension of k. Let \mathfrak{m} be maximal in $\operatorname{Spec}(B)$. Then we have injections

$$k \to A/f(\mathfrak{m}) \to B/\mathfrak{m}$$
.

Because B/\mathfrak{m} is finite dimensional over k, so is $A/f(\mathfrak{m})$. But then the multiplication by every non-zero element is injective, but then surjective because it is a self of a finite dimensional k-vector space. We conclude that $A/f(\mathfrak{m})$ is a field, leading to the desired conclusion.

(4) It suffices to show that every element which is not nilpotent is contained in some maximal ideal. If f is not nilpotent, then $A_f \neq 0$. So there is a maximal ideal in A_f . By the previous point, the preimage of this ideal is maximal in A, concluding.

Exercise 2. Dual.

For (2) and (3), the key is to consider the *natural maps* in the sense that for any map $\mathcal{E} \to \mathcal{E}'$ we have commuting diagrams

¹This is the projection to the *i*-th coordinate.

To show that these natural horizontal maps are isomorphisms, we can prove that the map is an isomorphism locally. But then, locally these shaves are isomorphic to a finite sum of \mathcal{O} , where for those the statement follows from standard linear algebra. Using the above squares, we get the general claim.

Exercise 3. Compatibilities between f^* , f_* and \otimes .

For (1), one may show first that

$$\operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F} \otimes, \mathcal{G}, \mathcal{H}) = \operatorname{Hom}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{G}, \mathcal{H})).$$

Then the claim follows by combining adjunctions.

For (2), we proceed as in the previous exercise, meaning we construct a natural morphism between the implicit functors in \mathcal{E} , and then using this naturality we are allowed to show the claim locally. The natural map correspond by adjunction to tensoring the counit map $f^*\mathcal{E} \otimes (f^*f_*\mathcal{F} \to \mathcal{F})$.

Exercise 4. Fibre dimension (of coherent sheaves).

Because each question is local, say $X = \operatorname{Spec}(A)$, where A is Noetherian and we work with M global sections of \mathcal{F} , which is a finitely generated A-module. Let $\mathfrak{p} \in \operatorname{Spec}(A)$. For (1), note that if $M(\mathfrak{p})$ is of dimension n, say with basis m_1, \ldots, m_m , then we have a surjective map by Nakayama

$$A_{\mathfrak{p}}^n \to M_{\mathfrak{p}}.$$

Find some $a \in A$ such that this surjections lifts to a map

$$A_a^n \to M_a$$
.

The coker K of this map is finitely generated and satsfies $K_{\mathfrak{p}} = 0$. Therefore we may localize further to have $K_b = 0$ for some $b \in A$ and concluding that we have a surjective map

$$A_b^n \to M_b$$
.

This implies that complements of sets in the statement are open.

For (2), note that φ is continuous to the discrete topology on \mathbb{N} if \mathcal{F} is locally free. Therefore only one fiber can be non-empty because fibers are disjoint opens and the union of all fibers cover the space.

As for (3), proceed as in (1) to get a surjective map

$$A_b^n \to M_b$$
.

An element in the kernel is a vector (a_1, \ldots, a_n) where each element is in every prime ideal of A_b . Indeed, for any prime ideal \mathfrak{p} of A_b , looking at

$$k(\mathfrak{p})^n \to M(\mathfrak{p})$$

we have a surjective map between to $k(\mathfrak{p})$ -vector spaces of the same dimension so also injective. Because A_b is reduced, the intersection of all primes is the zero ideal, concluding.

Exercise 5. Fibre dimension (of finite type morphisms) We recall some results along the way that you can assume.

Lemma 1 (Krull's height theorem). Let R be a Noetherian ring. Suppose that \mathfrak{p} is a minimal prime of (f_1, \ldots, f_n) . Then

$$ht(\mathfrak{p}) \leq n$$
.

- (1) Let R be a Noetherian ring and \mathfrak{p} be a prime ideal. Using Krull's height theorem, show by induction on the height that for every prime \mathfrak{p} of height n there is $(f_1, \ldots, f_n) \subset \mathfrak{p}$ such that \mathfrak{p} is a minimal prime of (f_1, \ldots, f_n) and every minimal prime of (f_1, \ldots, f_n) has height n.
- (2) Let $f: X \to Y$ be a morphism between locally Noetherian schemes and $Y' \subset Y$ a closed irreducible subset. Show that for every irreducible component $Z \subset f^{-1}(Y')$ that dominates Y' we have

$$\operatorname{codim}(Z, X) \leq \operatorname{codim}(Y', Y).$$

Hint: This is a local problem so you can reduce to affines and use item (1).

Lemma 2. Let k be a field, A be a finite type k-algebra which is also a domain and $\mathfrak{p} \in \operatorname{Spec}(A)$. Then

$$\dim(A) = \operatorname{trdeg}_k(\operatorname{Frac}(A))$$

and $\operatorname{codim}(\operatorname{Spec}(A/\mathfrak{p}), \operatorname{Spec}(A)) = \operatorname{ht}(\mathfrak{p}) = \dim(A) - \dim(A/\mathfrak{p}).$

(3) Let $f: X \to Y$ be a map between finite type integral k-schemes. Show that for every $y \in f(X)$ and Z irreducible component of X_y we have

$$\dim(X) - \dim(Y) \le \dim(Z) \le \dim(X)$$
.

Hint: Use item (2) with $Y' = \overline{\{y\}}$. Use lemma 2 and the additivity of transcendence degree with $k \mid k(y) \mid K(Z)$. Namely

$$\operatorname{trdeg}_k(K(Z)) = \operatorname{trdeg}_k(k(y)) + \operatorname{trdeg}_{k(y)}(K(Z)).$$

(4) Let f: X → Y be a dominant map between finite type integral k-schemes. Show that there is an open dense U ⊂ X such that for all y ∈ f(U) we have dim(Xy) = dim(X) - dim(Y) and f(U) is open. Hint: show that you can reduce to the affine case Spec(B) → Spec(A) with t1,..., te ∈ B, where e = dim(X) - dim(Y), such that t1,..., te form a transcendence basis of K(X) over K(Y). Then factor the morphism by Spec(A[t1,...,tn]). Note that X → Spec(A[t1,...,te]) induces a finite morphism at fraction fields and that Spec(A[t1,...,te]) → Spec(A) is isomorphic to A^e_A → Spec(A) which is open by exercise 2. Use exercise 1.(2) to conclude.

Remark. You are free to prove the following weaker version of the statement: show that there is an open dense $U \subset X$ such that for all $y \in f(U)$ we have $\dim(U_y) = \dim(X) - \dim(Y)$ and f(U) is open.

(5) Let $f: X \to Y$ be a dominant map between finite type integral k-schemes. For $h \in \mathbb{N}$, let E_h be the set of points x of X such that

there is an irreducible component of $X_{f(x)}$ with dimension at least h, which contains x. Show that E_h is closed.²

Hints: If $h \leq e$, then $E_h = X$ by (3). If h > e, note that $E_h \subset X \setminus U$ where U is the open of item (4). Proceed by induction on the dimension of X.

(6) Let $f: X \to Y$ be a closed map between finite type integral k-schemes. For $h \in \mathbb{N}$, let F_h be the set of points of y of Y such that there is an irreducible component of X_y with dimension at least h. Show that F_h is closed.

Hint: Show that $F_h = f(E_h)$.

This exercise was hand in in a previous year and therefore solutions are attributed to students who wrote them.

(1)(Joel) Suppose we have proved the statement for n = k, and let \mathfrak{p} be a prime of height k+1. Choose a prime $\mathfrak{q} \subset \mathfrak{p}$ of height k, so by induction there exist $\{f_1, \ldots, f_k\}$ such that \mathfrak{q} is a minimal prime of $I = (f_1, \ldots, f_k)$ and $\operatorname{ht}(\mathfrak{q}) = k$. Let $\{q_i\}$ be the minimal primes of I (so $\operatorname{ht}(q_i) = k$ by induction). As $\operatorname{ht}(\mathfrak{q}_i) < \operatorname{ht}(\mathfrak{p})$ for all $i, \mathfrak{p} \nsubseteq \mathfrak{q}_i$, so by prime avoidance $\mathfrak{p} \nsubseteq \mathfrak{q}_i$. Hence, there exists some $f_{k+1} \in \mathfrak{p} \setminus \mathfrak{q}_i$. Define $I' = (f_1, \ldots, f_{k+1})$, and let \mathfrak{p}' be a minimal prime of I'. By Krull's height theorem $\operatorname{ht}(\mathfrak{p}') \le k+1$. As $\mathfrak{q}_j \subsetneq \mathfrak{p}'$ for some \mathfrak{q}_j (as by our choice of f_{k+1}), we have $\operatorname{ht}(\mathfrak{p}') > \operatorname{ht}(\mathfrak{q}_j)$, and hence $\operatorname{ht}(\mathfrak{p}') = k+1$ for any minimal prime \mathfrak{p}' of I'. As \mathfrak{p} contains all the generators of I' and is of height k+1 by assumption, \mathfrak{p} is a minimal prime of I', as else we could fit a minimal prime \mathfrak{q}' of height k+1 in $I' \subsetneq \mathfrak{q}' \subsetneq \mathfrak{p}$, contradicting $\operatorname{ht}(\mathfrak{p}) = k+1$.

(2)(Joel) As $\operatorname{codim}(Z,X) = \dim \mathcal{O}_{Z,\eta}$ for the generic point η of Z', and similarly for $Y' \subset Y$, the question is local and we can reduce to the case where $f: X = \operatorname{Spec} B \to Y = \operatorname{Spec} A$ and $\varphi: A \to B$ is the corresponding ring map. Let $\mathfrak{p} \in \operatorname{Spec} A$ be such that $V(\mathfrak{p}) = Y'$ and $Z \subset f^{-1}(\mathfrak{p})$ be an irreducible component of $f^{-1}(\mathfrak{p}) = \mathfrak{p}^e$, where \mathfrak{p}^e denotes the extension of \mathfrak{p} by φ . Suppose \mathfrak{p} has height n, so by part (1) there exist $f_1, \ldots, f_n \in A$ such that \mathfrak{p} is a minimal prime of $I = (f_1, \ldots, f_n)$. Then $\mathfrak{p}^e \supseteq I^e = (\varphi(f_1), \ldots, \varphi(f_n))$. Let \mathfrak{q} be a minimal prime of \mathfrak{p}^e corresponding to the irreducible component Z. Next, we show that $\mathfrak{q} \supseteq \mathfrak{p}^e$ is a minimal prime of I^e , which by Krull's height theorem implies that $\operatorname{ht}(\mathfrak{q}) \leq n = \operatorname{ht}(\mathfrak{p})$, which is equivalent to the inequality $\operatorname{codim}(Z,X) \leq \operatorname{codim}(Y',Y)$.

First, we may assume that $\mathfrak{p}^e \supseteq I^e$, as if $\mathfrak{p}^e = I^e$, the result is immediate as \mathfrak{q} is a minimal prime of \mathfrak{p}^e . Now, suppose there exists $\mathfrak{r} \in \operatorname{Spec} B$ such that $\mathfrak{q} \supseteq \mathfrak{r} \supseteq I^e$. Then $\varphi^{-1}(\mathfrak{q}) \supseteq \varphi^{-1}(\mathfrak{r}) \supseteq \varphi^{-1}(I^e) \supseteq I$. As Z dominates Y', $\varphi^{-1}(\mathfrak{q}) = \mathfrak{p}$, and furthermore as \mathfrak{p} is a minimal prime of I. As \mathfrak{q} is a minimal prime of $\mathfrak{p}^e = \varphi^{-1}(\mathfrak{r})^e \subseteq \mathfrak{r}$, and \mathfrak{r} is by assumption prime, we see that $\mathfrak{q} = \mathfrak{r}$, and hence $\operatorname{codim}(Z, X) \leq \operatorname{codim}(Y', Y)$.

(3)(Joel) Again, the question is local, so let $f: X = \operatorname{Spec} B \to \operatorname{Spec} A = Y$ be a morphism of affine schemes, and $y \in Y$ be a point corresponding to

²The statement is true for any $f: X \to Y$ between X and Y finite type k-schemes without the dominant hypothesis. This can be shown by an easy reduction to the case of the exercise.

 $\mathfrak{p} \in \operatorname{Spec} A$. Set $Y' := \{\bar{y}\}$, the closure of y in Y. Let $\phi : A \to B$ be the ring map corresponding to f.

B is a finitely generated A-algebra, so $B \bigotimes_A k(y)$ is a finitely generated k(y)-algebra, and hence $\dim Z = \operatorname{trdeg}_{k(y)}(K(Z))$ for any any irreducible component Z of $f^{-1}(y)$, as Z is of finite type over k(y) and the trace formula holds.

If Z is an irreducible component of X_y , we want to show that \bar{Z} is an irreducible component of $f^{-1}(Y')$. Z is contained in some irreducible component W of $f^{-1}(Y')$. As $Z \subset W$ and $Z \subset X_y$, the image of W contains $y \in Y$. Let η be the generic point of W. Then $f(W) \subset Y'$ is a dense inclusion with both W and Y' irreducible, and so $f(\eta) = y$, the generic point of Y'. Note that the closure of η intersected with X_y is irreducible and contains Z, and hence $W = \{\bar{\eta}\} \subset \bar{Z}$, so $\eta \in Z$. By part (2) we have $\operatorname{codim}(\bar{Z}, X) \leq \operatorname{codim}(Y', Y)$. As Z is dense in \bar{Z} , $K(Z) = K(\bar{Z})$, and similarly for K(y) and K(Y'). Using the trace formula for k - k(y) - k(Z), we get $\operatorname{trdeg}_{K(y)} K(Z) = \operatorname{trdeg}_k K(Z) - \operatorname{trdeg}_k K(y) = \operatorname{trdeg}_k K(\bar{Z}) - \operatorname{trdeg}_k K(Y')$. Using the inequality for codimensions we get $\dim X - \dim Y \leq \dim \bar{Z} - \dim Y' = \operatorname{trdeg}_k K(\bar{Z}) - \operatorname{trdeg}_k K(Y') = \operatorname{trdeg}_{K(Y')} K(\bar{Z}) = \operatorname{trdeg}_{K(y)} K(Z) = \dim Z$. As $X_y \simeq f^{-1}(y) \subset X$, we get that $\dim Z \leq \dim X$, and hence in total we have

$$\dim X - \dim Y \le \dim Z \le \dim X$$
.

(4)(Héloïse) We prove the following.

Lemma. Let $f: X \to Y$ be a dominant map between finite type integral k-schemes. There is an open dense subset $V \subset X$ such that for all $y \in f(V)$,

$$\dim(X_y) = \dim(X) - \dim(Y)$$

and f(V) is open.

We begin by proving the following weaker statement.

Lemma. Let $f: X \to Y$ be a dominant map between finite type integral k-schemes. There is an open dense set $U \subset X$ such that for all $y \in f(U)$

$$\dim(U_u) = \dim(X) - \dim(Y).$$

Proof. Note that we are free to reduce Y to an affine dense open and also U can be taken to be inside a dense affine open of X, so we can reduce to the affine case, as we do in what follows.

Proof of the affine case. We denote by $\phi: A \to B$ the ring map corresponding to f. Note that since f is a morphism between k-schemes, ϕ is injective. Let $e := \dim(X) - \dim(Y)$.

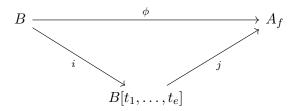
By using the additivity of the trenscendance degree (since f is a dominant map between finite type integral k-schemes) to the field extensions $K(X) \mid K(Y) \mid k$ induced by ϕ , we get that

$$e = \dim(X) - \dim(Y)$$

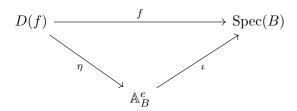
$$= \operatorname{trdeg}_k(K(X)) - \operatorname{trdeg}_k(K(Y))$$

$$= \operatorname{trdeg}_{K(Y)}(K(X)).$$

Let $\{t_1, \ldots, t_e\}$ be a transcendence basis of K(X) over K(Y). Note that the elements $t_i \in K(X)$ may be seen as fractions with numerators in A and denominators in B therefore, by considering f to be the product of all the denominators of the t_i 's (which is finite since $e < \infty$), and localizing A at f, we get that the t_i 's are elements of A_f . From there, we get the following commutative diagram



which induces the following diagram on affine schemes.



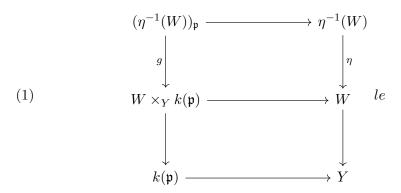
Since we are looking for a dense open subset, we sloppily rename $\operatorname{Spec}(A) := D(f)$ for the rest of the proof. By exercise 2 of sheet 8, the map $\iota : \mathbb{A}_B^e \cong \operatorname{Spec}(B[t_1,\ldots,t_e]) \to \operatorname{Spec}(B)$ is open, while the map $\eta : \operatorname{Spec}(A) \to \mathbb{A}_B^e$ induced by j is dominant since j is injective. Morevoer, η is finite type since it is a map of finite type integral k-schemes. By noting that the field extension

$$K(Y)(t_1 \dots t_n) \subseteq K(X) = \operatorname{Frac}(A)$$

is finite, since $\operatorname{trdeg}_{K(Y)}(K(X)) = e \leq \infty$, we conclude by exercise 1.2 of sheet 8 that there exists a non-empty open set $V \subset \mathbb{A}_B^e$ such that the restriction of the morphism η to $\eta^{-1}(W)$ is finite and dominant since η is dominant. In particular, it is closed. Then, since the map is dominant and closed, it is surjective.

Moreover, since η is surjective, $\eta(\eta^{-1}(W)) = W$ and therefore, $f(\eta^{-1}(W)) = \iota \circ \eta(\eta^{-1}(W)) = \iota(W)$ which is open since ι is an open map. Finally, since A is an integral domain, it is in particular irreducible and we conclude that $\eta^{-1}(W)$ is dense.

Now for any $\mathfrak{p} \in f(\eta^{-1}(W)) = \iota(W)$, since finitness and surjectivity of a morphism is stable under base change, the morphism g coming from the following base change is finite and surjective.



Therefore,

$$\dim(\eta^{-1}(W))_{\mathfrak{p}}) = \dim(W \times_Y k(\mathfrak{p})) \le \dim(\mathbb{A}_{k(\mathfrak{p})}^e) = e.$$

Now note that $B[t_1, \ldots, t_n]$ is an integral domain, hence \mathbb{A}_B^e is an integral scheme. Therefore, $\dim(W) = \dim(\mathbb{A}_B^e) = \dim(B) + e$. Furthermore, since the restriction of the morphism η to $\eta^{-1}(W)$ is dominant, hence finite and surjective, $\dim(\eta^{-1}(W)) = \dim(W)$.

By applying the result from question 3 to the restriction of f to $\eta^{-1}(W)$, then for any irreducible component Z of the fibre $(\eta^{-1}(W))_{\mathfrak{p}}$, we get

$$\dim(B) + e - \dim(B) \le \dim(Z).$$

Since the above holds for any irreducible component, we conclude that $e \leq \dim((\eta^{-1}(W))_{\mathfrak{p}})$. Thus

$$\dim((\eta^{-1}(W))_{\mathfrak{p}}) = e$$

and we can pick $U = \eta^{-1}(W)$.

This lemma does not yet allow to generalize to the the whole fiber X_y , as the equality $\dim(U_y) = \dim(X_y)$ might not hold for any open dense set U. We therefore need to further refine U using the following lemma.

Lemma. Let $f: X \to Y$ be a map between finite type integral k-schemes. Then, there exists a dense open set $V \subseteq Y$ such that for all $y \in Y$, $U_y \subset X_y$ is dense.

Proof. Reduction to the affine case. Up to shrinking Y, we may assume that Y is an affine scheme $Y := \operatorname{Spec}(A)$.

Now, suppose that we have proven the statement when X is an affine scheme. For a general scheme X, consider an affine open cover $X = \bigcup_i W_i$ where W_i are affine schemes. For each W_i , there exists an open dense set $V_i \subseteq Y$ such that for any $y \in V_i$, $(U \cap W_i)_y \subset (W_i)_y$ is dense. Consier $V := \bigcup_i V_i$. Then for any $y \in V$, $U_y \subset X_y$ is dense. Indeed, the fiber X_y is a glueing of the $(W_i)_y$'s while U_y is a glueing of the $(U \cap W_i)$'s, where each $(U \cap W_i)_y$ is dense in $(W_i)_y$.

Proof of the affine case. Suppose that $f : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is a map between finite type integral k-schemes. Since the principal open sets form a basis for the topology on $\operatorname{Spec}(B)$, up to shrinking U, we may assume that

U is of the form D(t) with $t \in B$. Consider the short exact sequence

$$(2) 0 \longrightarrow B \longrightarrow b \longrightarrow b/(t) \longrightarrow 0.$$

By the Generic flatness theorem, there exists a dense open set $V \subset \operatorname{Spec}(A)$ such that for any $y \in V$, the morphism $B \otimes_A k(y) \to B_t \otimes_A k(y)$ is injective because B/(t) can be supposed to be flat on this open, which implies that the morphism $(D(t))_y \to X_y$ is dominant.

Let V be as in the previous lemma. By considering $U' := U \cap f^{-1}(V)$, we have proven the general case.

(5) (Alissa) Let $f: X \to Y$ a dominant map between finite type integral k-schemes. For h a positive or 0 integer we define

 $E_{X,h} := \{x \in X | \exists Z \subseteq X_{f(x)} \text{ an irreducible component which contains } x \text{ s.t. } \dim Z \geqslant h\}$ Show that $E_{X,h}$ is closed.

We see that if $h \leq \dim X - \dim Y$ then by part 3 we conclude that $E_{X,h} = X$, hence it is closed. Now if we consider the case $h > \dim X - \dim Y$ then we see that if take the U obtained in Part 4 then $E_{X,h} \subseteq X \setminus U$. We proceed by induction on the dimension of X to prove that $E_{X,h}$ is closed. (take the version of Part 4 with X_y and not only U_y)

Suppose that dim X = 0. Then we see that $0 \leq \dim Z \leq \dim X_y =$ $\dim f^{-1}(y) \leqslant \dim X = 0$. So $E_{X,h}$ is just \emptyset . For the induction step, suppose that the result is true for every X of dimension d-1 or less. Suppose that $\dim X = d$. Then if we consider $E_{X,h}$ we see that $E_{X,h} \subseteq X \setminus U$ which is closed. So now we can consider the decomposition of $X \setminus U$ in a union of irreducible closed subsets C_i . The latter will have dimension strictly smaller than X since they are irreducible in X which is itself irreducible. Since X is a fintile type k-scheme, we see that there must be only finitely many C_i 's. We would like to show that $E_{X,h} = \bigcup_{i=1}^n E_{C_i,h}$. To do so, notice first that we can endow each C_i with a reduced scheme structure. Since it is irreducible, we get that C_i is integral. If we show the above equality, we would like to use induction since the C_i 's have strictly lower dimension than d. However, to apply induction we have to be in the good conditions. So we need an integral image and a dominant map. Furthermore, we need C_i and the image to be finite type k-schemes. So let us consider the morphism $f|_{C_i}: C_i \to f(C_i)$ where we endow $f(C_i)$ with the reduced scheme structure. Since C_i is irreducible, then $f(C_i)$ is too and so is $\overline{f(C_i)}$. It is direct that the morphism is dominant. Since X and Y are finite type k-schemes, then C_i and $\overline{f}(C_i)$ are finite type k-schemes. As before, $f|_{C_i}$ is finite type since it is a morphism between finite type k-schemes.

First, let $x \in E_{C_i,h}$. We would like to show that $\bigcup_{i=1}^n E_{C_i,h} \subseteq E_{X,h}$. Remember that we have

$$C_{i,f(x)} \approx f^{-1}(f(x)) \cap C_i \subseteq f^{-1}(f(x)) \approx X_{f(x)}$$

Since the C_i 's are closed, $f^{-1}(f(x)) \cap C_i$ is a closed subset of $f^{-1}(f(x))$. Hence an irreducible component of $C_{i,f(x)}$ containing x is also an irreducible closed subset of $f^{-1}(f(x))$ containing x.

Now for the other inclusion let $x \in E_{X,h}$. Then we notice that

$$X_{f(x)} \approx f^{-1}(f(x)) = \bigcup_{i=1}^{n} f^{-1}(f(x)) \cap C_i$$

We see that the irreducible components of $X_{f(x)}$ are the irreducible components of each $f^{-1}(f(x)) \cap C_i$. This is how we get $E_{X,h} \subseteq \bigcup_{i=1}^n E_{C_i,h}$.

(6) (Alissa) Let $f:X\to Y$ a closed map between finite type integral k-schemes. For $h\in\mathbb{N}$ we define

 $F_h := \{ y \in Y | \exists Z \subseteq X_y \text{ an irreducible component s.t. } \dim Z \geqslant h \}$ Show that F_h is closed.

To show this, we will rather prove that $f(E_h) = F_h$. Since f is closed and using Part 5, it follows immediately that F_h is closed. We will show that $f(E_h) = F_h$ by showing each inclusion.

 $f(E_h) \subseteq F_h$: Let $y \in f(E_h)$. Then there exists $x \in E_h$ such that f(x) = y. This implies that there exists an irreducible component of $X_{f(x)} = X_y$ of dimension at least h. Hence $f(x) \in F_h$ by definition.

 $\underline{F_h} \subseteq f(E_h)$: Let $y \in F_h$. If $y \notin f(X)$ we see that the fiber must be the empty set since $X_y \approx f^{-1}(y)$. Hence we see that $y \in f(X)$. We know that there exists an irreducible component Z of X_y such that it has dimension at least h. Now we only have to prove that Z contains at least one $x \in f^{-1}(y)$. However, we remember that $X_y \approx f^{-1}(y)$, hence necessarily Z contains an element x of $f^{-1}(y)$ and so Z is an irreducible component of $X_{f(x)} = X_y$ of dimension at least h.