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Solutions — week 4

Exercise 1. Tangent vectors.

(1) We have d(1) = d(1%) = 2d(1) implying that d(1) = 0. Now using
R-linearity d(r) = rd(1) = 0 for any r € R.

(2) The kernel of the projection is 0 N. Note that (0,n)-(0,n") = (0,0)
implying the square zero requirement.

(3) Immediate from the definition of the law.

(4) The k-algebra morphism k[t] — k @¢ k sending t to (0,1) factors
through k[t] /2, and is surjective. By equality of dimensions, because
this map is a map of finite dimensional k-vector spaces, we deduce
that this map is an isomorphism.

(5) First we note that as z is a k-rational point we have a k-algebra
section of the surjection Ox , — k(x). Using this, we may write

OX@ = k(x) D my

as a direct sum of k-vector spaces. Note that a k-derivationd: Ox , —
k(z) will have to send the first component to zero by the first point
of the exercise. Note also that if f, g € m, then d(fg) = f(x)d(g) +
g(x)d(f) = 0, because we have f(z) = g(x) = 0. Therefore, any
derivation necessarily factors through m,/m2. It is therefore also
sufficient for a k-derivation Ox, — k(x) to define a k-linear map
m,/m2 — k(). This shows the first isomorphism.

For the last one, note that a k-scheme morphism from Spec(kle])
to X sending the point to z is equivalent to the data of a local
k-algebra map Ox , — kle]. Projecting to ke and then using the
identification k£ = k(x), it defines a derivation Ox , — k(z). The
other way around, given d: Ox , — k(x), we define a k-algebra map
Ox o — kle] by (evy,d).

Exercise 2. (2) Let k — [ be a Galois extension. Let V' be a k-vector
space. We consider the base change V; = V ®; [. We consider the
Galois action of G = Gal(l: k) on V} given by g- (v ®@ A) = v ® g(A).
The goal is to show that (V;)¢ = V, more precisely the image of
V =2 V®rl by v—=v®1l. We may sometimes write V' for this image
in what follows.
Suppose first that V' is finite dimensional. Write V' = @, V; with
Vi being one dimensional. Then

Vi=aVy =[]V

and the action G restricts to this direct sum/product.
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If V is one dimensional, then (V ®l) = V follows from Galois the-
ory. Note that we can compute the fixed points of a direct product as
the fixed points of each components. Therefore, the case where V is
finite dimensional follows: indeed V' C V}G with the same dimension.

To treat the arbitrary case, we want to show (V @, )¢ C V.
Let v € (V ®; 1)¢. Then there exists a finite dimensional subspace
W C V such that v is in W;. Therefore we see by the previous case
that v € W C V, which conclude the argument.

Exercise 4. Properties of maps We show that if ¢: A — B is injective, then
the topological image of f: Spec(B) — Spec(A) is dense. Take any a € A
not nilpotent. Because the map is injective ¢(a) € B is also not nilpotent.
Therefore f~1(D(a)) = D(¢(a)) # 0, implying that D(a) intersects with
the image of Spec(B), showing the claim.

Exercise 5. Functoriality of Proj.

(2) For example ¢: Z[z,y] — Z[z,y, 2] the inclusion. Then U(:) =
Di(z)U Dy(y). In particular (X,Y) = [0 : 0 : 1] is not in this
open.

(3) We use that U(v) is a gluing

Uw)=|J Spec(By))

a€A4 hom.

with gluing data is given by, at the dual level of ring of functions by
the natural maps

B(y(a))

N

By — B(aa))

So to define a map out of U(v)), it suffices to define a map from each
Spec(B(y(q)))- To do this we glue the map induced by v

Spec(B(y(a))) — Spec(A(q))-

This glues because the following commutes as every map is giving
by the natural extension-restriction of ¢ to these rings

Ag) — By(a))

\\

Afaary — B(y(aa'))

e

Aary



(4)
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We first show that U(y)) = Proj(B). Let p € Dy (b) any point of
Proj(B) and some homegeneous b € B,. Note that b is in the
image of 1 by hypothesis, which concludes.

To show that the map is a closed immersion, it suffices to show
that locally

SpeC(Bw(a))) — Spec(A(a))
is a closed immersion. But therefore it suffices to show that the
underlying map of rings is a surjection. Because D (a) = D, (a™)
for any N > 1 we can suppose that deg(a) > ko. But then an
element of B(y(,)) is of the form W with deg(b) = dn deg(a). But
as Ay deg(a) = Bdndeg(a) 18 surjective by assumption, we win.

Now we are left to show that the image is V (ker(¢))). It suffices
to show that it’s the image when intersecting to every D4 (a). But
Dy (a) N V4 (ker(¢)) = V(ker(¢)(4)), which concludes.

Same local trick. It suffices to show that it’s locally an isomorphism.
Enlarging degrees is again harmless.



