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Solutions – week 12

Exercise 1. Homotopy invariance of class groups. Let X be integral, Noe-
therian, separated and regular in codimension 1.

(1) Show that X×A1 is also integral, Noetherian, separated and regular
in codimension 1.

(2) Show that the projection π to the first component induces a mor-
phism π∗ : Cl(X) → Cl(X × A1).

(3) Show that π∗ is an isomorphism.

You may look at II.6.6 in Hartshorne.

Exercise 2. A Künneth formula for class groups. Let X be an integral,
separated, Noetherian and locally factorial scheme. Let n ≥ 1. Show that
Pn
X = X × Pn

Z also satisfies the above and that

Cl(X × Pn
Z)

∼= Cl(X)× Z.

Hint: Consider ϕ : Pn
K(X) → X×Pn

Z. Show that ϕ∗ : Pic(Pn
X) → Pic(Pn

K(X))
∼=

Z gives a retraction of the first arrow in the exact sequence (exercise 8, week
9)

Z → Cl(Pn
X) → Cl(An

X) → 0

coming from the divisor V+(X0) in Cl(Pn
X).

Exercise 3. Very ample divisors. Let k be a field. Let S be a N-graded
ring finitely generated in degree 1 with S0 = k. Denote by X = Proj(S).
Suppose that X is integral and OX(X) = k.1

(1) Show that OX(1) is k-very ample.

(2) If dim(X) ≥ 1, show that Z OX(1)−−−−→ Pic(X) is injective.
Hint: If OX(1) is torsion, it would imply that OX is k-very ample.

(3) If X is normal, deduce that if 0 ̸= s ∈ OX(1)(X), then div(s) ∈
Cl(X) has infinite order.

Solution key. (1) Denote by s0, . . . , sn degree 1 elements that S0 = k
generates S as an algebra. Note that k[x0, . . . , xn] → S sending
xi 7→ si is a graded surjection and therefore induces a closed immer-
sion ι : X = Proj(S) → Pn

k . Note that by construction ι∗OPn
k
(1) ∼=

OX(1). The claim now follows.
(2) If OX(1) is torsion, meaning that OX(n) ∼= OX , it would mean

that OX is k-very ample. As we suppose that OX(X) = k, this

1This condition follows from previous assumptions if k is algebraically closed.
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would imply that X is a point, a contradiction with the dimension
hypothesis.

(3) Follows from the injection Pic(X) → Cl(X) (normal) and the previ-
ous point.

□

Exercise 4. Projective Cone. This exercise is a follow-up to exercise 2,
week 7.
Let S be a N-graded ring finitely generated in degree 1 over S0. Consider
the N-graded ring S[t] with elements of S keeping their grading and with t
placed in degree 1. We call Proj(S[t]) with this grading the projective cone.

(1) Show that this grading comes from the product action

Gm,S0 ×S0 Spec(S)×S0 A1
S0

(µS pr12,µA1 pr13)−−−−−−−−−−−→ Spec(S)×S0 A1
S0

where prij denote projections, µS the action on Spec(S) and µA1 the

usual Gm-action on A1.
(2) Show that there are natural identifications V+(t) = Proj(S) and

D+(t) = Spec(S). Show furthermore that V+(S+) (taken in Proj(S[t]))
identifies to the vertex (see exercise 6, week 10) in Spec(S). We
therefore denote this closed subscheme by v.

(3) Let s0, . . . , sn be generators of S in degree 1. Show that Proj(S[t])\v
is covered by the open sets D+(si) and that each open set is isomor-
phic to Spec(S(si)[t]). Deduce that we have a natural map

p : Proj(S[t]) \ v → Proj(S).

(4) Let k be an algebraically closed field, and suppose S0 = k. Sup-
pose that S is integral, Noetherian and normal. Suppose that X =
Proj(S) is of dimension ≥ 1. Show that p∗ induces an isomorphism
on class groups. Deduce that, if C = Spec(S) denotes the cone of X
then we have an exact sequence

1 → Z → Cl(X) → Cl(C) → 1

where the first morphism sends 1 to the class of OX(1), and the
second is the composition of p∗ and the restriction to C.

Proof. (1) Analyze that degree 1 elements are still of degree 1.
(2) The V+(t) asserion is immediate. For the D+(t) it amounts to realiz-

ing that degree zero elements of St are just S. For the last assertion,
note that Proj(S0[t]) identifies with Spec(S0).

(3) Note that (s0, . . . , sn) generates S+ as an ideal. Therefore the claim
on the cover follows. Note that the degree zero part of S[t]si identifies
to S(si)[

t
si
] which gives the claim.

(4) We denote by X the projective cone.
We show that p∗ induces an isomorphism on class groups. The

previous point shows that K(X) = K(X)(T ) for T = t/si for some
i. From this observation, one can actually apply the same proof as
proposition chapter 2, 6.6 in Hartshorne. We give a bit more details.
We use the terminology this proof in what follows. We can separate
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the codimension points of X \ v in two distinct families. Type 1
points will be points such that the image in X is of codimension 1.
Type 2 are points such that the image is generic. These points are in
one to one correspondence with codimension points of A1

K(X) along

the dominant map A1
K(X) → X \ v. We can define π∗ exactly as in

proposition 6.6 at the level of divisors, and it gives a surjection to
the subgroup of Cl(X \ v) generated by type 1 points. Note that
the exact same proof as the one in proposition 6.6 shows that any
type 2 points are linearly equivalent to type 1 points. This shows
surjectivity. Injectivity also is proven with the exact same argument.

Note also that by exercise 2.3 and the exercise 4, week 10 we have
an exact sequence (where 1 ∈ Z is sent to OX(1) seen as V+(t), which
is prime because X is integral)

1 → Z → Cl(X) → Cl(C) → 1

because as argued above D+(t) = Spec(S) = C.
Note that because v ∈ X is at least of codimension 2, we have

Cl(X) ∼= Cl(X \v). We can now use that p∗ induces an isomorphism
to conclude.

□

Exercise 5. Computations of class groups on quadric hypersurfaces. Sup-
pose that k is algebraically closed and char(k) ̸= 2. Let 2 ≤ r ≤ n. Consider
the ring (equipped with the standard grading)

Sr = k[x0, . . . , xn]/(x
2
0 + · · ·+ x2r).

You can assume that this ring is normal. (See Hartshorne, exercise 6.4 for
a proof).

(1) Show that up to a linear change of variable, we can suppose that

Sr = k[x0, . . . , xn]/(x0x1 + x22 · · ·+ x2r).

Denote by Cr = Spec(Sr) and Xr = Proj(Sr).
(2) Show that Cl(Cr) is cyclic when r ̸= 3

Hint: Consider the prime divisor V (
√

(x1)) and the exact sequence
of week 9, exercise 8.

(3) Show that Cl(C2) ∼= Z/2Z.
Hint: Consider the same exact sequence. See Hartshorne example
6.5.2.

(4) Show that Cl(C3) ∼= Z.
Hint: show that after a suitable change of variable we see that Xr

∼=
P1
k×P1

k. Then use exercise 1 and the exact sequence of the last point
of the above exercise.

(5) Show that Cl(Cr) ∼= 0 of r ≥ 4. In particular, Sr is factorial.
Hint: show that (x1) is prime in this case and conclude.

(6) Use the exact sequence of the last point of the above exercise to
compute Cl(Xr) for all r ≥ 2.
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Solution key. (1) Note that x20 + x21 = (x0 + ix1)(x0 − ix1) where i ∈ k
is a root of −1 in k. Because char(k) ̸= 2 we can set y0 = x0 + ix1
and y1 = x0 − ix1 two different variables.

(2) If r ̸= 3 note that V (x1) is irreducible. We can then use the same
strategy as in example 6.5.2 in Hartshorne.

(3) See example 6.5.2 in Hartshorne.
(4) Up to a change of variable we recognize the Segre embedding of

P1
k ×k P1

k in P3
k. We may work with

Sr = k[x0, x1, x2, x3]/(x0x1 − x2x3)

Note that in the exact sequence from the previous exercise, 1 ∈ Z
is sent to the Cartier corresponding to p∗1O(1) ⊗ p∗2O(1) when we
view this in the product. In other words, this is the class of (1, 1) ∈
Cl(P1

k ×k P1
k) = Z⊕ Z. The result follows.

(5) V (x1) is principal and prime.
(6) Follows from the exact sequence.

□

Exercise to hand in. Morphisms between projective spaces, again. (Due
16 December, 18:00) Please write your solution in TEX.
Let k be a field. You may find part (1), (2) of the exercise useful while
solving part (3) of the exercise.

(1) (Graded Nakayama) Let R = ⊕
n∈N

Rn be a graded ring and M =

⊕
n∈N

Mn be a graded R module, J ⊆ R+ be a homogeneous ideal of

R. If M = JM , then show that M = 0. Recall that R+ is the
homogeneous ideal ⊕

n>0
Rn of R.

(2) Let R be a Noetherian ring generated in degree 1 as an R0-algebra.
2

Let F0, . . . , Fm be homogeneous elements of strictly positive degrees
of R. Assume that the radical of (F0, . . . , Fr) is R+. Show that the
graded ring inclusion R0[F0, . . . , Fr] → R is a finite ring map. You
may want to use part (1).

(3) Given a morphism of k-schemes f : Pn
k → Pm

k , show that the image
is either a point; and if the image is not a point, then m ≥ n and the
image has dimension n. In the second case, show that the morphism
is finite. Hint: we have f∗OPm

k
(1) ∼= OPn

k
(d) for some d ≥ 0. Break

the study into two cases: d = 0 and d ≥ 1. In this last case show that
the polynomials F0, . . . , Fm homogeneous of degree d which defines
the map generates an ideal which radical is k[X0, . . . , Xn]+.

(4) Identify Pn
k = Proj(k[x0, . . . , xn]). Show that the projection map

from Pn
k−[0 : 0 : · · · : 1] to Pn−1

k given by the sections x0, x1, . . . xn−1 ∈
OPn

k
(1) cannot be extended to Pn

k .

Remark. When the image of a map Pn
k → Pm

k is not a point, the map
Pn
k → Pm

k can be written as a composition of (1) a Veronese embedding

2It is enough to assume that R is N-graded Noetherian.
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Pn
k → PN

k , for some N , (2) an automorphism of PN
k , (3) a projection map

PN
k − V (X0, . . . , Xm′) → Pm′

k ,

sending (x0 : . . . : xN ) to (x0 : . . . : xm′), for some m′ ≤ m, (4) a linear

embedding Pm′
k → Pm

k – here, a linear embedding is map that sends x =
(x0 : . . . : xm′) to (x0 : . . . : xm′ : Lm′+1(x) : . . . : Lm(x)), where the Lj ’s are
some linear polynomials in m′ + 1 variable with k-coefficients – and (5) an
automorphism of which is a permutation of variables Pm

k .
Indeed, a map Pn

k → Pm
k is given by homogeneous m + 1 polynomials of

some fixed degree d, that we denote by F0, . . . , Fm. By functoriality of Proj
we can express this map (where the first map is given by Xi 7→ Fi)

k[X0, . . . , Xm] → (k[X0, . . . , Xn])d ⊂ k[X0, . . . , Xn].

So we can factor by a Veronese embedding

k[X0, . . . , Xm] → k[Yj ]
N
j=0 → (k[X0, . . . , Xn])d

sending Xi to lifts of Fi’s that we denote by Gi. Up to permuting variables
of Pm

k we can suppose that G0, . . . , Gm′ for some 0 ≤ m′ ≤ m form a basis

of span(G0, . . . , Gm) in
⊕N

j=0 kYj . Using an automorphism of PN
k we can

suppose that G0, . . . , Gm′ are equal to Y0, . . . , Ym′ and that Gm′+1, . . . , Gm

are k-linear combination of the former, say Gl = Ll(Y0, . . . , Ym′) for m′+1 ≤
l ≤ m. Say k[X0, . . . , Xm]

φ−→ k[Y0, . . . , Ym′ ] is given sending Xi → Yi if
i ≤ m′ and Xi → Li(Y0, . . . , Ym′). Now, all in all the composition

k[X0, . . . , Xm]
permutation−−−−−−−→ k[X0, . . . , Xm]

φ−→ k[Y0, . . . , Ym′ ]

⊆−→ k[Y0, . . . , YN ]
automorphism−−−−−−−−−→ k[Y0, . . . , YN ] → (k[X0, . . . , Xn])d

induces by functoriality of Proj the map we started with.

(5) Explicitly decompose the map P1
k → P2

k sending [x : y] to [x2 :
x2+y2+xy : 2x2+y2+xy], into the steps mentioned in the previous
remark.


