Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque

EPFL, fall semester 2024 AG II - Schemes and sheaves

Solutions – week 12

Exercise 1. Homotopy invariance of class groups. Let X be integral, Noetherian, separated and regular in codimension 1.

- (1) Show that $X \times \mathbb{A}^1$ is also integral, Noetherian, separated and regular in codimension 1.
- (2) Show that the projection π to the first component induces a morphism π^* : $Cl(X) \to Cl(X \times \mathbb{A}^1)$.
- (3) Show that π^* is an isomorphism.

You may look at II.6.6 in Hartshorne.

Exercise 2. A Künneth formula for class groups. Let X be an integral, separated, Noetherian and locally factorial scheme. Let $n \geq 1$. Show that $\mathbb{P}^n_X = X \times \mathbb{P}^n_{\mathbb{Z}}$ also satisfies the above and that

$$Cl(X \times \mathbb{P}^n_{\mathbb{Z}}) \cong Cl(X) \times \mathbb{Z}.$$

Hint: Consider $\phi \colon \mathbb{P}^n_{K(X)} \to X \times \mathbb{P}^n_{\mathbb{Z}}$. Show that $\phi^* \colon \operatorname{Pic}(\mathbb{P}^n_X) \to \operatorname{Pic}(\mathbb{P}^n_{K(X)}) \cong \mathbb{Z}$ gives a retraction of the first arrow in the exact sequence (exercise 8, week 9)

$$\mathbb{Z} \to \mathrm{Cl}(\mathbb{P}^n_Y) \to \mathrm{Cl}(\mathbb{A}^n_Y) \to 0$$

coming from the divisor $V_+(X_0)$ in $Cl(\mathbb{P}^n_X)$.

Exercise 3. Very ample divisors. Let k be a field. Let S be a \mathbb{N} -graded ring finitely generated in degree 1 with $S_0 = k$. Denote by $X = \operatorname{Proj}(S)$. Suppose that X is integral and $\mathcal{O}_X(X) = k$.

- (1) Show that $\mathcal{O}_X(1)$ is k-very ample.
- (2) If $\dim(X) \geq 1$, show that $\mathbb{Z} \xrightarrow{\mathcal{O}_X(1)} \operatorname{Pic}(X)$ is injective. Hint: If $\mathcal{O}_X(1)$ is torsion, it would imply that \mathcal{O}_X is k-very ample.
- (3) If X is normal, deduce that if $0 \neq s \in \mathcal{O}_X(1)(X)$, then $\operatorname{div}(s) \in \operatorname{Cl}(X)$ has infinite order.
- Solution key. (1) Denote by s_0, \ldots, s_n degree 1 elements that $S_0 = k$ generates S as an algebra. Note that $k[x_0, \ldots, x_n] \to S$ sending $x_i \mapsto s_i$ is a graded surjection and therefore induces a closed immersion $\iota \colon X = \operatorname{Proj}(S) \to \mathbb{P}^n_k$. Note that by construction $\iota^*\mathcal{O}_{\mathbb{P}^n_k}(1) \cong \mathcal{O}_X(1)$. The claim now follows.
 - (2) If $\mathcal{O}_X(1)$ is torsion, meaning that $\mathcal{O}_X(n) \cong \mathcal{O}_X$, it would mean that \mathcal{O}_X is k-very ample. As we suppose that $\mathcal{O}_X(X) = k$, this

¹This condition follows from previous assumptions if k is algebraically closed.

would imply that X is a point, a contradiction with the dimension hypothesis.

(3) Follows from the injection $\operatorname{Pic}(X) \to \operatorname{Cl}(X)$ (normal) and the previous point.

Exercise 4. Projective Cone. This exercise is a follow-up to exercise 2, week 7.

Let S be a \mathbb{N} -graded ring finitely generated in degree 1 over S_0 . Consider the \mathbb{N} -graded ring S[t] with elements of S keeping their grading and with t placed in degree 1. We call Proj(S[t]) with this grading the *projective cone*.

(1) Show that this grading comes from the product action

$$\mathbb{G}_{m,S_0} \times_{S_0} \operatorname{Spec}(S) \times_{S_0} \mathbb{A}^1_{S_0} \xrightarrow{(\mu_S \operatorname{pr}_{12}, \mu_{\mathbb{A}^1} \operatorname{pr}_{13})} \operatorname{Spec}(S) \times_{S_0} \mathbb{A}^1_{S_0}$$
 where pr_{ij} denote projections, μ_S the action on $\operatorname{Spec}(S)$ and $\mu_{\mathbb{A}^1}$ the

where pr_{ij} denote projections, μ_S the action on spec(S) and $\mu_{\mathbb{A}^1}$ the usual \mathbb{G}_m -action on \mathbb{A}^1 .

- (2) Show that there are natural identifications $V_+(t) = \text{Proj}(S)$ and $D_+(t) = \text{Spec}(S)$. Show furthermore that $V_+(S_+)$ (taken in Proj(S[t])) identifies to the vertex (see exercise 6, week 10) in Spec(S). We therefore denote this closed subscheme by v.
- (3) Let s_0, \ldots, s_n be generators of S in degree 1. Show that $\operatorname{Proj}(S[t]) \setminus v$ is covered by the open sets $D_+(s_i)$ and that each open set is isomorphic to $\operatorname{Spec}(S_{(s_i)}[t])$. Deduce that we have a natural map

$$p \colon \operatorname{Proj}(S[t]) \setminus v \to \operatorname{Proj}(S).$$

(4) Let k be an algebraically closed field, and suppose $S_0 = k$. Suppose that S is integral, Noetherian and normal. Suppose that X = Proj(S) is of dimension ≥ 1 . Show that p^* induces an isomorphism on class groups. Deduce that, if C = Spec(S) denotes the cone of X then we have an exact sequence

$$1 \to \mathbb{Z} \to \mathrm{Cl}(X) \to \mathrm{Cl}(C) \to 1$$

where the first morphism sends 1 to the class of $\mathcal{O}_X(1)$, and the second is the composition of p^* and the restriction to C.

Proof. (1) Analyze that degree 1 elements are still of degree 1.

- (2) The $V_+(t)$ asserion is immediate. For the $D_+(t)$ it amounts to realizing that degree zero elements of S_t are just S. For the last assertion, note that $\text{Proj}(S_0[t])$ identifies with $\text{Spec}(S_0)$.
- (3) Note that (s_0, \ldots, s_n) generates S_+ as an ideal. Therefore the claim on the cover follows. Note that the degree zero part of $S[t]_{s_i}$ identifies to $S_{(s_i)}[\frac{t}{s_i}]$ which gives the claim.
- (4) We denote by \overline{X} the projective cone.

We show that p^* induces an isomorphism on class groups. The previous point shows that $K(\overline{X}) = K(X)(T)$ for $T = t/s_i$ for some i. From this observation, one can actually apply the same proof as proposition chapter 2, 6.6 in Hartshorne. We give a bit more details. We use the terminology this proof in what follows. We can separate

the codimension points of $\overline{X} \setminus v$ in two distinct families. Type 1 points will be points such that the image in X is of codimension 1. Type 2 are points such that the image is generic. These points are in one to one correspondence with codimension points of $\mathbb{A}^1_{K(X)}$ along the dominant map $\mathbb{A}^1_{K(X)} \to \overline{X} \setminus v$. We can define π^* exactly as in proposition 6.6 at the level of divisors, and it gives a surjection to the subgroup of $\mathrm{Cl}(\overline{X} \setminus v)$ generated by type 1 points. Note that the exact same proof as the one in proposition 6.6 shows that any type 2 points are linearly equivalent to type 1 points. This shows surjectivity. Injectivity also is proven with the exact same argument.

Note also that by exercise 2.3 and the exercise 4, week 10 we have an exact sequence (where $1 \in \mathbb{Z}$ is sent to $\mathcal{O}_X(1)$ seen as $V_+(t)$, which is prime because X is integral)

$$1 \to \mathbb{Z} \to \mathrm{Cl}(\overline{X}) \to \mathrm{Cl}(C) \to 1$$

because as argued above $D_{+}(t) = \operatorname{Spec}(S) = C$.

Note that because $v \in \overline{X}$ is at least of codimension 2, we have $Cl(\overline{X}) \cong Cl(\overline{X} \setminus v)$. We can now use that p^* induces an isomorphism to conclude.

Exercise 5. Computations of class groups on quadric hypersurfaces. Suppose that k is algebraically closed and $char(k) \neq 2$. Let $2 \leq r \leq n$. Consider the ring (equipped with the standard grading)

$$S_r = k[x_0, \dots, x_n]/(x_0^2 + \dots + x_r^2).$$

You can assume that this ring is normal. (See Hartshorne, exercise 6.4 for a proof).

(1) Show that up to a linear change of variable, we can suppose that

$$S_r = k[x_0, \dots, x_n]/(x_0x_1 + x_2^2 \dots + x_r^2).$$

Denote by $C_r = \operatorname{Spec}(S_r)$ and $X_r = \operatorname{Proj}(S_r)$.

- (2) Show that $Cl(C_r)$ is cyclic when $r \neq 3$ Hint: Consider the prime divisor $V(\sqrt{(x_1)})$ and the exact sequence of week 9, exercise 8.
- (3) Show that $Cl(C_2) \cong \mathbb{Z}/2\mathbb{Z}$. Hint: Consider the same exact sequence. See Hartshorne example 6.5.2.
- (4) Show that $Cl(C_3) \cong \mathbb{Z}$. Hint: show that after a suitable change of variable we see that $X_r \cong \mathbb{P}^1_k \times \mathbb{P}^1_k$. Then use exercise 1 and the exact sequence of the last point of the above exercise.
- (5) Show that $Cl(C_r) \cong 0$ of $r \geq 4$. In particular, S_r is factorial. Hint: show that (x_1) is prime in this case and conclude.
- (6) Use the exact sequence of the last point of the above exercise to compute $Cl(X_r)$ for all $r \geq 2$.

Solution key. (1) Note that $x_0^2 + x_1^2 = (x_0 + ix_1)(x_0 - ix_1)$ where $i \in k$ is a root of -1 in k. Because $char(k) \neq 2$ we can set $y_0 = x_0 + ix_1$ and $y_1 = x_0 - ix_1$ two different variables.

- (2) If $r \neq 3$ note that $V(x_1)$ is irreducible. We can then use the same strategy as in example 6.5.2 in Hartshorne.
- (3) See example 6.5.2 in Hartshorne.
- (4) Up to a change of variable we recognize the Segre embedding of $\mathbb{P}^1_k \times_k \mathbb{P}^1_k$ in \mathbb{P}^3_k . We may work with

$$S_r = k[x_0, x_1, x_2, x_3]/(x_0x_1 - x_2x_3)$$

Note that in the exact sequence from the previous exercise, $1 \in \mathbb{Z}$ is sent to the Cartier corresponding to $p_1^*\mathcal{O}_1(1) \otimes p_2^*\mathcal{O}_1(1)$ when we view this in the product. In other words, this is the class of $(1,1) \in \mathrm{Cl}(\mathbb{P}^1_k \times_k \mathbb{P}^1_k) = \mathbb{Z} \oplus \mathbb{Z}$. The result follows.

- (5) $V(x_1)$ is principal and prime.
- (6) Follows from the exact sequence.

Exercise to hand in. Morphisms between projective spaces, again. (Due 16 December, 18:00) Please write your solution in T_EX . Let k be a field. You may find part (1), (2) of the exercise useful while solving part (3) of the exercise.

- (1) (**Graded Nakayama**) Let $R = \underset{n \in \mathbb{N}}{\oplus} R_n$ be a graded ring and $M = \underset{n \in \mathbb{N}}{\oplus} M_n$ be a graded R module, $J \subseteq R_+$ be a homogeneous ideal of R. If M = JM, then show that M = 0. Recall that R_+ is the homogeneous ideal $\underset{n>0}{\oplus} R_n$ of R.
- (2) Let R be a Noetherian ring generated in degree 1 as an R_0 -algebra.² Let F_0, \ldots, F_m be homogeneous elements of strictly positive degrees of R. Assume that the radical of (F_0, \ldots, F_r) is R_+ . Show that the graded ring inclusion $R_0[F_0, \ldots, F_r] \to R$ is a finite ring map. You may want to use part (1).
- (3) Given a morphism of k-schemes $f: \mathbb{P}^n_k \to \mathbb{P}^m_k$, show that the image is either a point; and if the image is not a point, then $m \geq n$ and the image has dimension n. In the second case, show that the morphism is finite. Hint: we have $f^*\mathcal{O}_{\mathbb{P}^m_k}(1) \cong \mathcal{O}_{\mathbb{P}^n_k}(d)$ for some $d \geq 0$. Break the study into two cases: d = 0 and $d \geq 1$. In this last case show that the polynomials F_0, \ldots, F_m homogeneous of degree d which defines the map generates an ideal which radical is $k[X_0, \ldots, X_n]_+$.
- (4) Identify $\mathbb{P}_k^n = \operatorname{Proj}(k[x_0, \dots, x_n])$. Show that the projection map from $\mathbb{P}_k^n [0:0:\dots:1]$ to \mathbb{P}_k^{n-1} given by the sections $x_0, x_1, \dots x_{n-1} \in \mathcal{O}_{\mathbb{P}_k^n}(1)$ cannot be extended to \mathbb{P}_k^n .

Remark. When the image of a map $\mathbb{P}^n_k \to \mathbb{P}^m_k$ is not a point, the map $\mathbb{P}^n_k \to \mathbb{P}^m_k$ can be written as a composition of (1) a Veronese embedding

²It is enough to assume that R is \mathbb{N} -graded Noetherian.

 $\mathbb{P}^n_k \to \mathbb{P}^N_k$, for some N, (2) an automorphism of \mathbb{P}^N_k , (3) a projection map

$$\mathbb{P}_k^N - V(X_0, \dots, X_{m'}) \to \mathbb{P}_k^{m'}$$

sending $(x_0: \ldots: x_N)$ to $(x_0: \ldots: x_{m'})$, for some $m' \leq m$, (4) a linear embedding $\mathbb{P}_k^{m'} \to \mathbb{P}_k^m$ – here, a linear embedding is map that sends $\underline{x} = (x_0: \ldots: x_{m'})$ to $(x_0: \ldots: x_{m'}: L_{m'+1}(\underline{x}): \ldots: L_m(\underline{x}))$, where the L_j 's are some linear polynomials in m'+1 variable with k-coefficients – and (5) an automorphism of which is a permutation of variables \mathbb{P}_k^m .

Indeed, a map $\mathbb{P}_k^n \to \mathbb{P}_k^m$ is given by homogeneous m+1 polynomials of some fixed degree d, that we denote by F_0, \ldots, F_m . By functoriality of Proj we can express this map (where the first map is given by $X_i \mapsto F_i$)

$$k[X_0,\ldots,X_m] \to (k[X_0,\ldots,X_n])_d \subset k[X_0,\ldots,X_n].$$

So we can factor by a Veronese embedding

$$k[X_0, \dots, X_m] \to k[Y_j]_{j=0}^N \to (k[X_0, \dots, X_n])_d$$

sending X_i to lifts of F_i 's that we denote by G_i . Up to permuting variables of \mathbb{P}^m_k we can suppose that $G_0,\ldots,G_{m'}$ for some $0\leq m'\leq m$ form a basis of $\mathrm{span}(G_0,\ldots,G_m)$ in $\bigoplus_{j=0}^N kY_j$. Using an automorphism of \mathbb{P}^N_k we can suppose that $G_0,\ldots,G_{m'}$ are equal to $Y_0,\ldots,Y_{m'}$ and that $G_{m'+1},\ldots,G_m$ are k-linear combination of the former, say $G_l=L_l(Y_0,\ldots,Y_{m'})$ for $m'+1\leq l\leq m$. Say $k[X_0,\ldots,X_m] \xrightarrow{\varphi} k[Y_0,\ldots,Y_{m'}]$ is given sending $X_i\to Y_i$ if $i\leq m'$ and $X_i\to L_i(Y_0,\ldots,Y_{m'})$. Now, all in all the composition

$$k[X_0, \dots, X_m] \xrightarrow{\text{permutation}} k[X_0, \dots, X_m] \xrightarrow{\varphi} k[Y_0, \dots, Y_{m'}]$$

$$\xrightarrow{\subseteq} k[Y_0, \dots, Y_N] \xrightarrow{\text{automorphism}} k[Y_0, \dots, Y_N] \to (k[X_0, \dots, X_n])_d$$

induces by functoriality of Proj the map we started with.

(5) Explicitly decompose the map $\mathbb{P}^1_k \to \mathbb{P}^2_k$ sending [x:y] to $[x^2:x^2+y^2+xy:2x^2+y^2+xy]$, into the steps mentioned in the previous remark.