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Solutions — week 12

Exercise 1. Homotopy invariance of class groups. Let X be integral, Noe-
therian, separated and regular in codimension 1.

(1) Show that X x Al is also integral, Noetherian, separated and regular
in codimension 1.

(2) Show that the projection 7 to the first component induces a mor-
phism 7*: C1(X) — CI(X x Al).

(3) Show that 7* is an isomorphism.

You may look at 11.6.6 in Hartshorne.

Exercise 2. A Kiinneth formula for class groups. Let X be an integral,
separated, Noetherian and locally factorial scheme. Let n > 1. Show that
P% = X x Py also satisfies the above and that

Cl(X x P2) = CI(X) x Z.
Hint: Consider ¢: IP”;((X) — X xP%. Show that ¢*: Pic(P%) — Pic(P’}((X)) =

Z gives a retraction of the first arrow in the exact sequence (exercise 8, week
9)
Z — Cl(P%) — Cl(A%) =0

coming from the divisor V(Xo) in CI(P%).

Exercise 3. Very ample divisors. Let k be a field. Let S be a N-graded
ring finitely generated in degree 1 with Sy = k. Denote by X = Proj(5).
Suppose that X is integral and Ox (X) = k.1

(1) Show that Ox (1) is k-very ample.

(2) If dim(X) > 1, show that Z Ox), Pic(X) is injective.

Hint: If Ox(1) is torsion, it would imply that Ox is k-very ample.
(3) If X is normal, deduce that if 0 # s € Ox(1)(X), then div(s) €
Cl(X) has infinite order.

Solution key. (1) Denote by sg,...,s, degree 1 elements that Sy = k

generates S as an algebra. Note that k[xo,...,z,] — S sending

x; — s; is a graded surjection and therefore induces a closed immer-

sion ¢: X = Proj(S) — P}. Note that by construction ¢*Opr (1) =
Ox(1). The claim now follows.

(2) If Ox(1) is torsion, meaning that Ox(n) = Ox, it would mean

that Ox is k-very ample. As we suppose that Ox(X) = k, this

IThis condition follows from previous assumptions if k is algebraically closed.
1



would imply that X is a point, a contradiction with the dimension
hypothesis.

(3) Follows from the injection Pic(X) — CI(X) (normal) and the previ-
ous point.

O

Exercise 4. Projective Cone. This exercise is a follow-up to exercise 2,
week 7.

Let S be a N-graded ring finitely generated in degree 1 over Sy. Consider
the N-graded ring S[t] with elements of S keeping their grading and with ¢
placed in degree 1. We call Proj(S[t]) with this grading the projective cone.

(1) Show that this grading comes from the product action

(.US Prig;Hal Pr13)

Gm,s, X5, Spec(S) xg, AISO Spec(S) xg, A}S‘o

where pr;; denote projections, p15 the action on Spec(S) and pi41 the
usual G,,-action on Al

(2) Show that there are natural identifications Vi (¢t) = Proj(S) and
D, (t) = Spec(S). Show furthermore that V(S ) (taken in Proj(S[t]))
identifies to the vertex (see exercise 6, week 10) in Spec(S). We
therefore denote this closed subscheme by v.

(3) Let so, ..., s be generators of S in degree 1. Show that Proj(St])\v
is covered by the open sets D (s;) and that each open set is isomor-
phic to Spec(S(s,)[t]). Deduce that we have a natural map

p: Proj(S[t]) \ v — Proj(5).

(4) Let k be an algebraically closed field, and suppose Sy = k. Sup-
pose that S is integral, Noetherian and normal. Suppose that X =
Proj(S) is of dimension > 1. Show that p* induces an isomorphism
on class groups. Deduce that, if C' = Spec(S) denotes the cone of X
then we have an exact sequence

1-Z—Cl(X)—-ClC)—1

where the first morphism sends 1 to the class of Ox(1), and the
second is the composition of p* and the restriction to C.

Proof. (1) Analyze that degree 1 elements are still of degree 1.

(2) The V. (t) asserion is immediate. For the D, (¢) it amounts to realiz-
ing that degree zero elements of S; are just S. For the last assertion,
note that Proj(Sy[t]) identifies with Spec(Sp).

(3) Note that (sg,...,s,) generates Sy as an ideal. Therefore the claim
on the cover follows. Note that the degree zero part of S[t],, identifies
to S(s;)[£] which gives the claim.

si
(4) We denote by X the projective cone.
We show that p* induces an isomorphism on class groups. The
previous point shows that K(X) = K(X)(T) for T = t/s; for some
1. From this observation, one can actually apply the same proof as
proposition chapter 2, 6.6 in Hartshorne. We give a bit more details.

We use the terminology this proof in what follows. We can separate
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the codimension points of X \ v in two distinct families. Type 1
points will be points such that the image in X is of codimension 1.
Type 2 are points such that the image is generic. These points are in
one to one correspondence with codimension points of A}(( X) along

the dominant map A}(( x) ™ X \ v. We can define 7* exactly as in
proposition 6.6 at the level of divisors, and it gives a surjection to
the subgroup of CI(X \ v) generated by type 1 points. Note that
the exact same proof as the one in proposition 6.6 shows that any
type 2 points are linearly equivalent to type 1 points. This shows
surjectivity. Injectivity also is proven with the exact same argument.

Note also that by exercise 2.3 and the exercise 4, week 10 we have
an exact sequence (where 1 € Z is sent to Ox (1) seen as V, (t), which
is prime because X is integral)

1—Z— Cl(X)—ClC) =1

because as argued above D (t) = Spec(S) = C.

Note that because v € X is at least of codimension 2, we have
Cl(X) = CI(X \v). We can now use that p* induces an isomorphism
to conclude.

U

Exercise 5. Computations of class groups on quadric hypersurfaces. Sup-
pose that k is algebraically closed and char(k) # 2. Let 2 < r < n. Consider
the ring (equipped with the standard grading)

S, = klzo,..., o]/ (23 + -+ 22).

You can assume that this ring is normal. (See Hartshorne, exercise 6.4 for
a proof).

(1) Show that up to a linear change of variable, we can suppose that
S, = k[zo, ..., x,)/(xoxs + 23 + 22).

Denote by C, = Spec(S,;) and X, = Proj(S,).

(2) Show that CI(C;) is cyclic when r # 3
Hint: Consider the prime divisor V(y/(x1)) and the exact sequence
of week 9, exercise 8.

(3) Show that Cl(Cq) = Z/2Z.
Hint: Consider the same exact sequence. See Hartshorne example
6.5.2.

(4) Show that Cl(C3) = Z.
Hint: show that after a suitable change of variable we see that X, =
IP’,lf X ]P’,lg. Then use exercise 1 and the exact sequence of the last point
of the above exercise.

(5) Show that CI1(C,) = 0 of r > 4. In particular, S, is factorial.
Hint: show that (z1) is prime in this case and conclude.

(6) Use the exact sequence of the last point of the above exercise to
compute Cl(X,) for all r > 2.
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Solution key. (1) Note that 23 + 22 = (z¢ + iz1) (7o — iw1) where i € k
is a root of —1 in k. Because char(k) # 2 we can set yo = xo + iz
and y; = x¢ — ix1 two different variables.

(2) If r # 3 note that V(x1) is irreducible. We can then use the same
strategy as in example 6.5.2 in Hartshorne.

(3) See example 6.5.2 in Hartshorne.

(4) Up to a change of variable we recognize the Segre embedding of
]P’/,lC Xk ]P’/,lC in ]P’i. We may work with

Sy = k[zo, 1, x2, 23] /(021 — T223)

Note that in the exact sequence from the previous exercise, 1 € Z
is sent to the Cartier corresponding to pyO(1) ® p30(1) when we
view this in the product. In other words, this is the class of (1,1) €
CI(P} xj P{) = Z & Z. The result follows.
(5) V(1) is principal and prime.
(6) Follows from the exact sequence.
O

Exercise to hand in. Morphisms between projective spaces, again. (Due
16 December, 18:00) Please write your solution in TEX.
Let k be a field. You may find part (1), (2) of the exercise useful while
solving part (3) of the exercise.
(1) (Graded Nakayama) Let R = @& R, be a graded ring and M =
neN

@ M, be a graded R module, J C R, be a homogeneous ideal of
neN

R. If M = JM, then show that M = 0. Recall that R is the

homogeneous ideal & R, of R.
n>0

(2) Let R be a Noetherian ring generated in degree 1 as an Ry-algebra.?
Let Fy, ..., F,, be homogeneous elements of strictly positive degrees
of R. Assume that the radical of (Fp,..., F;)is Ry. Show that the
graded ring inclusion Ry[Fy,...,F,] — R is a finite ring map. You
may want to use part (1).

(3) Given a morphism of k-schemes f: P} — P}", show that the image
is either a point; and if the image is not a point, then m > n and the
image has dimension n. In the second case, show that the morphism
is finite. Hint: we have f*Opm (1) = Opn(d) for some d > 0. Break
the study into two cases: d =0 and d > 1. In this last case show that
the polynomials Fy, ..., F, homogeneous of degree d which defines
the map generates an ideal which radical is k[Xg, ..., Xn]+.

(4) Identify P} = Proj(k[zo,...,2,]). Show that the projection map
from P} —[0:0:---:1]to szl given by the sections zg, z1,...ZTn_1 €
Opr (1) cannot be extended to Py.

Remark. When the image of a map P} — P}’ is not a point, the map
P} — P}* can be written as a composition of (1) a Veronese embedding

2t is enough to assume that R is N-graded Noetherian.



Py — IP’{: , for some N, (2) an automorphism of P&, (3) a projection map
PY — V(Xo,..., X)) — P2,

sending (zg : ... : zn) to (zo : ... : Tyy), for some m' < m, (4) a linear

embedding ]P)ZL/ — P7' — here, a linear embedding is map that sends x =

(oot @Tpy) to (2ot oov Tyt L1 (2) ¢ ... ¢ Lip(2)), where the L;’s are

some linear polynomials in m’ + 1 variable with k-coefficients — and (5) an

automorphism of which is a permutation of variables P]*.

Indeed, a map P} — P;* is given by homogeneous m + 1 polynomials of

some fixed degree d, that we denote by Fy,..., F,,. By functoriality of Proj

we can express this map (where the first map is given by X; — F;)

k[XQ, ce ,Xm] — (k[XQ, ce ,Xn])d - k[Xo, ey Xn]
So we can factor by a Veronese embedding
k[Xo, ..., Xm] = k[Y;]}0 = (k[ X0, .., Xal)y

sending X; to lifts of F;’s that we denote by G;. Up to permuting variables
of P}* we can suppose that Go, ..., G,y for some 0 < m' < m form a basis
of span(Gy,...,Gy) in @;.V:O kY;. Using an automorphism of ]P’év we can
suppose that Gy, ...,G,y are equal to Yy,..., Y, and that Gyy1,...,Gny
are k-linear combination of the former, say G; = L;(Yp, ..., Y) for m'+1 <

I < m. Say k[Xo,...,Xn] LN E[Yo,..., Y] is given sending X; — Y; if
i <m' and X; — L;(Yy, ..., Y, ). Now, all in all the composition

k[Xo,. .., Xp] 2NN 4 X Xon] 5 E[Yo, ..., Y]
S5 k[Y,. .., Yy] SUOmOm, ey Y] = (B[ X, X))y

induces by functoriality of Proj the map we started with.

(5) Explicitly decompose the map P}, — P% sending [z : y] to [2? :
22 +1y? +xy : 202 +y? + 2y, into the steps mentioned in the previous
remark.



