Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercise to hand in. Morphisms between projective spaces, again. Let k be a field. You may find part (1), (2) of the exercise useful while solving part (3) of the exercise.

- (1) (**Graded Nakayama**) Let $R = \bigoplus_{n \in \mathbb{N}} R_n$ be a graded ring and $M = \bigoplus_{n \in \mathbb{N}} M_n$ be a graded R module, $J \subseteq R_+$ be a homogeneous ideal of R. If M = JM, then show that M = 0. Recall that R_+ is the homogeneous ideal $\bigoplus_{n>0} R_n$ of R.
- (2) Let R be a Noetherian ring generated in degree 1 as an R_0 -algebra. Let F_0, \ldots, F_m be homogeneous elements of strictly positive degrees of R. Assume that the radical of (F_0, \ldots, F_r) is R_+ . Show that the graded ring inclusion $R_0[F_0, \ldots, F_r] \to R$ is a finite ring map. You may want to use part (1).
- (3) Given a morphism of k-schemes $f colon \mathbb{P}_k^n \to \mathbb{P}_k^m$, show that the image is either a point; and if the image is not a point, then $m \geq n$ and the image has dimension n. In the second case, show that the morphism is finite. Hint: we have $f^*\mathcal{O}_{\mathbb{P}_k^m}(1) \cong \mathcal{O}_{\mathbb{P}_k^n}(d)$ for some $d \geq 0$. Break the study into two cases: d = 0 and $d \geq 1$. In this last case show that the polynomials F_0, \ldots, F_m homogeneous of degree d which defines the map generates an ideal which radical is $k[X_0, \ldots, X_n]_+$.
- (4) Identify $\mathbb{P}_k^n = \operatorname{Proj}(k[x_0, \dots, x_n])$. Show that the projection map from $\mathbb{P}_k^n [0:0:\dots:1]$ to \mathbb{P}_k^{n-1} given by the sections $x_0, x_1, \dots x_{n-1} \in \mathcal{O}_{\mathbb{P}_k^n}(1)$ cannot be extended to \mathbb{P}_k^n .

Remark. When the image of a map $\mathbb{P}^n_k \to \mathbb{P}^m_k$ is not a point, the map $\mathbb{P}^n_k \to \mathbb{P}^m_k$ can be written as a composition of (1) a Veronese embedding $\mathbb{P}^n_k \to \mathbb{P}^N_k$, for some N, (2) an automorphism of \mathbb{P}^N_k , (3) a projection map

$$\mathbb{P}_k^N - V(X_0, \dots, X_{m'}) \to \mathbb{P}_k^{m'}$$

sending $(x_0: \ldots: x_N)$ to $(x_0: \ldots: x_{m'})$, for some $m' \leq m$, (4) a linear embedding $\mathbb{P}_k^{m'} \to \mathbb{P}_k^m$ – here, a linear embedding is map that sends $\underline{x} = (x_0: \ldots: x_{m'})$ to $(x_0: \ldots: x_{m'}: L_{m'+1}(\underline{x}): \ldots: L_m(\underline{x}))$, where the L_j 's are some linear polynomials in m'+1 variable with k-coefficients – and (5) an automorphism which is a permutation of variables \mathbb{P}_k^m .

Indeed, a map $\mathbb{P}_k^n \to \mathbb{P}_k^m$ is given by homogeneous m+1 polynomials of some fixed degree d, that we denote by F_0, \ldots, F_m . By functoriality of Proj we can express this map (where the first map is given by $X_i \mapsto F_i$)

$$k[X_0,\ldots,X_m] \to (k[X_0,\ldots,X_n])_d \subset k[X_0,\ldots,X_n].$$

So we can factor by a Veronese embedding

$$k[X_0, \dots, X_m] \to k[Y_j]_{j=0}^N \to (k[X_0, \dots, X_n])_d$$

¹It is enough to assume that R is \mathbb{N} -graded Noetherian.

sending X_i to lifts of F_i 's that we denote by G_i . Up to permuting variables of \mathbb{P}^m_k we can suppose that $G_0,\ldots,G_{m'}$ for some $0\leq m'\leq m$ form a basis of $\mathrm{span}(G_0,\ldots,G_m)$ in $\bigoplus_{j=0}^N kY_j$. Using an automorphism of \mathbb{P}^N_k we can suppose that $G_0,\ldots,G_{m'}$ are equal to $Y_0,\ldots,Y_{m'}$ and that $G_{m'+1},\ldots,G_m$ are k-linear combination of the former, say $G_l=L_l(Y_0,\ldots,Y_{m'})$ for $m'+1\leq l\leq m$. Say $k[X_0,\ldots,X_m] \xrightarrow{\varphi} k[Y_0,\ldots,Y_{m'}]$ is given sending $X_i\to Y_i$ if $i\leq m'$ and $X_i\to L_i(Y_0,\ldots,Y_{m'})$. Now, all in all the composition

$$k[X_0, \dots, X_m] \xrightarrow{\text{permutation}} k[X_0, \dots, X_m] \xrightarrow{\varphi} k[Y_0, \dots, Y_{m'}]$$

$$\stackrel{\subseteq}{\longrightarrow} k[Y_0, \dots, Y_N] \xrightarrow{\text{automorphism}} k[Y_0, \dots, Y_N] \to (k[X_0, \dots, X_n])_d$$

induces by functoriality of Proj the map we started with.

- (5) Explicitly decompose the map $\mathbb{P}^1_k \to \mathbb{P}^2_k$ sending [x:y] to $[x^2:x^2+y^2+xy:2x^2+y^2+xy]$, into the steps mentioned in the previous remark.
- Solution key. (1) By contradiction if M is not zero, we see that the minimal degree of non-zero elements of M and JM are different.
 - (2) Because of the Noetherian and the generated in degree 1 hypothesis there is some N with

$$(R_+)^N = \bigoplus_{d \ge N} R_d \subset (F_0, \dots, F_r).$$

Note that also that $\bigoplus_{i=0}^{N-1} R_i$ is an R_0 finite module. So as $R_0[F_0, \ldots, F_r]$ modules we have

$$R = \bigoplus_{i=0}^{N-1} R_i + (F_0, \dots, F_r)$$

concluding using the above version of Nakayama.

(3) If d = 0, then the map is given by $\lambda_0, \ldots, \lambda_m \in k$, and using the construction seen in class, we see that we have a factorization

$$\mathbb{P}_k^n \longrightarrow \mathbb{P}_k^m$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

If $d \geq 1$, we see that the map is induced by functoriality of Proj by

$$k[X_0,\ldots,X_m]\to k[X_0,\ldots,X_n]$$

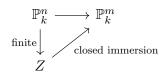
sending $X_i \mapsto F_i$. We can factorize

$$k[X_0, \dots, X_m] \longrightarrow k[X_0, \dots, X_n]$$
surjective inclusion
 $k[F_0, \dots, F_m]$

Note that because the map is globally defined on \mathbb{P}_k^n , $V_+(F_0, \dots, F_m) = \emptyset$, implying that the radical of (F_0, \dots, F_m) is an homogeneous ideal

 $I \subset (X_0, \ldots, X_n)$ with the property that $I_{(X_i)} = k[\frac{X_j}{X_i}]$ for every i. In particular there is some $g \in I$ with $g/X_i^m = 1$, for some $m \geq 1$ because elements of I are of strictly positive degree, implying that $X_i^m \in I$. As the ideal is radical, we see that $X_i \in I$. Because i was arbitrary in this reasoning we get $(X_0, \ldots, X_n) \subset I$, getting $(X_0, \ldots, X_n) = I$. This shows using the preceding point that $k[F_0, \ldots, F_m] \subset k[X_0, \ldots, X_n]$ is finite.

It implies that we have a factorization of the map



concluding.

- (4) If so, as the map would not be constant, then the image would be of dimension n, a contradiction.
- (5) No permutation is needed as the sum of x^2 and $x^2 + y^2 + xy$ is the last one. Say t_0, t_1, t_2 are the coordinates of the polynominal ring surjecting to $k[x^2, y^2, xy]$ in the suggested construction. Let $\varphi \colon k[x,y,z]$ with $x \mapsto t_0$ and $y \mapsto t_1$ and $z \mapsto t_0 + t_1$. Now compose with the automorphism

$$t_0 \mapsto t_0 \quad t_1 \mapsto t_0 + t_1 + t_2 \quad t_2 \mapsto t_2$$

to conclude.