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Exercise to hand in. Morphisms and maps between projective spaces.
Let k be a field, and m < n two positive integers. Consider the two k-algebra
morphisms given by the natural inclusion ¢: k[zo, ..., ¥m] < ko, ..., 2n]
and the natural quotient v: k[xo, ..., zn] = kizo,...,zm]. Let f: AZ‘H —
AZ"”H and g: AZ‘H — AZ“ denote the corresponding morphisms of affine
spaces, and let 7: P} --» P* and ¢: P" --» P} be the corresponding ratio-
nal maps between projective spaces, obtained by functoriality of Proj, see
Exercise 5, week 5.

(1) Assuming that k is algebraically closed so that we can represent
closed points with Cartesian coordinates (ag, . . ., a,,) and (b, . . . , by ),
describe the morphisms f and g at the level of coordinates.

(2) Show that ¢ is a morphism and a closed embedding, and show that 7
is not everywhere defined. Furthermore, show that the locus where
7 is not defined is a copy of ]P’Z*mfl. Lastly, assuming that k is alge-
braically closed so that we can represent closed points with projective
Cartesian coordinates [ag : ... : an] and [bg : ... : by], describe the
two maps at the level of coordinates.

In general, 7 is called projection from an (n — m — 1)-plane. The fibers
over closed points of this rational map (i.e., the closure of the fibers of the
morphism defined on the domain of 7) are copies of IP’Z_m_l. For instance,
if n =2 and m = 1, it is a projection from a the point [0: 0 : 1].

From the point of view of linear systems (cf. Ch. IL.7 in Hartshorne), the
rational map r is defined by a proper subspace of I'(IP}}, O]}Dz(l)), namely by
those global sections that vanish along the linear subspace we are projecting
from. For instance, in the case n = 2 and m = 1, the rational map =
is defined by considering the sections of I'(Py, Opr(1)) corresponding (cf.
Exercise 2) to the lines through the point [0 : 0 : 1].

In the following, IF’Z_m_l will denote the copy of the projective (n —m — 1)-
space along which 7 is not defined.

(3) Show that .*Opr (1) = Opr(1). Hint: you can use Ezercise 1.

(4) Show that O]}Dn(lﬂpz\]}pzfmfl is isomorphic to 7*Opm (1). Hint: you
can use Ezxercise 1.

In the following, we focus on the case n = 2 and m = 1, and we further
assume that k is algebraically closed. We will denote by P = [0: 0 : 1] the
copy of Pi_l_l (i.e., a point) along which 7 is not defined. We let Cy be
the conic with equation 2% — z¢z; = 0, which corresponds to the Veronese
embedding of P} in P? (cf. Exercise 6 in sheet 4)L. Then, we denote by Co
the conic with equation 33(2) — x1x9 = 0. Notice that P € Cy and P ¢ C}.
(5) Show that OPi(l)‘CH is isomorphic to Opt (2), where we identify P}
with C; via the Veronese embedding. Hint: you can use Exercise 1.
'More precisely we ware talking about the one induced by Proj by zo — 22, z1 — 22

and zs — xox1.
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(6) Show that 7|c, : C1 — P} is finite of degree 2. Hint: via isomorphism
given by the Veronese embedding, you can identify mc, with one of
the morphisms in Fxercise 1 in sheet 7.

(7) Show that 7|, : C2\ {P} — P}, extends uniquely to an isomorphism
mle,: C2 — PL. Hint: Define a map Dy (z2) N Cy — D (z0) C Py
that glues with w|c,: Co \ {P} — Pi. Note that you are forced to
send Tt € K(P}) to o =12 € K(C3) which ensures unicity.

(8) Show that Opz (1)|c, is not isomorphic to (7|, )*Op: (1). Hint: you
can use Exercise 1.

The morphism 7|¢, is nothing but the stereographic projection. Indeed, the
fibers of 7 (i.e., the closure of the fibers of the morphism P2\ { P} — P}) are
lines. In the case of C1, these lines intersect C in 2 (by Bézout’s theorem)
distinct points, and these points vary as we vary the target point in IP}C. On
the other hand, in the case of Cs, one of the two points is always P. Thus,
we get a morphism from Cy \ {P} which is an isomorphism with its image,
which in turn extends to the whole C5 (ancient Greeks just settled for a
bijection...).

More generally, if we have a regular conic C with a k-rational point P, the
projection from P always induces and isomorphism with }P’,lc.

Solution key. (1) (Mathis)

Since coordinates (ag, ...., a;,) simply correspond to the maximal
ideal (zg — ag, ..., Ty — a) (and similarly for (b, ...,by,)), it is easy
to see that

f(boy iy b)) = (b0, ey b))y g(ag, ...y am) = (ag, ..., am, 0, ..., 0)
(2) (Mathis)

By Exercise 5 of sheet 4, since ¢ is induced by the quotient map
1, which is surjective on each graded piece, ¢ is a morphism and a
topological closed embedding. On the other hand 7 is not everywhere
defined: the point with coordinates [0 : ... : 0 : 1] would be sent via
7 to [0 :...: 0]. To be more general, letting S = k[zg, ..., ;)T be
the irrelevant ideal, ¢(A1) C p where p is any homogeneous prime
generated by elements of k[x,11,...,2Z,]. Thus 7 is not defined on
these primes, ie the primes p € Proj(k[z+1, ..., ©»]). This is a copy
of IP’Z*mfl in P7. At the level of coordinates, the two maps ¢ and

7 look the same as f and g, namely ¢([ag : ... : am]) = [ao © ... :
am : 0 : ... : 0] (which is a well defined closed point of P}') while
7([bo : ... : bp]) = [bo : ... : byy] (which is only defined on closed points

of D(xzo) U...UD(zp)).
(3) (Mathis)
¢ is the induced map from Proj of ©. By part 2, its open subset
of definition, U, is all of P}*. Then by Exercise 1 of this sheet,
*Opr (1) = Opr(1) since ¢ is homogeneous of degree d = 1 (note
however that some elements of positive degree may map to 0, such
as x; for i > m).
(4) (Mathis)
This is exactly the same as the previous part: since 7 is defined
exactly on U = P} \ Pz_m_l and that it is induced by Proj from the
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homogeneous degree 1 map ¢, we obtain by Exercise 1 of this sheet
that W*O]pzz(l) = Opz(l)’]}pz\?zfme
(5) (Mathis)

Consider the Veronese embedding v : }P’,l§ = C1 — IP’%, and write
this factorisation as v = 11 o . It is a morphism induced by Proj
of a degree 2 homogeneous map so by Exercise 1 once again, we get
that v*Opz2(1) = Op1(2). But this is Op1(2) = ¢*(¢1](Op2(1))) =
gp*(OPz (1)|¢y) as required (ie under the identification P}, = Cy by ¢
we get the result as stated in the exercise).

(6) (Mathis)

We identify this to a morphism F : Pllv — P,lf given by the Veronese
embedding, namely F' = wov using the notation of the previous part.
It suffices to show F is finite of degree 2. F' is induced by Proj for
the composition G o ¢ where G : k[xg, x1,x2] — k[xo,z1] is given
by zg — x%,xl — 3:%,9:2 — xox1. Thus F' is induced by the map
k[xo,x1] — k[xo, 1] given by z¢ — 23, 21 + 22. By Exercise 1 of
sheet 3, F' is thus a finite map of degree 2.

(7) (Léo)

First recall that the map 7|, : C2\{P} — P} could be defined as
the gluing of the following maps on the open cover Dy (z9) NCy —
D (zo)

we k2] — FlE]/(-nz)

T T
1 [EEN L1
xo o

and Dy (x1) NCy — Dy (x1)

m: k2] — k{ﬁ)ﬂ/@—if)

T x
Zo — Zo
1 1

To extend 7|, to C2, we want to define a map of schemes D (x2) N
Cy — Dy (x0). We define it to be induced by the following map of

rings
Z T 2
me kfa] — *[mal/@-g)

Eal N Zo
fy) 2

This map will agree on intersections with 7T|02\ (P} 88 i—g is identified
with % by the relation x% —x179. By gluing all these maps together,

we get an everywhere defined morphism 7| c, 1 Ca— }P’,lg. Moreover,
it is clear that such an extension is unique, as one is forced to define

z0) — 2o
m(2) =%

We now check that this is an isomorphism. We only need to find
some open cover on which the restriction of 7|, is an isomorphism.
As {D4(x1)NC2, D4 (x2)NC>} is a cover of Cy and { D4 (z¢), Dy (x1)}
a cover of IP’,%, it is enough to show that the restriction on these opens
are isomorphisms. These restrictions will correspond to the map n;



and 7o previously defined. This is clear, as they both are injective
and reach all the generators of their respective k—algebras, thanks
to the quotient relation. Thus 7|, : C2 — P} is an isomorphism.
Another solution. (Dév)

We wish to extend the map 7 : Co \Pg — IP’,Ig to all of Cy. At the
ring level, this comes from the following diagram:

k[:ﬂoxl,x%,xﬂ PR B klxo, 1, x2] L> klxo, x1]

where ¢ is the obvious quotient map. The leftmost ring is somewhat
unwieldy, but as far as the Proj construction goes, we can add the
inclusion k[zoz1, 23, 23] — K[z, 1], which is an isomorphism on
Proj, resulting in:

klzo, 1] PR - k[moxl,x%,x%] L B klzo, 1, 2] L> klzo, x1].

Now, upon taking Proj, the situation is best summarized by the
following diagram because Proj(¢) isn’t everywhere defined (and so
the composition involving ¢ might not be so as well):

D, (z0) 2PL\P) — Cy\ P} — P}

I !

P; = Cy > P}

We are interested in extending the composition from Co \ IP’% to IP’,lC
to all of C5. Because the horizontal lines of the leftmost squares are
isomorphisms, this is equivalent to extending the map IP’,Ic \]P’g — IP’,l§
to all of IP,{, This map we wish to extend is, of course, induced by
10qo ¢, which we denote by « for convenience. Explicitly, this map
is given by:

alzg) = 2120 and o)) = z3.

Now consider the map 3 : k[xg, z1] — k[z¢, 21] given by swapping
o and 21, which one can think of (informally) as . Of course, the
map induced by S on Proj is everywhere defined, and because « and
B only differ by ”"multiplication by a scalar” (this is heuristics), one
might hope the following diagram commutes, which would show the
desired result (up to uniqueness, which we discuss at the end of this
point)

P\ P}
l Proj(a)
1 1
Fr o’ B

Indeed, it is clear that up to composition with the inverse of the
isomorphism IP’,I€ — (9, this is the desired extension, and g is clearly
an isomorphism, so that we have extended it as an isomorphism.



But to check this commutativity it suffices to check that
Proj(a): B} \ B = D. (o) — D (1)
and
Proj(8) |, (z0) : D+(0) = D (71)
are the same. But then we have the affine morphisms respectively

given by

0 Lk 0 93120 _n

I i) 1 $O i)

il

for a, but which is therefore equal to
x x x x
K] = k=] = =
T i) T1 i)
the map induced by 5. Note that the extension is necessarily unique
because two morphisms from a reduced scheme to a separated scheme

agreeing on a dense open are equal.

(8) (Léo)
Let vy : IP’,IC — }P’i be the Veronese embedding induced by the
homogeneous map of rings k[xg, z1,x2] — k[s,t] that sends z¢ —
st,x1 — s2,x9 — t2. By exercise 1, we have

O]P’i(l) C» = 1/12*(9[[»% = Opk (2)
and from exercise 5, we have
D(B}, Op1 (2)) = ks, 1]

where k[s, t]o denotes the homogeneous polynomials of degree 2. It
is generated as a k—algebra by three elements, namely s2,t? and st.

On the other hand, as we know from the previous point that 7r]02
is an isomorphism, we have

D(BL, (x|, )" Ops (1)) = D(PL, Oy (1)) = ks, 1]
where kl[s,t]; denotes the homogeneous polynomials of degree 1,
which is generated by s and ¢. It follows that Opz (1) ‘C and (77]02)* Op:1 (1)
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are not isomorphic, since ks, t|; % k[s, t]2.
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