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Exercise to hand in. Morphisms and maps between projective spaces.
Let k be a field, andm < n two positive integers. Consider the two k-algebra
morphisms given by the natural inclusion ϕ : k[x0, . . . , xm] ↪→ k[x0, . . . , xn]

and the natural quotient ψ : k[x0, . . . , xn] ↠ k[x0, . . . , xm]. Let f : An+1
k →

Am+1
k and g : Am+1

k → An+1
k denote the corresponding morphisms of affine

spaces, and let π : Pn
k 99K Pm

k and ι : Pm
k 99K Pn

k be the corresponding ratio-
nal maps between projective spaces, obtained by functoriality of Proj, see
Exercise 5, week 5.

(1) Assuming that k is algebraically closed so that we can represent
closed points with Cartesian coordinates (a0, . . . , am) and (b0, . . . , bn),
describe the morphisms f and g at the level of coordinates.

(2) Show that ι is a morphism and a closed embedding, and show that π
is not everywhere defined. Furthermore, show that the locus where
π is not defined is a copy of Pn−m−1

k . Lastly, assuming that k is alge-
braically closed so that we can represent closed points with projective
Cartesian coordinates [a0 : . . . : am] and [b0 : . . . : bn], describe the
two maps at the level of coordinates.

In general, π is called projection from an (n − m − 1)-plane. The fibers
over closed points of this rational map (i.e., the closure of the fibers of the
morphism defined on the domain of π) are copies of Pn−m−1

k . For instance,
if n = 2 and m = 1, it is a projection from a the point [0 : 0 : 1].
From the point of view of linear systems (cf. Ch. II.7 in Hartshorne), the
rational map π is defined by a proper subspace of Γ(Pn

k ,OPn
k
(1)), namely by

those global sections that vanish along the linear subspace we are projecting
from. For instance, in the case n = 2 and m = 1, the rational map π
is defined by considering the sections of Γ(Pn

k ,OPn
k
(1)) corresponding (cf.

Exercise 2) to the lines through the point [0 : 0 : 1].
In the following, Pn−m−1

k will denote the copy of the projective (n−m− 1)-
space along which π is not defined.

(3) Show that ι∗OPn
k
(1) = OPm

k
(1). Hint: you can use Exercise 1.

(4) Show that OPn(1)|Pn
k\P

n−m−1
k

is isomorphic to π∗OPm
k
(1). Hint: you

can use Exercise 1.

In the following, we focus on the case n = 2 and m = 1, and we further
assume that k is algebraically closed. We will denote by P = [0 : 0 : 1] the
copy of P2−1−1

k (i.e., a point) along which π is not defined. We let C1 be
the conic with equation x22 − x0x1 = 0, which corresponds to the Veronese
embedding of P1

k in P2
k (cf. Exercise 6 in sheet 4)1. Then, we denote by C2

the conic with equation x20 − x1x2 = 0. Notice that P ∈ C2 and P ̸∈ C1.

(5) Show that OP2
k
(1)|C1 is isomorphic to OP1

k
(2), where we identify P1

k

with C1 via the Veronese embedding. Hint: you can use Exercise 1.

1More precisely we ware talking about the one induced by Proj by x0 7→ x2
0, x1 7→ x2

1

and x2 7→ x0x1.

1



2

(6) Show that π|C1 : C1 → P1
k is finite of degree 2. Hint: via isomorphism

given by the Veronese embedding, you can identify πC1 with one of
the morphisms in Exercise 1 in sheet 7.

(7) Show that π|C2 : C2 \{P} → P1
k extends uniquely to an isomorphism

π|C2 : C2 → P1
k. Hint: Define a map D+(x2) ∩ C2 → D+(x0) ⊂ P1

k

that glues with π|C2 : C2 \ {P} → P1
k. Note that you are forced to

send x1
x0

∈ K(P1
k) to

x1
x0

= x0
x2

∈ K(C2) which ensures unicity.

(8) Show that OP2
k
(1)|C2 is not isomorphic to (π|C2)

∗OP1
k
(1). Hint: you

can use Exercise 1.

The morphism π|C2 is nothing but the stereographic projection. Indeed, the
fibers of π (i.e., the closure of the fibers of the morphism P2

k \{P} → P1
k) are

lines. In the case of C1, these lines intersect C1 in 2 (by Bézout’s theorem)
distinct points, and these points vary as we vary the target point in P1

k. On
the other hand, in the case of C2, one of the two points is always P . Thus,
we get a morphism from C2 \ {P} which is an isomorphism with its image,
which in turn extends to the whole C2 (ancient Greeks just settled for a
bijection...).
More generally, if we have a regular conic C with a k-rational point P , the
projection from P always induces and isomorphism with P1

k.

Solution key. (1) (Mathis)
Since coordinates (a0, ...., am) simply correspond to the maximal

ideal (x0 − a0, ..., xm − am) (and similarly for (b0, ..., bn)), it is easy
to see that

f(b0, ..., bn) = (b0, ..., bm), g(a0, ..., am) = (a0, ..., am, 0, ..., 0)

(2) (Mathis)
By Exercise 5 of sheet 4, since ι is induced by the quotient map

ψ, which is surjective on each graded piece, ι is a morphism and a
topological closed embedding. On the other hand π is not everywhere
defined: the point with coordinates [0 : ... : 0 : 1] would be sent via
π to [0 : ... : 0]. To be more general, letting S = k[x0, ..., xm]+ be
the irrelevant ideal, φ(A+) ⊂ p where p is any homogeneous prime
generated by elements of k[xm+1, ..., xn]. Thus π is not defined on
these primes, ie the primes p ∈ Proj(k[xm+1, ..., xn]). This is a copy
of Pn−m−1

k in Pn
k . At the level of coordinates, the two maps ι and

π look the same as f and g, namely ι([a0 : ... : am]) = [a0 : ... :
am : 0 : ... : 0] (which is a well defined closed point of Pn

k) while
π([b0 : ... : bn]) = [b0 : ... : bm] (which is only defined on closed points
of D(x0) ∪ ... ∪D(xm)).

(3) (Mathis)
ι is the induced map from Proj of ψ. By part 2, its open subset

of definition, U , is all of Pm
k . Then by Exercise 1 of this sheet,

ι∗OPn
k
(1) = OPm

k
(1) since ψ is homogeneous of degree d = 1 (note

however that some elements of positive degree may map to 0, such
as xi for i > m).

(4) (Mathis)
This is exactly the same as the previous part: since π is defined

exactly on U = Pn
k \P

n−m−1
k and that it is induced by Proj from the
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homogeneous degree 1 map ϕ, we obtain by Exercise 1 of this sheet
that π∗OPm

k
(1) = OPn

k
(1)|Pn

k\P
n−m−1
k

.

(5) (Mathis)

Consider the Veronese embedding ν : P1
k

∼=−→ C1 ↪→ P2
k, and write

this factorisation as ν = ι1 ◦ φ. It is a morphism induced by Proj
of a degree 2 homogeneous map so by Exercise 1 once again, we get
that ν∗OP2

k
(1) ∼= OP1

k
(2). But this is OP1

k
(2) ∼= φ∗(ι∗1(OP2

k
(1))) =

φ∗(OP2
k
(1)|C1) as required (ie under the identification P1

k
∼= C1 by φ

we get the result as stated in the exercise).
(6) (Mathis)

We identify this to a morphism F : P1
k → P1

k given by the Veronese
embedding, namely F = π◦ν using the notation of the previous part.
It suffices to show F is finite of degree 2. F is induced by Proj for
the composition G ◦ ϕ where G : k[x0, x1, x2] → k[x0, x1] is given
by x0 7→ x20, x1 7→ x21, x2 7→ x0x1. Thus F is induced by the map
k[x0, x1] 7→ k[x0, x1] given by x0 7→ x20, x1 7→ x21. By Exercise 1 of
sheet 3, F is thus a finite map of degree 2.

(7) (Léo)
First recall that the map π|C2

: C2\{P} → P1
k could be defined as

the gluing of the following maps on the open cover D+(x0)∩C2 −→
D+(x0)

η0 : k
[
x1
x0

]
−→ k

[
x1
x0
, x2
x0

]/(
1− x1

x0

x2
x0

)
x1
x0

7−→ x1
x0

and D+(x1) ∩ C2 → D+(x1)

η1 : k
[
x0
x1

]
−→ k

[
x0
x1
, x2
x1

]/(
x2
0

x2
1
− x2

x1

)
x0
x1

7−→ x0
x1

.

To extend π|C2
to C2, we want to define a map of schemes D+(x2)∩

C2 → D+(x0). We define it to be induced by the following map of
rings

η2 : k
[
x1
x0

]
−→ k

[
x0
x2
, x1
x2

]/(
x2
0

x2
2
− x1

x2

)
x1
x0

7−→ x0
x2

.

This map will agree on intersections with π|C2\{P}, as
x0
x2

is identified

with x1
x0

by the relation x20−x1x2. By gluing all these maps together,

we get an everywhere defined morphism π|C2
: C2 → P1

k. Moreover,
it is clear that such an extension is unique, as one is forced to define

η2

(
x0
x1

)
= x0

x2
.

We now check that this is an isomorphism. We only need to find
some open cover on which the restriction of π|C2

is an isomorphism.
As {D+(x1)∩C2, D+(x2)∩C2} is a cover of C2 and {D+(x0), D+(x1)}
a cover of P1

k, it is enough to show that the restriction on these opens
are isomorphisms. These restrictions will correspond to the map η1
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and η2 previously defined. This is clear, as they both are injective
and reach all the generators of their respective k−algebras, thanks
to the quotient relation. Thus π|C2

: C2 → P1
k is an isomorphism.

(7) Another solution. (Dév)
We wish to extend the map π : C2 \ P0

k → P1
k to all of C2. At the

ring level, this comes from the following diagram:

k[x0x1, x
2
0, x

2
1] k[x0, x1, x2] k[x0, x1]

q ϕ

where q is the obvious quotient map. The leftmost ring is somewhat
unwieldy, but as far as the Proj construction goes, we can add the
inclusion k[x0x1, x

2
0, x

2
1] → k[x0, x1], which is an isomorphism on

Proj, resulting in:

k[x0, x1] k[x0x1, x
2
0, x

2
1] k[x0, x1, x2] k[x0, x1].

i q ϕ

Now, upon taking Proj, the situation is best summarized by the
following diagram because Proj(ϕ) isn’t everywhere defined (and so
the composition involving ϕ might not be so as well):

D+(x0) ∼= P1
k \ P0

k C2 \ P0
k P1

k

P1
k C2 P1

k

∼ ∼ π

∼=

We are interested in extending the composition from C2 \ P0
k to P1

k
to all of C2. Because the horizontal lines of the leftmost squares are
isomorphisms, this is equivalent to extending the map P1

k \ P0
k → P1

k

to all of P1
k. This map we wish to extend is, of course, induced by

i ◦ q ◦ ϕ, which we denote by α for convenience. Explicitly, this map
is given by:

α(x0) = x1x0 and α(x1) = x20.

Now consider the map β : k[x0, x1] → k[x0, x1] given by swapping
x0 and x1, which one can think of (informally) as α

x0
. Of course, the

map induced by β on Proj is everywhere defined, and because α and
β only differ by ”multiplication by a scalar” (this is heuristics), one
might hope the following diagram commutes, which would show the
desired result (up to uniqueness, which we discuss at the end of this
point)

P1
k \ P0

k

P1
k P1

k

Proj(α)

Proj(β)

Indeed, it is clear that up to composition with the inverse of the
isomorphism P1

k → C2, this is the desired extension, and β is clearly
an isomorphism, so that we have extended it as an isomorphism.
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But to check this commutativity it suffices to check that

Proj(α) : P1
k \ P0

k = D+(x0) → D+(x1)

and
Proj(β)|D+(x0) : D+(x0) → D+(x1)

are the same. But then we have the affine morphisms respectively
given by

k[
x0
x1

] → k[
x1
x0

]
x0
x1

7→ x1x0
x20

=
x1
x0

for α, but which is therefore equal to

k[
x0
x1

] → k[
x1
x0

]
x0
x1

7→ x1
x0

the map induced by β. Note that the extension is necessarily unique
because two morphisms from a reduced scheme to a separated scheme
agreeing on a dense open are equal.

(8) (Léo)
Let ψ2 : P1

k → P2
k be the Veronese embedding induced by the

homogeneous map of rings k[x0, x1, x2] → k[s, t] that sends x0 7→
st, x1 7→ s2, x2 7→ t2. By exercise 1, we have

OP2
k
(1)

∣∣∣
C2

∼= ψ2
∗OP2

k

∼= OP1
k
(2)

and from exercise 5, we have

Γ(P1
k,OP1

k
(2)) ∼= k[s, t]2

where k[s, t]2 denotes the homogeneous polynomials of degree 2. It
is generated as a k−algebra by three elements, namely s2, t2 and st.

On the other hand, as we know from the previous point that π|C2

is an isomorphism, we have

Γ(P1
k, (π

∣∣
C2
)∗OP1

k
(1)) ∼= Γ(P1

k,OP1
k
(1)) ∼= k[s, t]1

where k[s, t]1 denotes the homogeneous polynomials of degree 1,

which is generated by s and t. It follows thatOP2
k
(1)

∣∣∣
C2

and
(
π|C2

)∗OP1
k
(1)

are not isomorphic, since k[s, t]1 ̸∼= k[s, t]2.
□


