Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque

EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercise to hand in. Morphisms and maps between projective spaces. Let k be a field, and m < n two positive integers. Consider the two k-algebra morphisms given by the natural inclusion $\phi \colon k[x_0, \ldots, x_m] \hookrightarrow k[x_0, \ldots, x_n]$ and the natural quotient $\psi \colon k[x_0, \ldots, x_n] \twoheadrightarrow k[x_0, \ldots, x_m]$. Let $f \colon \mathbb{A}_k^{n+1} \to \mathbb{A}_k^{n+1}$ and $g \colon \mathbb{A}_k^{m+1} \to \mathbb{A}_k^{n+1}$ denote the corresponding morphisms of affine spaces, and let $\pi \colon \mathbb{P}_k^n \dashrightarrow \mathbb{P}_k^m$ and $\iota \colon \mathbb{P}_k^m \dashrightarrow \mathbb{P}_k^n$ be the corresponding rational maps between projective spaces, obtained by functoriality of Proj, see Exercise 5, week 5.

- (1) Assuming that k is algebraically closed so that we can represent closed points with Cartesian coordinates (a_0, \ldots, a_m) and (b_0, \ldots, b_n) , describe the morphisms f and g at the level of coordinates.
- (2) Show that ι is a morphism and a closed embedding, and show that π is not everywhere defined. Furthermore, show that the locus where π is not defined is a copy of \mathbb{P}^{n-m-1}_k . Lastly, assuming that k is algebraically closed so that we can represent closed points with projective Cartesian coordinates $[a_0:\ldots:a_m]$ and $[b_0:\ldots:b_n]$, describe the two maps at the level of coordinates.

In general, π is called *projection from an* (n-m-1)-plane. The fibers over closed points of this rational map (i.e., the closure of the fibers of the morphism defined on the domain of π) are copies of \mathbb{P}^{n-m-1}_k . For instance, if n=2 and m=1, it is a projection from a the point [0:0:1].

From the point of view of linear systems (cf. Ch. II.7 in Hartshorne), the rational map π is defined by a proper subspace of $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(1))$, namely by those global sections that vanish along the linear subspace we are projecting from. For instance, in the case n=2 and m=1, the rational map π is defined by considering the sections of $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(1))$ corresponding (cf. Exercise 2) to the lines through the point [0:0:1].

In the following, \mathbb{P}_k^{n-m-1} will denote the copy of the projective (n-m-1)-space along which π is not defined.

- (3) Show that $\iota^*\mathcal{O}_{\mathbb{P}^n_k}(1) = \mathcal{O}_{\mathbb{P}^m_k}(1)$. Hint: you can use Exercise 1.
- (4) Show that $\mathcal{O}_{\mathbb{P}^n}(1)|_{\mathbb{P}^n_k\setminus\mathbb{P}^n_k}$ is isomorphic to $\pi^*\mathcal{O}_{\mathbb{P}^m_k}(1)$. Hint: you can use Exercise 1.

In the following, we focus on the case n=2 and m=1, and we further assume that k is algebraically closed. We will denote by P=[0:0:1] the copy of \mathbb{P}^{2-1-1}_k (i.e., a point) along which π is not defined. We let C_1 be the conic with equation $x_2^2 - x_0 x_1 = 0$, which corresponds to the Veronese embedding of \mathbb{P}^1_k in \mathbb{P}^2_k (cf. Exercise 6 in sheet 4)¹. Then, we denote by C_2 the conic with equation $x_0^2 - x_1 x_2 = 0$. Notice that $P \in C_2$ and $P \notin C_1$.

(5) Show that $\mathcal{O}_{\mathbb{P}^2_k}(1)|_{C_1}$ is isomorphic to $\mathcal{O}_{\mathbb{P}^1_k}(2)$, where we identify \mathbb{P}^1_k with C_1 via the Veronese embedding. *Hint: you can use Exercise 1.*

¹More precisely we ware talking about the one induced by Proj by $x_0 \mapsto x_0^2$, $x_1 \mapsto x_1^2$ and $x_2 \mapsto x_0 x_1$.

- (6) Show that $\pi|_{C_1}: C_1 \to \mathbb{P}^1_k$ is finite of degree 2. Hint: via isomorphism given by the Veronese embedding, you can identify π_{C_1} with one of the morphisms in Exercise 1 in sheet 7.
- (7) Show that $\pi|_{C_2}: C_2 \setminus \{P\} \to \mathbb{P}^1_k$ extends uniquely to an isomorphism $\pi|_{C_2} \colon C_2 \to \mathbb{P}^1_k$. Hint: Define a map $D_+(x_2) \cap C_2 \to D_+(x_0) \subset \mathbb{P}^1_k$ that glues with $\pi|_{C_2}: C_2 \setminus \{P\} \to \mathbb{P}^1_k$. Note that you are forced to send $\frac{x_1}{x_0} \in K(\mathbb{P}^1_k)$ to $\frac{x_1}{x_0} = \frac{x_0}{x_2} \in K(C_2)$ which ensures unicity. (8) Show that $\mathcal{O}_{\mathbb{P}^2_k}(1)|_{C_2}$ is not isomorphic to $(\pi|_{C_2})^*\mathcal{O}_{\mathbb{P}^1_k}(1)$. Hint: you
- can use Exercise 1.

The morphism $\pi|_{C_2}$ is nothing but the stereographic projection. Indeed, the fibers of π (i.e., the closure of the fibers of the morphism $\mathbb{P}^2_k \setminus \{P\} \to \mathbb{P}^1_k$) are lines. In the case of C_1 , these lines intersect C_1 in 2 (by Bézout's theorem) distinct points, and these points vary as we vary the target point in \mathbb{P}^1_k . On the other hand, in the case of C_2 , one of the two points is always P. Thus, we get a morphism from $C_2 \setminus \{P\}$ which is an isomorphism with its image, which in turn extends to the whole C_2 (ancient Greeks just settled for a bijection...).

More generally, if we have a regular conic C with a k-rational point P, the projection from P always induces and isomorphism with \mathbb{P}^1_k .

(1) (Mathis) Solution key.

> Since coordinates $(a_0, ..., a_m)$ simply correspond to the maximal ideal $(x_0 - a_0, ..., x_m - a_m)$ (and similarly for $(b_0, ..., b_n)$), it is easy to see that

$$f(b_0,...,b_n) = (b_0,...,b_m), \quad g(a_0,...,a_m) = (a_0,...,a_m,0,...,0)$$

(2) (Mathis)

By Exercise 5 of sheet 4, since ι is induced by the quotient map ψ , which is surjective on each graded piece, ι is a morphism and a topological closed embedding. On the other hand π is not everywhere defined: the point with coordinates [0:...:0:1] would be sent via π to [0:...:0]. To be more general, letting $S=k[x_0,...,x_m]^+$ be the irrelevant ideal, $\varphi(A_+) \subset \mathfrak{p}$ where \mathfrak{p} is any homogeneous prime generated by elements of $k[x_{m+1},...,x_n]$. Thus π is not defined on these primes, ie the primes $\mathfrak{p} \in \text{Proj}(k[x_{m+1},...,x_n])$. This is a copy of \mathbb{P}_k^{n-m-1} in \mathbb{P}_k^n . At the level of coordinates, the two maps ι and π look the same as f and g, namely $\iota([a_0:\ldots:a_m])=[a_0:\ldots:a_m]$ $a_m:0:\ldots:0$ (which is a well defined closed point of \mathbb{P}^n_k) while $\pi([b_0:\ldots:b_n])=[b_0:\ldots:b_m]$ (which is only defined on closed points of $D(x_0) \cup ... \cup D(x_m)$.

(3) (Mathis)

 ι is the induced map from Proj of ψ . By part 2, its open subset of definition, U, is all of \mathbb{P}_k^m . Then by Exercise 1 of this sheet, $\iota^*\mathcal{O}_{\mathbb{P}_k^n}(1) = \mathcal{O}_{\mathbb{P}_k^m}(1)$ since ψ is homogeneous of degree d = 1 (note however that some elements of positive degree may map to 0, such as x_i for i > m).

(4) (*Mathis*)

This is exactly the same as the previous part: since π is defined exactly on $U=\mathbb{P}^n_k \setminus \mathbb{P}^{n-m-1}_k$ and that it is induced by Proj from the

homogeneous degree 1 map ϕ , we obtain by Exercise 1 of this sheet that $\pi^* \mathcal{O}_{\mathbb{P}^m_k}(1) = \mathcal{O}_{\mathbb{P}^n_k}(1)|_{\mathbb{P}^n_k \setminus \mathbb{P}^{n-m-1}_k}$.

(5) (Mathis)

Consider the Veronese embedding $\nu: \mathbb{P}_k^1 \xrightarrow{\cong} C_1 \hookrightarrow \mathbb{P}_k^2$, and write this factorisation as $\nu = \iota_1 \circ \varphi$. It is a morphism induced by Proj of a degree 2 homogeneous map so by Exercise 1 once again, we get that $\nu^*\mathcal{O}_{\mathbb{P}_k^2}(1) \cong \mathcal{O}_{\mathbb{P}_k^1}(2)$. But this is $\mathcal{O}_{\mathbb{P}_k^1}(2) \cong \varphi^*(\iota_1^*(\mathcal{O}_{\mathbb{P}_k^2}(1))) = \varphi^*(\mathcal{O}_{\mathbb{P}_k^2}(1)|_{C_1})$ as required (ie under the identification $\mathbb{P}_k^1 \cong C_1$ by φ we get the result as stated in the exercise).

(6) (Mathis)

We identify this to a morphism $F: \mathbb{P}^1_k \to \mathbb{P}^1_k$ given by the Veronese embedding, namely $F = \pi \circ \nu$ using the notation of the previous part. It suffices to show F is finite of degree 2. F is induced by Proj for the composition $G \circ \phi$ where $G: k[x_0, x_1, x_2] \to k[x_0, x_1]$ is given by $x_0 \mapsto x_0^2, x_1 \mapsto x_1^2, x_2 \mapsto x_0 x_1$. Thus F is induced by the map $k[x_0, x_1] \mapsto k[x_0, x_1]$ given by $x_0 \mapsto x_0^2, x_1 \mapsto x_1^2$. By Exercise 1 of sheet 3, F is thus a finite map of degree 2.

(7) (Léo)

First recall that the map $\pi|_{C_2}: C_2 \setminus \{P\} \to \mathbb{P}^1_k$ could be defined as the gluing of the following maps on the open cover $D_+(x_0) \cap C_2 \longrightarrow D_+(x_0)$

$$\eta_0: k \begin{bmatrix} \frac{x_1}{x_0} \end{bmatrix} \longrightarrow k \begin{bmatrix} \frac{x_1}{x_0}, \frac{x_2}{x_0} \end{bmatrix} / \left(1 - \frac{x_1}{x_0} \frac{x_2}{x_0}\right)$$

$$\xrightarrow{\frac{x_1}{x_0}} \longmapsto \frac{x_1}{x_0}$$

and $D_{+}(x_1) \cap C_2 \to D_{+}(x_1)$

$$\eta_1: k\begin{bmatrix} \frac{x_0}{x_1} \end{bmatrix} \longrightarrow k\begin{bmatrix} \frac{x_0}{x_1}, \frac{x_2}{x_1} \end{bmatrix} / \left(\frac{x_0^2}{x_1^2} - \frac{x_2}{x_1}\right) .$$

To extend $\pi|_{C_2}$ to C_2 , we want to define a map of schemes $D_+(x_2) \cap C_2 \to D_+(x_0)$. We define it to be induced by the following map of rings

$$\eta_2: k \left[\frac{x_1}{x_0}\right] \longrightarrow k \left[\frac{x_0}{x_2}, \frac{x_1}{x_2}\right] / \left(\frac{x_0^2}{x_2^2} - \frac{x_1}{x_2}\right) .$$

This map will agree on intersections with $\pi|_{C_2\setminus\{P\}}$, as $\frac{x_0}{x_2}$ is identified with $\frac{x_1}{x_0}$ by the relation $x_0^2 - x_1 x_2$. By gluing all these maps together, we get an everywhere defined morphism $\pi|_{C_2}: C_2 \to \mathbb{P}^1_k$. Moreover, it is clear that such an extension is unique, as one is forced to define $\eta_2\left(\frac{x_0}{x_1}\right) = \frac{x_0}{x_2}$.

We now check that this is an isomorphism. We only need to find some open cover on which the restriction of $\pi|_{C_2}$ is an isomorphism. As $\{D_+(x_1)\cap C_2, D_+(x_2)\cap C_2\}$ is a cover of C_2 and $\{D_+(x_0), D_+(x_1)\}$ a cover of \mathbb{P}^1_k , it is enough to show that the restriction on these opens are isomorphisms. These restrictions will correspond to the map η_1

and η_2 previously defined. This is clear, as they both are injective and reach all the generators of their respective k-algebras, thanks to the quotient relation. Thus $\pi|_{C_2}:C_2\to\mathbb{P}^1_k$ is an isomorphism.

(7) Another solution. $(D\acute{e}v)$

We wish to extend the map $\pi: C_2 \setminus \mathbb{P}^0_k \to \mathbb{P}^1_k$ to all of C_2 . At the ring level, this comes from the following diagram:

$$k[x_0x_1, x_0^2, x_1^2] \xleftarrow{q} k[x_0, x_1, x_2] \xrightarrow{\phi} k[x_0, x_1]$$

where q is the obvious quotient map. The leftmost ring is somewhat unwieldy, but as far as the Proj construction goes, we can add the inclusion $k[x_0x_1, x_0^2, x_1^2] \to k[x_0, x_1]$, which is an isomorphism on Proj, resulting in:

$$k[x_0,x_1] \xleftarrow{i} k[x_0x_1,x_0^2,x_1^2] \xleftarrow{q} k[x_0,x_1,x_2] \xrightarrow{\phi} k[x_0,x_1].$$

Now, upon taking Proj, the situation is best summarized by the following diagram because $\text{Proj}(\phi)$ isn't everywhere defined (and so the composition involving ϕ might not be so as well):

$$D_{+}(x_{0}) \cong \mathbb{P}_{k}^{1} \setminus \mathbb{P}_{k}^{0} \longrightarrow C_{2} \setminus \mathbb{P}_{k}^{0} \longrightarrow \mathbb{P}_{k}^{1}$$

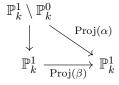
$$\downarrow^{\sim} \qquad \qquad \downarrow^{\pi}$$

$$\mathbb{P}_{k}^{1} \longrightarrow C_{2} \longrightarrow \mathbb{P}_{k}^{1}$$

We are interested in extending the composition from $C_2 \setminus \mathbb{P}^0_k$ to \mathbb{P}^1_k to all of C_2 . Because the horizontal lines of the leftmost squares are isomorphisms, this is equivalent to extending the map $\mathbb{P}^1_k \setminus \mathbb{P}^0_k \to \mathbb{P}^1_k$ to all of \mathbb{P}^1_k . This map we wish to extend is, of course, induced by $i \circ q \circ \phi$, which we denote by α for convenience. Explicitly, this map is given by:

$$\alpha(x_0) = x_1 x_0$$
 and $\alpha(x_1) = x_0^2$.

Now consider the map $\beta: k[x_0, x_1] \to k[x_0, x_1]$ given by swapping x_0 and x_1 , which one can think of (informally) as $\frac{\alpha}{x_0}$. Of course, the map induced by β on Proj is everywhere defined, and because α and β only differ by "multiplication by a scalar" (this is heuristics), one might hope the following diagram commutes, which would show the desired result (up to uniqueness, which we discuss at the end of this point)



Indeed, it is clear that up to composition with the inverse of the isomorphism $\mathbb{P}^1_k \to C_2$, this is the desired extension, and β is clearly an isomorphism, so that we have extended it as an isomorphism.

But to check this commutativity it suffices to check that

$$\operatorname{Proj}(\alpha) \colon \mathbb{P}^1_k \setminus \mathbb{P}^0_k = D_+(x_0) \to D_+(x_1)$$

and

$$Proj(\beta)_{|D_+(x_0)}: D_+(x_0) \to D_+(x_1)$$

are the same. But then we have the affine morphisms respectively given by

$$k\left[\frac{x_0}{x_1}\right] \to k\left[\frac{x_1}{x_0}\right] \quad \frac{x_0}{x_1} \mapsto \frac{x_1 x_0}{x_0^2} = \frac{x_1}{x_0}$$

for α , but which is therefore equal to

$$k[\frac{x_0}{x_1}] \rightarrow k[\frac{x_1}{x_0}] \quad \frac{x_0}{x_1} \mapsto \frac{x_1}{x_0}$$

the map induced by β . Note that the extension is necessarily unique because two morphisms from a reduced scheme to a separated scheme agreeing on a dense open are equal.

(8) $(L\acute{e}o)$

Let $\psi_2: \mathbb{P}^1_k \to \mathbb{P}^2_k$ be the Veronese embedding induced by the homogeneous map of rings $k[x_0, x_1, x_2] \to k[s, t]$ that sends $x_0 \mapsto st, x_1 \mapsto s^2, x_2 \mapsto t^2$. By exercise 1, we have

$$\mathcal{O}_{\mathbb{P}^2_k}(1)\Big|_{C_2} \cong \psi_2^* \mathcal{O}_{\mathbb{P}^2_k} \cong \mathcal{O}_{\mathbb{P}^1_k}(2)$$

and from exercise 5, we have

$$\Gamma(\mathbb{P}^1_k, \mathcal{O}_{\mathbb{P}^1_k}(2)) \cong k[s, t]_2$$

where $k[s,t]_2$ denotes the homogeneous polynomials of degree 2. It is generated as a k-algebra by three elements, namely s^2, t^2 and st.

On the other hand, as we know from the previous point that $\pi|_{C_2}$ is an isomorphism, we have

$$\Gamma(\mathbb{P}^1_k,(\pi\big|_{C_2})^*\mathcal{O}_{\mathbb{P}^1_k}(1))\cong\Gamma(\mathbb{P}^1_k,\mathcal{O}_{\mathbb{P}^1_k}(1))\cong k[s,t]_1$$

where $k[s,t]_1$ denotes the homogeneous polynomials of degree 1, which is generated by s and t. It follows that $\mathcal{O}_{\mathbb{P}^2_k}(1)\Big|_{C_2}$ and $\left(\pi|_{C_2}\right)^*\mathcal{O}_{\mathbb{P}^1_k}(1)$ are not isomorphic, since $k[s,t]_1 \not\cong k[s,t]_2$.