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Exercise to hand in. Ramifications of some self maps of P1. (Due 17
November, 18:00) Please write your solution in TEX.

• We say that a map of schemes f : X → Y is finite locally free if
there is a covering of Y by open affines Spec(Ai), with preimage
Spec(Bi), such that induced map Ai → Bi turns Bi into a finite free
Ai-module. When for every i the dimension of Bi is the same, say
d, we say that the map is finite locally free of degree d.

• We say that a finite locally free map X → Y is ramified at y ∈ Y if
the geometric fiber Xy is not reduced.

(1) Show that the self map cn from week 7, exercise 1 is finite locally
free of degree n and identify it’s ramification points.

(2) Let R be a ring. Show that the map induced on P1
R = Proj(R[x, y])

by the R-algebra self map x 7→ ax + by and y 7→ cx + dy is an
automorphism if ad− bc ∈ R×. We denote this map m(a,b,c,d).

If R = C and if we identify P1
C(C) = C ∪ ∞, how is this map

expressed on C-rational points?
(3) Consider the composition

P1
C

cn−→ P1
C

m(1,−1,1,1)−−−−−−−→ P1
C

c2−→ P1
C.

Show it’s finite locally free of fixed degree. What is the degree?
What are the ramification points? Compute scheme theoretic fibers
at all ramification points.

Solution key. (1) (Kangyeon) The preimage ofD+(x) ∼= Spec(C[x, y](x)) ∼=
Spec(C[t]) (by identifying t = y/x) under cn is D+(x

n) = D+(x) =
Spec(C[s]) and the same for y. The induced morphism of C-algebras
C[t] → C[s] is given by t 7→ sn. Thus C[s] is freely generated by
1, s, · · · , sn−1 as C[t]-module, and the same for y. Thus cn is locally
finite free of degree n.

Let p ∈ P1
C be a point. If p ∈ D+(x) ∼= Spec(C[t]), the

fiber is locally of the form Spec(C[s] ⊗C[t]
¯k(p)). Since p is a closed

point the form (t − λ) or the generic point (0), we compute each
geometric fiber. In the first case, k(p) = C[t]/(t− λ) ∼= C is already
algebraically closed, hence the tensor product is C[s]/(sn − λ). If
λ = 0 this is not reduced, and otherwise it is reduced, as sn − λ =∏n−1

k=0(s − n
√
|λ|e2πik/n) is radical. For the generic point, k(p) =

Frac(C[t]) = C(t), hence the tensor product is C[s] ⊗C[t]
¯C(t) =

(C[t])[u]/(un − t) ⊗C[t]
¯C(t) = ¯C(t)[u]/(un − t) = ¯C(t), which is

reduced. Similarly we can deal with D+(y), and since reducedness
can be checked at the level of stalks, we see that the only ramified
points correspond to λ = 0 in both cases. In other identifications,
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they correspond to the prime ideals (x) and (y), or the points [1 :
0] = 0 and [0 : 1] = ∞.

(2) (Kangyeon) The R-algebra map is homogeneous of degree 1, and
admits inverse if u := ad− bc ∈ R×. Indeed, x 7→ u−1(dx− by), y 7→
u−1(−cx+ay) is the inverse (which is also homogeneous of degree 1),
as one can easily check by computation. Thus this surjective map
induces a morphism P1

R → P1
R by the functoriality of Proj, which

has inverse induced by the inverse described above. Hence this is an
automorphism.

(3) (Mathis) We first show the following technical lemmas.
f : X → Y is finite locally free of rank d iff all induced maps of

stalks OY,f(p) → OX,p make OX,p into a free OY,f(p) module of rank
d

Proof. The =⇒ direction is trivial since localisations of free modules
are free. For the converse, first note that f is finite locally free of
rank d iff each y ∈ Y has an affine open neighborhood U such that
f−1(U) → U is finite locally free of rank d. Thus wlog we may
assume X = Spec(A) and Y = Spec(B). Consider f(p) ∈ Y . We
have that Bf(p) → Ap makes Ap into a free rank d module over

Bf(p). Consider a basis {ai/bi}di=1 ⊂ Ap over Bf(p). Then if we

let g =
∏d

i=1 bi, we get that Ag is free of rank d over S−1B with

S = f#({1, g, g2, ...}). Thus if we consider U ⊂ Y corresponding to
S−1B about p, preimage contains D(g), and thus up to shrinking we
may assume it is contained in D(g). We conclude that f : X → Y
is finite locally free of rank d. □

Let f : X → Y and g : Y → Z be finite locally free maps of rank
m,n respectively. Then g ◦ f is finite locally free of rank mn.

Proof. Follows directly from the previous lemma: a free module C of
rank m on B, which is itself a free module of rank n on A, will be a
free module of rankmn on A (one can also just check multiplicativity
at the level of residue field extensions).

□

Note that

(
1 −1
1 1

)
∈ GL2(C). We can now use that cn is fi-

nite locally free of rank n, c2 finite locally free of rank 2, and that
m(1,−1,1,1) is finite locally free of rank 1 (since it is induced by au-
tomorphisms of rings), to deduce that c2 ◦ m(1,−1,1,1) ◦ cn is finite
locally free of rank 2n.

Now to compute fibers of f = c2 ◦m(1,−1,1,1) ◦ cn we can note that
(writing m = m(1,−1,1,1) for short)

Spec(C)×f,P1
C
P1
C
∼= ((P1

C ×c2,P1
C
Spec(C))×m,P1

C
P1
C)×cn,P1

C
P1
C

Thus since m is an automorphism, we can note that the points that
ramify will be c2 ◦m([0, 1]), c2 ◦m([1, 0]) (since those ramify under
cn) as well [0, 1], [1, 0] (since those ramify under c2). In C ∪∞ this
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corresponds respectively to the points(
0− 1

0 + 1

)2

= (−1)2 = 1,

(
∞− 1

∞+ 1

)2

= (1)2 = 1, 0, ∞

where we have slightly abused of notation. We should expect the
generic point to be unramified. Indeed we can explicitly compute
its fiber using the same computation as in exercise 1: pulling back
through c2 gives Spec(C(z)) ∪ Spec(C(z)). Pulling back through m
does not change the fiber structure. Finally pulling back through cn
gives

⊔2n
i=1 Spec(C(z)).

There are thus only three ramified points: 0, 1,∞. It remains to
compute their fibers. The fibers of 0 and∞ under c2 are Spec(C[x]/(x2))
up to isomorphism. We can further pull back throughm and still pre-
serve this fiber structure up to isomorphism. Now since (c2◦m)−1(0)
and (c2 ◦m)−1(∞) do not contain ramified points of cn, we can pull
back through cn to get some λ ̸= 0 such that (P1

C)0,f is given by Spec
of

C[x]/((x− λ)2)⊗C[x] C[x1/n] ∼= C[x, y]/((x− λ)2, yn − x) ∼= C[y]/((yn − λ)2)

(note how this still only has length 2). A similar thing thing holds
for (P1

C)∞,f

For 1, this is a non ramified point of c2 and thus its fiber is
Spec(C[x]/(x2 − 1)) ∼= Spec(C) ∪ Spec(C), corresponding to −1 and
1. Pulling further back through m preserves the fiber structure, with
each copy of Spec(C) corresponding to 0 and∞. Finally pulling back
through cn yields Spec(C[x]/(xn) ∪ Spec(C[x]/(xn)).

(3) The following calculation of fibers is more explicit. (Léo)
Let the composition above be written φ : P1

C → P1
C, and the map

of rings from which it is induced be φ̃ : C[x, y] → C[x, y] sending
x 7→ (xn − yn)2 and y 7→ (xn + yn)2.

We now want to find the ramification points. Let p = (βx−αy) be
fixed and non-the zero ideal. Recall that φ−1(V+(p)) = V+(φ̃(p))

1.
The following commutative square below is a pullback

V+(φ̃(p)) P1
C

V+(p) P1
C

φ

Moreover, one has that V+(p) ∼= Spec(k(p)). It is therefore enough
to find out if V+(φ̃(p)) is reduced to determine wether p is a ramifi-
cation point or not, as one will have

(
P1
C
)
p
∼= V+(φ̃(p)).

• α ̸= β : Moreover we assume that α, β ̸= 0. Without loss of
generality, we may assume β = 1 and thus write p = (x− αy).
We first show the following result.
Claim. One has V+(φ̃(p)) ⊆ D+(x).

1where φ̃(p)) denotes the ideal generated by the image.
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Proof. Let q ∈ V+(φ̃(p)) ∩ V+(x), i.e one has

x, φ̃(x− αy) = (1− α)(x2n + y2n)− 2(1 + α)xnyn ∈ q.

But this implies that y2n belongs to q and since the latter is
prime, that y ∈ q. Since q does not contain the irrelevant ideal,
we get a contradiction, and thus that the intersection must be
empty.

□
Recall that

V+(φ̃(p)) ∼= Proj
(
C[x, y]

/
(φ̃(x− αy))

)
as schemes. Since one also hasD+(x) ∼= Spec

(
C
[ y
x

]) ∼= Spec(C[t])
with t sent to y

x , we get that

V+(φ̃(p)) ∼= Spec

(
C[t]

/(
t2n − 21+α

1−α t
n + 1

))
.

Using the Chinese remainder theorem, one can rewrite

C[t]
/(

t2n − 21+α
1−α t

n + 1
)
= C[t]

/(
tn − (1+

√
α)

2

1−α

)
× C[t]

/(
tn − (1−

√
α)

2

1−α

)
which will be reduced, as one can use the Chinese Remainder
theorem to get that both rings are isomorphic to a product of
multiple copies of C. It follows that p = (βx − αy) is not a
ramification point.

• α = β : We have φ̃(x− y) = −4xnyn. Once again, one has

V+(x
nyn) ∩ V+(x+ y) = ∅

i.e V+(x
nyn) ⊆ D+(x+ y). Let t := x−y

x+y . We have

D+(x+ y) ∼= Spec
(
C[x, y](x+y)

) ∼= Spec (C[t]) .

With this identification, one has

V+(x
nyn) ∼= Spec

(
C[t]

/
(1 + t)n(1− t)n

)
.

As one has

C[t]
/
(1 + t)n(1− t)n ∼= C[t]

/
(1 + t)n × C[t]

/
(1− t)n

which is not reduced, we get that (x−y) is a ramification point,
whose fiber is(

P1
C
)
(x−y)

∼= Spec
(
C[t]

/
(1 + t)n

)⊔
Spec(

(
C[t]

/
(1− t)n

)
.

• α = 0: We only do this case, as the case β = 0 is symmet-
ric and will only result in a change of sign. Again, one has

V+

(
(xn − yn)2

)
∩ V+(x) = ∅, we once again have

V+

(
(xn − yn)2

)
⊆ D+(x).



5

This gives us(
P1
C
)
(x)

= V+

(
(xn − yn)2

)
∼= Spec

(
C[t]

/
(1− tn)2

)
and thus that (x) is a ramification point, as the affine scheme
in the RHS is not reduced.

□


