Exercise to hand in. Induced map on Spec (Due Sunday October 29, 18:00)

Please write your solution in TEX.

Let $f: R \to S$ be a ring homomorphism. Denote the induced map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ by $f^{\#}$.

- (1) Show that the closure of the image of $f^{\#}$ is $V(\ker(f))$. Find a ring theoretic property of f which is equivalent to the denseness of image of $f^{\#}$ in $\operatorname{Spec}(R)$.
- (2) Find an example of a ring map where the image of the induced map on Spec is not closed. Find an example where the image is closed.
- (3) Take $\mathfrak{q} \in \operatorname{Spec}(R)$. Set W to be the multiplicative subset $R \setminus \mathfrak{q}$. Prove that $(f^{\#})^{-1}(\{\mathfrak{q}\})$, as a set, is the underlying topological space of $\operatorname{Spec}(f(W)^{-1}(S/\mathfrak{q}S))$. Prove that

$$f(W)^{-1}(S/\mathfrak{q}S)\cong (\frac{R}{\mathfrak{q}})_{\mathfrak{q}}\otimes_R S$$

as rings. Here $\mathfrak{q}S$ denotes the ideal of S generated by $f(\mathfrak{q})$.

- (4) Let $\iota: \mathbb{Z} \to \mathbb{Z}[X]$ be the inclusion map. Given a prime ideal $p\mathbb{Z}$ of \mathbb{Z} , describe $(\iota^{\#})^{-1}(p\mathbb{Z})$.
- (5) Denote the algebraic closure of \mathbb{Q} by $\overline{\mathbb{Q}}$. Let $\iota : \mathbb{Q}[X] \to \overline{\mathbb{Q}}[X]$ be the inclusion. Given an irreducible polynomial $g \in \mathbb{Q}[X]$, describe $(\iota^{\#})^{-1}(g\mathbb{Q}[X])$. Recall that for an irreducible polynomial g, the ideal $g\mathbb{Q}[X]$ is a prime ideal.
- (6) Explain how Hilbert's Nullstellensatz gives a set-theoretic injection of \mathbb{C}^2 onto the closed points of $T = \operatorname{Spec}(\mathbb{C}[X,Y])$. Then, let $g \in \mathbb{C}[X,Y]$ be given. Show that there is a finite set of points $T' \subseteq T$, such that the closed points in the closure of T' in T are exactly the zeroes of g in $\mathbb{C}^2 \subseteq T$. Describe the smallest such T' in terms of g.

Solution key. 1. First we check $\overline{\mathrm{Im}(f^{\#})(\mathrm{Spec}(S))} = \mathrm{V}(\ker(f))$. For a prime ideal q of S, $f^{-1}(q)$ contains $\ker(f)$. So, $\mathrm{Im}(f^{\#})(\mathrm{Spec}(S)) \subseteq \mathrm{V}(\ker(f))$. Since $\mathrm{V}(\ker(f))$ is a closed subset, it is enough to show that the closure contains $\mathrm{V}(\ker(f))$. Consider $q \in \mathrm{V}(\ker(f))$ and a basic affine open neighborhood $\mathrm{D}(g)$ of q. Since q is prime, no powers of g is in q. So no powers of g is in g. In particular, no power of g is zero. Thus S[1/f(g)], the ring obtained by inverting powers of g, is nonzero. So the induced map $R[1/g] \to S[1/f(g)]$ is nonzero. So the image of g contains at least a point in $\mathrm{D}(g)$. This proves g is in the closure of the image and thus our desired assertion.

We conclude that the image is dense if and only if $V(\ker(f))$ is $\operatorname{Spec}(R)$. This happens if and only if $\ker(f)$ is contained in every prime ideal of R and thus in the intersection of all the prime ideals of R. Recall that the

intersection of all the prime ideals of R is the nilradical of R.

- 2. The image is not closed for the inclusion $\mathbb{C}[X] \to \mathbb{C}(X)$: Inclusion of the polynomial ring into its fraction field. The image is closed for the quotient map $\mathbb{C}[X] \to \mathbb{C}[X]/(x)$. Suggestions: Draw a diagram of $\mathrm{Spec}(\mathbb{C}[X])$ and the then the image of the maps induced by the two maps above.
- 3. The prime ideals of $\operatorname{Spec}(f(W)^{-1}(S/qS))$ are exactly those prime ideals of S which contain qS but are disjoint from f(W) as subsets of S. Thus the inverse image of a prime ideal in $\operatorname{Spec}(f(W)^{-1}(S/qS)) \subseteq \operatorname{Spec}(S)$ under f, must contain q but cannot intersect $R \setminus q$. So the inverse image has to be q. This proves $\operatorname{Spec}(f(W)^{-1}(S/qS)) \subseteq (f^{\#})^{-1}(\{q\})$. Conversely, note that any prime ideal in $(f^{\#})^{-1}(\{q\})$ must contain qS and cannot intersect f(W). The isomorphism follows from identies on tensor product relating localisation and quotients.
- 4. Using the description above, $(\iota^{\#})^{-1}(p\mathbb{Z})$ is

$$\operatorname{Spec}((\mathbb{Z}/p\mathbb{Z})_p[X]) \subseteq \operatorname{Spec}(\mathbb{Z}[X]).$$

When $p\mathbb{Z}$ is the zero ideal, $(\mathbb{Z}/p\mathbb{Z})_p[X] \cong \mathbb{Q}[X]$. Thus $(\iota^{\#})^{-1}(p\mathbb{Z})$ correspond to the prime ideals of $\mathbb{Q}[X]$. Since $\mathbb{Q}[X]$ is a principal ideal domain, the prime ideals are generated by irreducible polynomials. Thus $(\iota^{\#})^{-1}(p\mathbb{Z})$, in this case consist of the the prime ideals generated by irreducible polynomials of $\mathbb{Z}[X]$. When $p\mathbb{Z}$ is nonzero, the inverse image is the set of all prime ideals (p,g), where the image of q is an irreducible polynomial in $\mathbb{F}_p[X]$.

- 5. If g is zero, the inverse image is the zero prime ideal. If g is non-zero, the inverse image consists of the prime ideals $(X \alpha)\overline{\mathbb{Q}}[X]$, where α belongs to the roots of g in $\overline{\mathbb{Q}}$.
- 6. Hilbert's Nullstellensatz implies that the maximal ideals of $\mathbb{C}[X,Y]$ are of the form (X-a,Y-b), where $(a,b)\in\mathbb{C}^2$. Recall that the closed points of $\mathrm{Spec}(\mathbb{C}[X,Y])$ are the maximal ideals. Thus we get the desired set theoretic injection onto the closed points.

When g is zero, take T' to be the singletone set consisting of the zero prime ideal. Assume g is nonzero. Note that g(a,b)=0 if and only if $g \in (X-a,Y-b)$. Let g_1,g_2,\ldots,g_n be the non-unit irreducible factors of g. Let T' be the set of prime ideals (g_i) , where i is between 1 and n. We claim that T' is desired smallest set. The closure of T' is the union of the closures of the singletone sets (g_i) . So the closed points in the closure of T' is the union of the set of zeroes of g_i 's in \mathbb{C}^2 . The last union is precisely the set of zeroes of g in \mathbb{C}^2 . Since the ideals (g_i) are radical, their zerosets are distinct by Nullstellensatz. So the closure of a proper subset of T' is strictly smaller. Since the prime ideals of $\mathbb{C}[X,Y]$ are maximal ideals or generated by an irreducible polynomial -possibly zero, we can conclude that T' is the unique smallest desired subset. Indeed such a set has to contain the generic point of each irreducible component of V(g).