SAMPLE QUESTIONS FOR THE MODERN ALGEBRAIC GEOMETRY EXAM - FALL SEMESTER OF 2020/2021

(PRELIMINARY VERSION)

ZSOLT PATAKFALVI

- (1) Let $X = \operatorname{Spec} A$ be a Noetherian integral scheme, and let M be an A-module. Show that M is torsion-free (i.e., $0 \neq a \in A, 0 \neq m \in M \Rightarrow am \neq 0$) if and only if for every closed subset $Z \subsetneq X$ we have $\Gamma_Z\left(X,\widetilde{M}\right) = 0$.
- (2) For a field k, for $X = \operatorname{Spec} k[x,y]$ and for $m = (x,y) \subseteq k[x,y]$ find the largest open set $U \subseteq X$ such that $\widetilde{m}|_U$ is locally free. Prove your claim.
- (3) For an algebraically closed field k, consider the k-algebra homomorphism $\lambda: k[t] \to k[x,y,z]$ given by $t \mapsto xyz$. Which are the non-irreducible fibers of the morphism $f: \mathbb{A}^3 \to \mathbb{A}^1$ induced by λ ? How many components do these fibers have? (If you need to check that a given polynomial is irreducible, explain it in the proof)
- (4) Let $F: \mathbb{F}_p[t] \to \mathbb{F}_p\left[\sqrt[p]{t}\right]$ be the Fobenius (ring) homomorphism given by $t \mapsto t$ and let $f: X \to Y$ be the induced morphism of schemes. Show that $X \times_Y X$ is not reduced.
- (5) (i) If $S = \bigoplus_{i \in \mathbb{N}} S_i$ is a graded ring generated by the degree 1 homogeneous part S_1 . Let M be a graded module over S, let $p \subsetneq S_+$ be a homogeneous prime ideal of S and let $f \in S_1 \setminus p$. Show that $m \mapsto fm$ and $m \mapsto \frac{m}{f}$ induces isomorphism $(M_p)_i \to (M_p)_{i+1}$ of $(R_p)_0$ modules for every $i \in \mathbb{Z}$.
 - (ii) Show that if

$$0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$$

is an exact sequence of graded modules over S, then the induced sequence of sheaves on $S = \operatorname{Proj} S$

$$0 \longrightarrow \widetilde{M} \longrightarrow \widetilde{N} \longrightarrow \widetilde{L} \longrightarrow 0$$

is exact.