EPFL - Fall 2023 Prof. Zs. Patakfalvi
Rings and modules Exercises
Sheet 1 - Solutions

Exercise 1. Answer the following questions. Provide an explanation by a proof or a coun-
terexample.
(1) Suppose that R is a Noetherian ring. Let S C R be a subring. Is it true that S is
Noetherian?
(2) Let R be a commutative Artinian ring. Is every prime ideal of R maximal?

Proof. (1) It is not necessarily true that S is Noetherian. A counterexample is given by an
inclusion of any non-Noetherian integral domain (e.g., k[xy,xo,...]) into its fraction
field (clearly Noetherian).

(2) Let p be a prime ideal of R. Since there exists a correspondence between ideals in R/p
and ideals in R containing p, we know that 2 / p is an Artinian integral domain. Let
x € R/p be a non-zero element. The sequence of ideals ((2")),»¢ is decreasing and
hence by Artinianity it stabilizes, which means that 2" = uz"™*" for some u € R /p and
n € N. Since R/p is a domain, and we have 2" (1 — uz) = 0 and thus uz = 1, which
proves that x is invertible. So every non-zero element of R/ p is invertible, and thus

R/p is a field. Therefore p is maximal inside R.
O

Exercise 2. (1) A simple module is a module that has only trivial submodules. Show that
any simple module is cyclic.
(2) Let m € M be an element. We define the annihilator of m by

Anng(m)={reR|rm=0}

We only write Ann(m) if it the base ring is clear from the context.
Show that Ann(m) is a left ideal of R and that the cyclic module Rm is isomorphic
to the module R/Ann(m)-

(3) Let M be a simple k[z]-module. Prove that M = k?[l“]/(f) where f is an irreducible
polynomial in k[x] and (f) denotes the ideal generated by f.

(4) Which of the following Z-modules are simple?

(a) Z
(b) Z[6Z
(c) ZJTZ
Proof. (1) If M =0 then M = R -0 and the assertion is true. Otherwise let m € M \ {0}.
Then Rm is a left submodule of M. Since Rm # 0 and M is simple we conclude that
Rm = M.

(2) We define a homomorphism of left R-modulues ®,, : kR = Rm by ®,,(r) = rm. The
kernel of ®,, is by definition the set of elements » € R such that rm = 0, i.e., ker(®,,) =
Ann(m). This proves that Ann(m) is a left ideal of R and that Rm = R/Ann(m)-

(3) By (1) and (2), M is isomorphic to k[x]/Ann(m) for some m € M. Let Ann(m) = (f)
for some f € k[z] (recall that k[x] is a PID); we need to prove that f is irreducible.

To this end let g divide f, then k[z]- (g + (f)) is a left k[z]-submodule of k[z] / (f)-
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Since by assumption M = k[ﬁ]/(f) is simple we must have that k[z]- (g + (f)) =0
or k[z]- (g + (f)) = k[f]/(f), which implies that either f divides g or (f,g) = (1).
As g divides f, this means that either g = f or ¢ = 1 (up to multiplication by a unit).
Thus f is irreducible.

(4) Notice that the Z-submodules of Z/nZ are exactly the ideals of Z/nZ seen as a ring.
Hence Z/nZ is a simple Z-module if and only if it has no non-zero proper ideals. As
you know a commutative ring has no non-zero proper ideals if and only if it is a field,

in particular only (c) gives a simple Z-module.
0]

Exercise 3. Let R be a ring, M a left R-module and m € M.

(1) In the previous exercise you proved that Ann(m) is a left ideal of R. Give an example
to show that Ann(m) might not be a two sided ideal of R.
(2) Define the annihilator of M to be

Amp(M)={reR|rM=0}={reR|¥YmeM:rm=0}
Prove that Ann(M) is a two sided ideal of R.

(3) Let ¢ : S = R be a surjective homomorphism of rings and M a module over S. Show
that we can endow an R-module structure given by r -m = s+ m for any s € (b_l(r)
and m € M if and only if ker ¢ € Ann(M).

(4) For example, let S = k[z] and M = k[z] (with the standard action). Then M/ f°M
is a k[2]/(f*)-module for any 0 # f € k[z]. In addition, if f is not invertible, then
M/ f*M is not a k[z]/(f)-module.

Proof. (1) We need to consider a non-commutative ring R to create an example, since left
and right ideals coincide in commutative rings. The first example of a non-commutative
ring R that comes to mind will suffice. That is, let R be the ring of 2 X 2 matrices over
some field k. To keep things as simple as possible we consider R as a left R-module by

e . o 0
left multiplication. Let 0 # a € k, we will calculate the annihilator of m, = [0 g}

Hence we are interested in solving the matrix equation

[bu b12] _ [0 a] _ [0 0]

bar  boy 00 0 0f
The solutions are exactly the matrices with by, = by; = 0, and thus Ann(m,) =
{ 8 Z;] | b,c € k } This is not a right ideal of R because multiplying such an
element from the right with an arbitrary matrix in R does in general not give a matrix

of this form. For example multiplication from the right with |:(1) 8] gives b in the top

left corner of the matrix, so this top left entry is non-zero whenever b is.

(2) Let r,s € Ann(M) and [ € R. Then I(r + s)m = I(rm + sm) = 0 and (r + s)lm =
r(lm) + s(lm) = 0.

(3) Assume first ker(¢) € Ann(M), and let » € R, m € M and s, s' € ¢~ (r). Then
s—s €ker(e), so by assumption

0=(s—s)m=sm—sm
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so that sm = s'm. Thus, at least the map R X M — M sending (r,m) — r-m is
well-defined. The module axioms are then straight-forward to see (one could also argue
as in the proof of Exercice 3.2) Now assume that the action is well defined. Then in

particular for any s € ker(¢) = ¢~ '(0) and m € M,
sm =0

In other words ker(¢) € Ann(M).
(4) Clearly, f> € Ann(M/f>M), so by the previous point we get that M/f>M is an
k[2]/(f*)-module via the above procedure.
Assume now that f # 0 is not invertible, and assume by contradiction that M/ f2M
in an R/(f)-module via the above procedure. Then by the previous point, f €
Ann(M/f>M), so in particular

f=f-1€fM=[Ha]
so there exists ¢ € k[z] such that ¢f = f. Since R is a domain, we get
cf=1
which contradicts the fact that f is not invertible.

Exercise 4. Let I € R be an ideal.
(1) Show that

IM={ irimi

i=1
is an R-submodule of M.
(2) Show that M / IMisan R / J-module with scalar multiplication given by

(x+1)(y+IM)=xy+IM.

1Sd€Z, TZ'EI7 mlEM}

From now, let R = k[x,y], let M be the R-submodule generated by the element (z,y) €
R® R = N, and let I be the maximal ideal I = Rx + Ry of R. Note that R/_] = k via
the homomorphism R — £ that evaluates x and y to 0.

3) Show that M € IN and hence [ (N/M) = IN/M as R-submodules of N/M.
4) Show that L/[L is a two dimensional vector-space over k, where L = N/M
[Hint: use point (3) and the third isomorphism theorem)|

(
(

CNOW, we change a little bit our setup, and we redefine M: )

(5) Let M be the submodule generated by the two elements (z,0) and (0,y) of R& R = N.
Is N/ar=R?
[Hint: look at Ann (N /7).

Proof. (1) We need to prove that M is an additive subgroup and that it is stable under
multiplication by elements of R. By comparing definitions (i.e. that of IM above and
that of a subgroup generated by a subset), IM is in fact the subgroup of M generated



by the set {rm | r € I, m € M}, so IM is an additive subgroup of M. On the other
hand, we have for all » € R that

d

r-(IM) ={ Zz‘rgmi

i=1

el

as [ is a left ideal. Thus IM <p M.

One can prove this by simple (but tedious) verification of well-definedness and of all
the axioms. But let us give a more conceptual proof. An abelian group M has a left
R-module structure if and only if we have a ring morphism A : R — Ends, (M) (where
the multiplication law on the latter is given by composition): if M is an R-module
then we can define A\(r) € Ends,(M) to be left multiplication by r, and conversely
if A : R — Endy,(M) is a ring morphism then r.m := A(r)(m) endows M with the
structure of an R-module.

Now let A : R — End,, (M/]M) be the ring morphism corresponding to the R-
module structure on M/[M If r € I, then multiplication by r on M/[M is the zero
map, and thus 7 € ker(A). As thus I € ker(\), we obtain an induced ring morphism
e R[1 — Ends, (M/10r), given by X+ 1) = A(r) for all r € R. Hence, \ endows
M / I M with the structure of an R / [-module, given explicitly by

(z+ D+ IM)=XNz+)(y+IM)=Naz)(y+IM) =zy+ IM.

Let m € M be arbitrary, then there exists a polynomial f € R such that m = (zf,yf).
Thus m =z - (f,0)+y- (0, f) € IN, and so we obtain M € IN. In particular, IN /s
is a well-defined R-submodule of IV / M. To conclude, notice that

I(N/m)= {Z (i + M) lsdeZ,rie],nieN}

i=1

d
{(Z“”)J’M l<deZ, riel, nieN}

=1

IN

= { Z?:N"n

By (3) we have

L/ ® (N/a)/(IN [y = NN
by the third isomorphism theorem. Now observe that the map
N- Rlre R
(f,9) = (f+1,g+1)
is surjective and has kernel I N (verify it!). Thus, as by the remark above (3) we have

R / I = k (can you describe the R-module structure on k given by this isomorphism?),
we obtain by the first isomorphism theorem that N /7N =k & k.



(5)
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Let (f,g) € N be arbitrary. Then xy(f,g) = fy(x,0) + gz(0,y) € M, and thus
zy((f,9) + M) = 0 inside N/pr. As (f,g) € N was arbitrary, we obtain zy €
Ann(N/r). On the other hand, as R is a domain, we have Ann(zR) = (0). As the

annihilator is preserved under R-module isomorphisms, we thus have &V / M %R.
O

Exercise 5. Let

0—>M—>N—>N/]\/[—>O

be a short exact sequence of R-modules. For each of the following assertions either prove
that the assertion holds or provide a counterexample.

(1)
(2)
(3)

If M and N/M are finitely generated, then N is too.
Conversely, if N is finitely generated, then N / M is finitely generated too.
If N is finitely generated, then M is finitely generated too.

Proof. (1) As M is finitely generated, we can find a subset {my,...,m;} € M generating

M as an R-module, and as &V / M 1is finitely generated we can find a subset

{ny+M,...,ny+ M} C N/]\/[ generating N/M as an R-module.

We claim that N is generated by {m4,...,my,nq,...,n;}. Given n € N, we can write
l

n+ M=) _ s;(n;+ M) for some s; € R, and so n — 22:1 s;n; € M. But then

there exist r; € R such that n — Z§=1 sin; = Zle r;m,;. This exhibits n as an R-linear
combination of the m,’s and n,’s and so IV is generated by these elements.
The statement is true. Suppose {n,...n;} generate N, then in fact {n, + M, ... n, +

M} generates N/M. Indeed any n + M € N|M can be written as

n+ M= (irini)+M= iri(ni+M)

1=1 =1

and thus n + M is an R-linear combination of the n; + M’s.

This statement is not true. Take R = C[x, x5, ...], the polynomial ring in infinitely
many variables. (An element of R is by definition a polynomial in finitely many of the
variables x;, s, ..., and addition and multiplication are then exactly what one would
think it is).

Let N be R viewed as a module over itself, and take the submodule M to be generated
by {x1,zy,...}. This is a proper submodule, as it does not contain the constants C C N.
Any element of M is a polynomial f(z,, ..., 2;) with no constant term. Given a finite set
of such polynomials {f;} C M, there is an integer I such that any element contained in
({/:}) can be written as a linear combination of monomials, each of which has positive
degree in some x; with ¢ < I. So this span cannot be equal to all of M, as it does not
contain x,, for n > 0.

Note: the statement in (3) is true for modules over an important class of rings
called Noetherian rings. These include many common rings such as fields k, Z,
and k[xy,...,x,]. So C[xy,xs,...] is an example of a non-Noetherian ring.

O
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Exercise 6. (1) Let

O—>M—>N—>N/]\/[—>0

be a short exact sequence of R-modules. For each of the following assertions either
prove that the assertion holds or provide a counterexample.

o

o

o

If N is free, then N/M is free.
If N is free, then M is free.
If M and N/]\/[ are free, then NN is free.

(2) Let R=7Z.1s Z[I]/(gc2 +1)Z[2] a free R-module? How about Z[ﬁ]/(%z)z[gg]?
Is Q a free R-module? Is it finitely generated?

Proof. A module is free if it is isomorphic to €, R for some (possibly infinite) indexing set

I.

Digression:

Definition 1. A subset {m,;} C M is a basis for M if:

o It spans M: every m € M can be written as m = ) r;m; for some r; € R.
o It is linearly independent: if Y r;m; = 0 for r; € R then r; = 0 for each i.

Lemma 1. The module M 1is free if and only if it has a basis.

Proof. Assume M is free, so M = @, R. We can define a basis {e;}; for M where ¢; is 1

in its i™ position and zero elsewhere. It is straightforward that these span and are linearly
independent. Conversely suppose we have a module M which has a basis {e;};e;. Define
¢ : &R — M by extending linearly from ¢((d;;);er) = e; for each ¢ € I. This is surjective,
because any m € M can be written as a linear combination of the e; and each of these is in
the image. It is injective, because if not there is some non-zero element of &;R killed by ¢.
But this gives a non-trivial linear dependence among the e; in M. 0

Now we return to the solution.

(1)

o

o

This is false: a counterexample is given by R = Z, N = Z, M = 2 - Z, for then
N|M = 7]27.

This is also false: a counterexample is R = Z[4Z, N = Z[AZ and M = 2-Z[AZ =
Z[27. This has too few elements to be a free Z[4Z-module.

This is true. Suppose M has basis {my,...,m;} and N/M has basis {n; +
M,...,n; + M}. We claim that {mq,...,my,nq,...,n;} is a basis for N. They
span by the argument in Exercise 4.1. For linear independence: suppose » s;n; +
> r;m; = 0. This implies ) s;(n; + M) = 0 in N/M and so the s;’s are all zero
by the linear independence of the n; + M’s. But then ) r;m; = 0 is a linear
dependence for a basis of M, forcing also the r;’s to be zero as well.

Z[z]/(z* + 1)Z[z] is a free Z-module, with basis {1, z} (it is isomorphic to Z[4]).
Z[x]/(22°)Z[2] is not free since " is a torsion element for all n = 2 (as ™ ¢ (22°)
but 22" € (227)).

Q is not a free Z module. Indeed, any two elements of Q are Z-linearily dependet:
if a/b,c/d € Q then either both are equal to zero, or cb(a/b) — ad(c/d) = 0 is
a non-trivial Z-linear relation. Thus if Q was a free Z-module, then it must be
generated by a single element, which is impossible. For example, this can be seen
by the second part of the question:
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Q is not finitely generated over Z since if {&, ..., 22} is a generating set, let
y g 7 » g g
1 n

= (e 1 ie i _ P Pn
q=q1:*q,. Then o does not lie in the Z-span of {ql,...7 qn}'

O

Optional exercise. Not on the exam. Suggested if you are seriously interested in algebra.

Exercise 7. Let k be a field. In this exercise we understand the non-commutative
ring Dy (k[x]) of differential operators on k[x] over k. Let D be the sub-algebra of
Di.(k[z]) generated by the elements % and x, where aa_x sends a polynomial p(x)
to its algebraic derivative with respect to x and the element x € Endj(k[z]) is
multiplication by z. We have seen in “Anneaux et corps” (sheet 3 ex. 9 and sheet
4 ex. 6) that Dy(k[x]) = D when char k = 0 (it is not true for char k > 0, can you

find an element?).

It was also shown that the elements (a%)] generate D as a k-vectorspace for

(i,7) € N°. Additionally it was shown that D has no two sided non-trivial ideals,
or equivalently D is simple, if char k = 0.

(1) Show that a basis of D as a k-vector space is given by the elements 2 (8%)],

where (i,j) € N if chark = 0, and ¢ € N and j € {0,1,...,p — 1} if
chark =p > 0.

(2) Now we change the perspective and consider a quotient of the free k-algebra
on two generators D' = k(u,v)/(uv — vu — 1). Prove that in D'”™ we
have the identity

uP(v) = %P(v) + P(v)u

for all polynomials P(v) € k[v]. Use this to prove that D™ is generated
as a k-vector space by {v’u' | (i,j) € N°}.

(3) Show that there are well defined ring homomorphisms ¢ and 1 from D’*™
to Endj(k[z]), such that ¢(u) = a% and ¢(v) = xz, as well as ¥(u) = =
and Y (v) = _a%' Show that ¢ and v are surjective onto D, and define an
isomorphism betwenn D and D™ if and only if char(k) = 0.

(4) Determine the submodules of k[x] as a left D-module (with left D-module
structure given by the inclusion D C End,(k[z])) in the case when char k = 0.

(5) Determine the left submodules of k[x] as a D-module, if char k = 2.

Proof. (1) As mentioned above, the fact that {z’ (%)J | 7,7 € Zsy} is a generating set of D

over k was already shown in "Anneaux et corps". Now notice that if char(k) = p > 0

then (%)j = 0 for all j = p (repeatedly taking derivatives more than p times will
produce a factor divisible by p in front of every monomial). Thus if we let Q2 = ZZO if

char(k) = 0 and Q = Z,, x {0,...,p — 1} if char(k) = p > 0, we obtain that already
B = {z' (a%)J | (7,7) € Q} generates D.



Now we need to prove that the elements of B are k-linearily independent. Let A, :
) — k be a set of finitely many non-zero coefficients in £ such that Z(Z. en At (%)j =

0. In particular, if we evaluate the expression on the LHS at 1 we obtain Z(i,O)EQ Aoz’ =
0 as element of k[z], and thus \; o = 0 for all i. Suppose we have proven ), ; = 0 for all
i and all j < J for some J > 0 (satisfying J < p — 1 if char(k) = p > 0). Then we have

Z(m.)EQ, I )\Z-J(Bi (a%)J = 0, and evaluating the LHS at 2’ shows that Aig = 0 for all

i. By induction, we conclude that \;; = 0 for all (¢, j) € Q. Thus B is a basis of D.

Inside D/™, we can use the relation uv — vu — 1 = 0 to swap the w’s and v’s in any
given monomial. Let us make this precise. By induction on j, one proves

9. _
w’ = =—v’ +v'u
ov

inside D/ (i.e. modulo uv — vu — 1). The formula in question then follows by k-
linearity. Multiplying the formula by powers of u, it then follows also more generally

that -
Pw =Y (2 e -

k=0

In particular, we have a formula to replace any monomial u't’ by an expression where
in all monomials v is to the left of u. By using this iteratively, moving all v’s to the
left, one can express every element of D™ as a sum of monomials of the form v’u’.
That is, B/7™ := {v'u' | i,j € Zsy} is a generating set of D™ as a k-vector space.
By the universal property of the free k-algebra on two generators, there exists a k-

algebra morphism ® : k(u,v) —» End,(k[x]) mapping u +~ a% and v » z. To show

that ® factors through D/, it suffices to prove that uv — vu — 1 is in the kernel of ®.
This amounts to proving that for all f € k[z] we have %(xf(x)) = f(x) + xa%f(x),
which follows from the (algebraic) Leibnitz-rule. Therefore, we obtain the well-defined
¢ : D' > End, (k[2]) mapping u — a% and v b .

Now as D contains a% and x, the image of ¢ is contained in D. On the other hand,

as every element of B is attained by ¢ (evaluating at v'u’), we obtain that the image
is exactly D, i.e. ¢ is surjective onto D.
By repeating the same argument for ¥ : k(u,v) — End,(k[2]) mapping v — z and

v _a%’ we obtain also the desired map v : D'”™ = End, (k[2]), surjective onto D.

Now finally we investigate when the surjective morphism ¢ : D/™ = D is also
injective. If char(k) = p > 0 then «” is mapped to (a%)p, which as we have seen is
equal to 0 inside D. To conclude that ¢ isn’t injective, it remains to show that u” isn’t
equal to 0 inside D/”™. This can be seen via 1, because ¥(u”) is the k-endomorphism
of k[x] given by multiplication with 2", which is not the zero map. So u” is non-zero
inside D™, and hence ¢ is not injective. The same argument, replacing u and v,
shows that v is not injective either.

It remains to consider the case where char(k) = 0. We have seen that Bform =

{v'u' | i, € Zso} generates D' over k, and in characteristic zero B = {z’ (—) |i,j €
Zso} is a k-basis of D. But then ¢ induces a bijection between B’ and B, and thus
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we obtain that B/”™ is also linearily independent, and thus a k-basis. Therefore ¢
induces a bijection between two bases, and is thus a vector-space isomorphism. In
particular, ¢ is injective, and hence D'”™ = D in characteristic zero. The argument
for 1 is completely analogous.

(4) We claim that k[«] is a simple D-module. First note that k[x] is generated as a D-
module by the element 1 € k[x], because for any f(z) € k[x], the k-endomorphism of
k[x] given by multiplcation with f(z) is an element of D, and the image of 1 under
this endomorphism is f(z). Hence any element of k[z] can be obtained by letting
some element of D act on 1, i.e. 1 generates k[x] as a D-module. Now suppose N
is a non-zero D-submodule of k[x]. We will show that 1 € N. As N is non-zero, it
contains some non-zero element f(x) = Z?:o a;z' (where a, # 0). We need to find a
differential operator D such that D(f) = 1. In fact, D = — (%)" will do it (here we

a,n!
use that char(k) = 0).
(5) The first thing to note is that

(%(xQ) =2z =0.

Similarly a%(3{:2n) =0 any n € N.

Now let N be a non-zero D-submodule of k[z], and notice that N is generated by a
single element. Indeed, the ring D contains a copy of k[x] as a subring (by viewing an
element p of k[x] as the k-endomorphism of k[x] given by left multiplication by p),
and the induced k[z]-module structure on k[x] is the natural one. Thus N is also a
k[x]-submodule of k[z], i.e. an ideal. But k[x] is a PID, so N is generated by some f
as a k[x]-module. In fact, we can take f to be the monic polynomial of minimal degree
inside NV (there is a unique one). As N # 0 we have f # 0, and as the derivative of f is
has degree strictly smaller than f and is inside N (as N is a D-module), we must have
%f(x) = 0. This means that f(z) = 23:1 a;x” for some ag, ..., a, € k with a, = 1.
Finally, we show that D - f = k[z] - f as k-subspaces of k[x]; it suffices to show that
the LHS is included in the RHS. As both sides are k-vector spaces, it suffices to prove

that B+ f € k[z]- f. This is true as (x (BQ)J) f(x)=0ifj 21, and ' f(z) € k[z]- f
for all 7 > 0.
Therefore, we conclude that the D-submodules of k[z] are exactly the subsets of the

form k[x]- f with f monic and only having terms of even degree. Notice also that any

two distinct such f give distinct submodules.
OJ

Remark 0.1. Let k be a field of characteristic p > 0. We describe an element 0 € Dy (k[x])
which is not in the sub-algebra generated by 8% and x. Given ¢ 2 0, define

_ Oife<p
8(x ) = n(n—l)“.(n—p+1)l‘n—p

. ifie=p

n(n—1)...(n—-p+1) n(n—1)...(n—-p+1)
(by === e

we mean the image of € 7 via the canonical ring morphism

p
Z — k sending 1 to 1).
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Note that in characteristic 0, this operator is simply

1{oy
P\ Oox

Anyways, an immediate computation shows that

0.1+ (2 )

so 0 is indeed a differential operator. To see that it is not generated by a% and z (i.e.
d ¢ D), note that () € k[x] is always a sub-D-module, while 9(z") = (p — 1)! ¢ (z"). In
fact, as in characteristic zero, k[x] is a simple D, (k[x]))-module!.



EPFL - Fall 2023 Prof. Zs. Patakfalvi
Rings and modules Exercises
Sheet 2 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Show that the following holds for an R-module M of finite length (M) (i.e.,
an R-module M that admits a composition series of finite length).

(1) If there is a short exact sequence

n

0 — M > M > M

~
o

of R-modules, then {(M) = [(M') + I(M").

(2) If N <p M is a proper submodule then I[(N) < [(M).

(3) Use (2) to show that any strict chain of submodules in M (not necessary a maximal
chain, i.e. not necessarily a composition series) has length smaller than or equal to
I(M). Conclude that a module M is of finite length if and only if M is both Noetherian
and Artinian.

Proof. (1) The solution has two steps: first we prove that both M' and M" have finite
length, and then we prove the formula.
For the first step, let 0 = My € M, & -+ & M; = M be a composition series of M (in
particular ¢ = [(M)). Up to isomorphism (of short exact sequences), we can view M '
as an actual submodule of M and M" = M/M' as the actual quotient of M by M’
Now for 0 < i < t, define M! = M' A M, and M = (M, + M')/M'; we would like to
understand the quotients of consecutive terms.
On the one hand, we have a natural map M;H = M;, — Mi+1/Mi, and the kernel

!
of this composition is exactly MZ' . Hence we obtain an induced inclusion M+ / M l’ -
1
Mi+1/Mi. As the latter is simple, we obtain that Mi+1/MZ.' is either trivial or simple.

On the other hand, we have by the third isomorphism theorem that Mz"+1/MZ" =

(M + M)/(Ml + M) Then, we have a natural map

My = Moy + M — (M + ]\4)/(]\4Z + M), and the composed arrow is easily seen
to be surjective. Also, M; is included in the kernel of the composition, so we obtain

an induced surjective map Mi+1/Mi — (M4 + M)/(Mz + M) = Mz,:—l/MZ" As
Mi+1/Mi is simple, we obtain that Mz”+1/MZ" is either trivial or simple.

In conclusion, the quotients of consecutive terms both in M('] C - € M/ and M(')' c

.- € M, are all either simple or trivial. So by deleting some of the modules in the
sequence, we will obtain composition series both for M' and M". Hence M' and M"
have finite length (and length smaller than or equal to ).

Now for the second step, by the one-to-one correspondence of submodules of M "
and submodules of M containing M’ it is clear that a composition series for M' can be

extended to a composition series for M by adding the preimage of a composition series
1



of M". This gives a composition series for M of length l(]\/[') +1(M"). Therefore, since
by the Jordan Holder Theorem [(M) is the length of any composition series, we obtain
(M"Y + (M"Y = 1(M).

(2) Follows directly from the argument above.

(3) Let 0 = My & My & -+ ¢ M,, = M be a strict chain of length n. Then by (2) we have
(M) > I(M,_y) > -+ >1(My) =0, hence [(M) = n. Since every chain of M is of
finite length bounded by (M), M is both Noetherian and Artinian. The implication
in the other direction was discussed in Remark 3.2.4 of the lecture notes.

O

Exercise 2. Let R be a ring and let M be a finitely generated module over R. Let f :
M — M be an R-module homomorphism.

(1) Suppose that R is a Noetherian ring.

(i)
(i)
(i)

Does injectivity of f implies surjectivity?

Does surjectivity of f implies injectivity?

What happens if R is not necessarily Noetherian?

Hint: For one of the directions, try to reduce to the Noetherian case by considering
the Z-subalgebra of R generated by finitely many suitable elements.

(2) Suppose that M is a module of finite length, show that f is injective if and only if f is
surjective.

Proof. (1) (i) Let R be a ring with a € R neither a unit nor a zero divisor, then multi-

(i

(i)

plication by a is an injective but not surjective morphism m, : R = R.

Suppose that M is a finitely generated module over a Noetherian ring, then M
is Noetherian. Let f : M — M be a surjective morphism. For all £ we have
containments ker(f") ¢ ker(f**). Therefore, there exists a positive integer m
such that ker(f™*") = ker(f™). In particular, f : im(f™) — M is injective, but
by surjectivity im(f™) = M, therefore f is injective.

Amazingly, the statement remains true even if R is not Noetherian. Let e; for
1 < i < n be generators of M as an R-module. Let f(e;) = ) |, a;e; for all i. By
surjectivity there exists b;; such that e; = Y e bjr.f(ex) for all j. Suppose that
m € ker(f) with m = ), mye;. Let Z[a;;,b;;,mp] = R be the natural inclusion
morphism, where Z[a,;, b;;, m;.] is the Z-subalgebra of R generated by the a;;’s,
b;;’s and my’s. There is therefore an induced structure of R = Z[ ajj, bij, my.]-
module on M. Let M' be the R'-submodule generated by e; for 1 < ¢ < n. By
definition of M' the morphism f induces a morphism f' M > M ', it is surjective
since e; = f(), bixer). As now R' is Noetherian (it is a finitely generated Z-
algebra), we obtain by the previous point that the element m € ker(f') is zero.
As m € ker(f) was arbitrary, we conclude that f is injective.

(2) Consider the short exact sequence

0 — ker(f) > M > im(f) ——> 0 .

By Exercise 1.1, we have [(M) = I(ker(f)) + I(im(f)). Since the zero module is the
only module of length zero, f being surjective implies that ker(f) = 0. Converserly, if
f is injective, then [(M) = I(im(f)), hence I[(im(f)) can not be a proper submodule
of M by the same exercise, i.e. M =im(f).



Exercise 3. This exercise is about semi-simple modules.

Definition 1. A module M over a ring R is semi-simple, if it is a finite sum of its simple
submodules. That is, M = Z?ﬂ M;, where M; <p M are simple. A ring R is semi-simple if
it is semi-simple as a left R-module.

(1) Prove that M is semi-simple if and only if M = @ M; for finitely many simple M; <p
M, i.e., prove that if M = Zle M; where d € N is minimal with this property, then
M; n Zj# M; =0 for all 7.
(2) In this exercise we prove Maschke's theorem. Let G be a finite group, and £ a field such
that (|G|, char(k)) = 1. Then k[G] is semi-simple.
(i) For any ring R, any R-module M and any submodule N show that M = N & L
for some submodule L if and only if there exists an element ¢ € Homp(M, N)
such that ¢(n) = n for all n € N. Hint: Use the universal property of direct sums.
(ii) Let M be any k[G]-module which has finite dimension over k. Show that for any
submodule N there exists an element ¢ € Homy[g1(M, N) such that ¢(n) = n for
alln € N. Hint: Take & € Homy, (M, N) such that £(n) =n for alln € N. Show

that ¢ defined by ¢(x) = |—é| deG g¢(g~" ) is k[G]-linear.
(iii) Conclude the proof.
(3) Under the same hypotheses as before, prove that k[ G] has finite length over itself.

Proof. (1) The < direction is immediate from Definition 1. So, we prove direction =.
Let us start with an arbitrary finite collection of simple submodules M; of M (given
by Definition 1), such that Zle M; = M. We may further also assume that d is minimal
with this property.
We have that Zil M, = @11 M; if and only if for all 1 < i < d we have M; N
Zj# M; = 0. If this is the case, we are ready, so we may assume the contrary. By

reindexing, we may assume then that M;n Z;lzz M; # 0. However, since M;N (Zj:z Mi)

is then a non-zero submodule of M, and therefore it equals M;. Hence, M; € Zj’:Q M;,

and then M = Z?:z M;. This contradicts the choice of d, and also concludes our proof.
(2) We prove Maschke's theorem:

(i) We will show that M = ker(¢) ® N. To this end let iy : N < M and dey) :
ker(¢) < M denote the inclusion of the two submodules. By the universal prop-
erty of direct sums there exists a unique morphism iy (y) +in = ¢ : ker(¢) & N —
M, it is injective since N Nker(¢) = 0. We show that ¢ is surjective. Let m € M,
let ¢(m) = n, we have m — n € ker(¢), say m —n = [. Hence m = ¢(l,n) where
[ € ker(¢) and n € N.

(ii) We prove that for every k[G]-module M, which is finite dimensional over k, and
every submodule N <47 M, there is a direct complement. By the previous
exercise, to prove our goal, we have to find ¢ € Homyg (M, N), such that ¢|y =
Idy. Let us start with a k-vector space projection & € Homy (M, N), such that
¢y = Idy. Such projection exists by linear algebra. Then, define for every = € M,

1 -1
o(x) = mg;gag )



(here we use that (|G|, char(k)) = 1). We claim that ¢ is as desired. Indeed, if
x € N, then g_la: € N, and hence f(g_lx) = g_lsc for all g € G. So,

¢(r) = 9¢(yg gg 'w = |G|z = .

i 29l |G| 2 i
Furthermore, ¢ is k[ G]-linear. Indeed7 since it is k-linear, only the compatibility
with h € G has to be shown, which is done by the next computation (here h € G
arbitrary):

o(ha) = |G| D9ty ha) |G| ) hfE(S x) = ho(z)
g€G feGq

(iii) Since k[G] is finite dimensional over k. Let N C k[G] be a submodule. By
the above there exists a submodule L such that N @ L = k[G]. We repeat the
argument for N and L until k[G] = &M, where every submodule is simple (note
that this process has to be done only finitely many times, because any finitely
generated k[G]-module is in particular a finite dimensional k-vector space since
G is finite).

(3) By (1) and (2) we know that k[G] = @il M,; for finitely many simple submodules M;.
Then the modules N; = @le M; for 0 = j < d yield a decomposition series, showing
that k[ G] has length d.

0

Exercise 4. (1) Let R be a PID, and let f € R be a product of n = 0 prime elements.
Prove that the length of R/(f) as an R-module is equal to n.
(2) Let f € R[z] be a nonzero polynomial with exactly n = 0 non-real roots (counted with
multiplicity). Prove that

dimg (R[21/(f)) - lengtheg,; (R[21/ (1)) = n/2
(3) Let M be a Z-module. Prove that M has finite length if and only if it is finite (as a
set).
(4) Give an example of a ring and a module over this ring which has finite length but
infinitely many submodules.

Proof. (1) We prove the assertion by induction on n; for n = 0 it clearly holds, and for

n = 1 it holds since primes in a PID are maximal, and thus the quotient of R by a
prime is simple.
So assume that we have shown the assertion for some n = 1, and let f be a product of
n + 1 primes. Let p be a prime dividing f and write f = pg where ¢ is a product of n
primes. Then we have a natural surjection R/(f) —» R/(g) of R-modules, and let K
be the kernel. It is straightforward to see that K = R-(g+ (f)). Now we have a short
exact sequence

0= Annp(g + (f)) = R 2 e g,

Finally, one can easily verify that Anng(g + (f)) = (p), and thus K = R/ (p)- As we
then have a short exact sequence

0= R[/(p)y = R[(f) = ()~ 0,
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it follows from Exercise 1.1 and the induction hypothesis that R/(f) has length n + 1.

(2) The dimension of R[m]/(f) as an R-vector space is d = deg f. Furhtermore, as R € C
is a field extension of degree 2, the irreducible polynomials of R[x] are the linear
polynomials and the quadratic polynomials having no real roots. Therefore, if m is the
number of real roots of f counted with multiplicity, one can see that f is the product
of exactly m + n/2 irreducible polynomials. Hence by the previous exercise we obtain
that the length of R|:9€:|/(f) is equal to m + n/2. As d = m + n, we obtain

dimpg (R[ﬁ]/(f)) — lengthg, (R[x]/(f)) =m+n—(m+n/2)=n/2.

(3) If M is finite as a set then M has finite length as there are only finitely many sub-
modules. Conversely, if M has finite length, then by Exercise 1 it is in particular
Noetherian, so finitely generated. By the classification of finitely generated Z-modules,
we have an isomorphism M = Z® @ F for some finite Z-module F and r = 0. If by
contradiction r = 1, then M contains a copy of Z as a submodule, so again by Exercise
1 we obtain that Z has finite length. This is not true, e.g. as Z is not Artinian. Hence
r=0and M = F is finite.

(4) Tt suffices to take an infinite field £ and a finite dimensional k-vector space V' of di-
mension greater than or equal to 2. It is clearly of finite length, and if v;,v, € V are
linearily independent, then {k - (v; + Avy)} e is an infinite family of distinct subspaces.

OJ

Exercise 5. Let n,m > 0 be integers, let k be a field and let R = k[z,y]. Show that the
R-module

M = k[x’y]/(xn7ym)
has length nm.
Hint: FEzercise 1 can be useful to decompose this computation into easier ones, allowing
some induction argument.

Proof. First let us show the following: for any d = 0, the module
Nd = ]{Z[ZE, y]/(x,yd)

has length d.
Set

= kLo yl/ (2)

and 7 : R - S the quotient map. By Exercise 2.3 on sheet 1, we can define an S-module
structure on Ny such that for all » € R and n € Ny, r - n = 7(r) - n.

With this in mind, it is immediate that S-submodules of N, are the same as R-submodules
of N4, so in particular its length is unchanged.

Now, S = k[y] by setting x = 0, and through this isomorphism we see that N, corresponds

to
Kyl /(%

so we know by Exercise 4.1 that its length is d.

Now, let us compute the length of
Nn,m = k[.’L’, y]/(gpn7 ym)
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is nm. If n = 1, this was already worked out before, so assume n = 2. Consider the
morphism ¢ : k[x,y] = N, given by sending 1 to 2"~ + (2", y™). Note that the sequence
¢
k[l’,y] - Nn,m - n—1m -0
is exact where N,, ,, = N,,_1 ,, is the usual quotient map, so we obtain a short exact sequence
0—- k[xﬁy]/ker(gb) - Nn,m - n—1,m -0

Let us understand ker(¢). Clearly, (z,y™) € ker(¢), and given a € ker(¢), we get that by
definition there exists b, ¢ € k[x, y] such that
2" a=a2"b+y"c
In particular 2" divides y™¢, so since = and y are coprime (k[z,y] is a UFD) we get that
-1 4. . . n-=1 1
" divides ¢ (write ¢ =" ¢ ). Thus,
a=uzxb+ ymc'

or in other words a € (x,y™).

Hence we have proven that ker(¢) = (z,y"), so we finally have a short exact sequence
0> Ny =Ny =2 Nysigy 0
which by induction on n gives us
I(Npm) = U Npo1m) + 1Ny ) = (0= 1)m +m = nm.

Exercise 6. # Let p > 0 be a prime number. Compute the length of

ZLx] (5%, o* - p).
as a module over the ring Z[x].

Proof. Let M = Z[z]/(p°, 2" — p), and consider the quotient map

m: 2Ll [, 2 - p) = ZLed [ (p, 2 - p).

Note that the latter module is isomorphic to
= (Z[pZL=]) [ (%),

and since the Z[z]-action this module factors through an action of Z/pZ[x], let us compute
the length of N as a Z/p[x]-module. Since this ring is a PID, we deduce by Exercise 4.(1)
that the length of N is 2

Let us compute ker(7). By the third isomorphism theorem,

ker(m) = (p; 2’ - p)/(pQ7 (z° = p))

so in particular it is generated by p (i.e. the class of p in the quotient). hence, we have a
surjection
0:Z[x] — ker(w),
sending 1 to p.
Let us understand ker(6). It is immediate to see that (p,z° — p) € ker(#). On the other
hand, if f(z) € ker(), then pf(z) = p°a(z) + (z* — p)b(z) for some a(z),b(z) € Z[z]. In
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particular, p divides (z° — p)b(z), so since p is prime, p divides b(z). Write b(z) = pb'(z).
Then
2 ' 2
f(x) = pa(z) + (2" = p)b(x) € (p,2” = b).
Thus,
(p, 2" = p) = ker(6).
In other words,
ker(ﬂ) = Zl:x]/(p7 1;2 —p) = N.
In other words, we have a short exact sequence
0->N->M-=>N -0,
so by additivity of the length,
length(M) = 2length(N) = 4.
O

Exercise 7. Let R be a Noetherian ring. Are the following rings Noetherian? Are they
Artinian?

(1) R[x, i] ={) a;z' : a; € R,m,n € N}.

(2) Rz, 29, 3,...].

(3) R[[]], the ring of formal power series' with coefficients in R. ‘

Hint: For an ideal I and each n € N, let I, := {a, : Y ;- a;x’ € I}. Then adapt
the proof of the Hilbert basis theorem.
(4) CO(R), the ring of continuous functions R — R with pointwise operations.

() Blel/ (@ - 1)%)

Proof. (1) We will show that R[z, i] is isomorphic to a quotient of a polynomial ring. It
then follows that it is Noetherian by the Hilbert basis theorem (as Noetherianity is
preserved under quotients).

The isomorphism in question comes from the R-algebra homomorphism

1
gb : R[uﬂ]] - R[I’, 5]
1
U T, Ve
which exists by the universal property of R[u,v]. This is surjective as any element of
R[x,1/x] can be written as some polynomial in z and i by definition. Thus it has

some kernel I, and hence R[z, i] = R[u,v]/I is Noetherian.

As a side note, we can go further, and identify the kernel ker ¢ = I to be the ideal
(uv = 1). For it is clear that uv — 1 € I, and suppose that g € ker ¢. Then we can use
elements of (uv —1) to cancel mixed terms, and so write g = g; + g, where g; € (uv—1)
and gy = ) gau + ) i bjv’ for some a;,b; € R. But it is clear that g, cannot be in
ker ¢ unless all of its coefficients are zero. So g = g; € (uv —1).

LRI[2]] = {X:% a;z' ¢ a; € R}, where multiplication and addition are defined formally, as what you
think they should be. These are purely formal objects: there is no requirement for any kind of convergence.



Take R # 0 to be any Noetherian ring. There is an infinite descending chain of
ideals in R[z,z”'] given by (z +1) 2 ((z + 1)°) 2 ((z + 1)*) 2 .... We need to
prove that the containment is strict. To this end suppose that there exists a k& > 0
such that ((z + 1)) = ((z + 1)"™"). Then there exists f € k[z,2”'] such that
(z+1)" = flz,27 )z + ). Write f(z,27") = Y ien, @it With m < n integers
and a,,,a, # 0. Then there is a term of degree k + n + 1 with coefficient a,, # 0 on
the right-hand side, and thus m < n < 0 as the left-hand side has only terms of degree
less than or equal to k. But then there is a non-zero term of degree m < 0 on the
right-hand side corresponding to a,,z"". This is not possible, since the left-hand side
has no non-zero term with negative degree. We conclude that f = 0, but this amounts
to a contradiction since (z + 1)k # 0 since it has non-zero coefficients corresponding to
the terms " and 1. Hence R[z, i] isn’t Artinian.

R[z4, x4, ...] is not Noetherian, as the ideal (1, 25, ...) cannot be finitely generated. It
is not Artinian (for any choice of R # 0), since it contains the strictly descending chain
()2 (@) 2 (1) 2 ...

R[[x]] is not Artinian (for any choice of R # 0), since it contains the strictly descending
chain ()2 (@) 2 (*) 2....

R[[z]] is Noetherian, and the proof is a variant of the proof of the Hilbert basis
theorem.

To this end suppose I is an ideal of R[[2]]. For each integer n > 0, let

I, :={a, : EIZaZwi €I}

For each n, this is an ideal of R, and by multiplying each power series by = we see
that 1,, € I, for each n. So by the ascending chain condition, there is M such that
I, =1,,, forall n = M.

Also, for each i < M, I, is finitely generated, so we may fix a finite set {a; ;}o<j<n
of generators for I; (we take always the same number N of generators by repeating
elements if needed). For each 0 <i < M and 0 < j < N, fix f;; € I such that

fij = ai,jl'l + higher order,

which exsits by construction of I;.
We claim that the the ideal J generated by the set {fi’j}gs@s% is equal to I. Let
<)<

g = leio bkxk € I. By construction of I, we can find an element h, € J having
the same term of order 0 as g: there exists an R-linear combination of ag,...,ao
equal to by, and taking hg to be the same R-linear combination of fy,, ..., fo y will do.
Similarly, we can find an element h; € J having the same term of order 1 as g — hy.
Iterating this procedure, we construct an element h = hg + +-- + hy;_; € J such that
g — h has no terms of degree strictly smaller than M.

Now we proceed similarly, but with a slight modification. As before, we can find
coefficients cq,...,con € R such that [y = cofaro+ -+ + confan has the same term
of order M as g — h. Then, we can find ¢, ,...,c; v € R such that [; = ¢; v fro +
v+ g yefyy (we added a factor = in there to make things of the correct order; in

the next step we will need a factor z° and so on) has same term of order M + 1 as
g — h —1ly. We iterate this procedure indefinitely, and for 0 < j < N define the power
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series c; = Zkzo cmxk, as well as | = cofa0 + - + eyfun € J. One can then show
by comparing coefficients that g —h —1 = 0. As h,l € J, we conclude g € J, and as
g € I was arbitrary, we obtain I = .J. Hence I is finitely generated, and thus R[[x]]
is Noetherian.

C”(R) is neither Artinian nor Noetherian. To this end define I,, = {f € C(R) : f(z)
0 for all x = n}, where n € Z. It is clear that I,, C I,,;. We need to show that the
containment is strict. To this end, define for example the continuous function f by
flz)=0forallz 2n+1and f(x) =2 —(n+1) for all z < n+ 1, this is a well-defined
continuous function f € I,,1 \ I,. So (I,),ez is a strictly increasing sequence of ideals
indexed by Z, showing that C’O(]R) is neither Artinian nor Noetherian.

The most efficient solution is the following: it suffices to notice that the dimension of

R[x]/((x - 1)2;5) as an R-vector space is equal to 3 (the degree of the polynomial), so

in particular it is finite. As ideals of R[l’]/((x - 1)255) are in particular R-subspaces,

and finite dimensional vector spaces obviously satisfy the ascending and descending

chain conditions, we obtain that R[ﬂf]/((x - 1)2;5) is both Artinian an Noetherian.
O
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Exercise 1. Computing a presentation of an R module M means explicitly determining an
exact sequence of the form R® L R® =5 M — 0. Do the following computations.
(1) Compute a presentation of the Z-module

M :=7(2,9) + Z(4,3) + Z(6,8) € Z & Z.
(2) Let R = Matgyo(Z) be the ring of 2 X 2-matrices over Z. Compute a presentation of

the left R-module
L 2 0 0 3
e enll Yen

Proof. (1) We define a surjective morphism € : Z° —» M by ¢, = (2,9), ey ~ (4,3),
es — (6,8). Then we calculate generators of the kernel:

(aq,as,as) is mapped to zero if and only if the following two equations are satisfied:

2aq + 4ay + 6a3 =0

9@1 + 3(12 + 8@3 =0
From the first equation we find a; = —2ay — 3az. Substituing for a; in the second
equation gives us 15ay = —19a3. This implies that a, = —19¢, a3 = 15t for t € Z. This
gives that a; = —2(—19t) — 3(15t) = —7t. We conclude that a presentation is given by

Z->7'5M-0
where the first map is n : ¢t — (=7t, —19¢, 15t)
(2) We define a surjective morphism ¢ : R> = M by

(20 (03
@0 02712 0

and we are interested in calculating generators of the kernel. T.e., we calculate the
solution set of the matrix equation

a b\(2 O a503_2a+253a_0
¢ dj\o o)T\y s/\2 0o/ \2c+20 377

Hence the kernel consits of the elements ((CCL Z) , (?; ?)) such that a = -3, ¢ = =9,

a =7 =0. Le., the elements of the form

a b\ (0 —a
c d)’\0 =c/]°
Thus, the mapn: R — R* defined by
a b ([ b\{1 0\ (a b)({0 -1
c d c dj\0 1/’\c dJ\0 O
gives a presentation R® 5 R® 5 M — 0 of M.

1
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Exercise 2. Do the following:
(1) Calculate the Smith normal form of the following matrix over Z.

1 9 1
-2 -6 0
2 -8 2
-1 1 5

(2) (i) Find a direct sum of cyclic Z-modules isomorphic to the Z-module M with gen-
erators ej, ey, 3, €4 and relations

61—2€2+2€3—€4=0
961—662—8€3+€4=0
e+ 2e3 + 5ey =0

|Hint/Remark: By definition, M is the quotient of the free Z-module on 4 genera-
tors @?:1 Ze; by the submodule generated by e; —2eq+2e3—¢4, 9¢; —6ey —8es+¢4
and e; +2e3+ 5ey. Notice that in the quotient, eq, . .., e, then satisfy exactly these
relations. |

(ii) Explicitly give 'nice’ generators of M, in terms of the original generators ey, ey, €3, 4.
Here, fi,..., f, are 'nice’ generators if the relations they satisfy are generated by
relations of the form m,f; = 0, where mq,..., m, € Z are integers.

Proof. (1) We follow the algorithm for using row and column operations to produce the
Smith normal form of a matrix.

Step 1a: Ensure that the (1, 1)th entry is the principal generator for the ideal gen-
erated by the entries of the first row and column. In this case it is already true, so we
move on.

Step 1b: Use that property to remove all other entries in the first column by adding
a multiple of the first row to subsequent rows. Then remove all other entries in the
first row by adding a multiple of the first column to later columns:

1 9 1 1 9 1 1 0 0
-2 -6 0 . 0 12 2 . 0 12 2
2 -8 2 0 -26 0 0 =26 0
-1 1 5 0 10 6 0 10 6

Step 2a: Ensure the (2, 2)th entry is the principal generator for the ideal generated by
the second row and column. In this case we must swap the second and third columns.

1 0 0 10 0
0 12 2 02 12
0 =26 0|00 —26
0 10 6 06 10

Step 2b: Remove other non-zero entries in the second row and column.

10 0 10 0 10 0
0 2 12 N 0 2 12 . 02 0
0 0 -26 0 0 -26 0 0 -26
0 6 10 0 0 -26 0 0 -26



(2)

Step 3: Tidy up the resulting matrix to obtain Smith normal form:

(i)

10 0 10 0 10 0
02 0 N 02 0 N 02 0
0 0 —26 0 0 —26 0 0 26
0 0 —26 00 O 00 O
In terms of the generators eq,..., e, of M given in the exercise the surjection

7' - M defined by these generators has kernel K spanned by

1 9 1
-2 -6 0
9 , _3 and 9
-1 1 5

So K is the image of the linear map YARSY/ given by the matrix

1 9 1
-2 -6 0
2 -8 2
-1 1 5

As discussed in section 4.1 of the lecture notes, multiplying a matrix to the left
and right with invertible matrices doesn’t change the isomorphism type of the
cokernel. Hence M is isomorphic to the cokernel of the Smith normal form of the
above matrix, i.e.

OO O
S O N O
]

=0
—r—
The cokernel of this matrix is Z/Z ® Z/QZ o Z/QGZ ® 7, so we obtain

MzZL[og e L]z e L.

We want to find the elements of M which correspond to the canonical generators
of Z/QZ ® Z/QﬁZ ® Z (i.e. the vectors with precisely one component equal to 1
and 0’s everywhere else). Write

1 9 1 10 0
-2 -6 0 02 0
A= 2 =8 2| D= 0 0 26
-1 1 5 00 0

We have found invertible matrices P € GL,(Z) and Q € GL3(Z) such that
PAQ =D



We can rephrase this as a commutative diagram

Z3 fa \ Z4

o] I

3 4
ZTZ

where fp denotes the linear map associated to the matrix B. We then have that
fp induces an isomorphism

fp+ M = coker(f4) = coker(fp)

However, it is clear that a nice basis for coker(fp) is given by the classes of
(ea,...,€e4), S0 a nice basis for M = coker(f4) is given by the classes of

(fp-1(e2), fp-1(es), fr1(ed))

Thus, we simply have to compute p! (i.e. the inverse of the operations we did
on the rows) and take the last three columns of this matrix as this nice basis.
Thus we have to find P, and for this we need to keep track of the line operations
we performed on A to find the Smith normal form. By revisiting the solution of
(1), this gives

10 0 0 1 0 00 1 000

= 01 0 0 01 0012 100

100 1 0 0 0 10 -2 010

00 -11 0 -3 01 1 001

SO

1 000 1 000 1 000 1 000
Pl -2 1 00 0100 0100 _(-2100
12 010 0010 0010l |2 010}
-1 001 0 3 01 0011 -1 311

Thus, a nice basis is given by the images of f| := ey +3ey, f5 := es+e, and f3 = ey.
In M, they satisfy the relations 2f; = 0, 26f, = 0 (and f; satifies no non-trivial
relation).

O

Exercise 3. Let R = Q[z]. Find a direct sum of cyclic R-modules isomorphic to the
R-module with generators e;, e; and relations
’e; + (z + 1)ey = 0
(2°+ 22+ 1)e; + (2° = 1)ey = 0

Proof. As before, we get a homomorphism R*> > M with kernel K , which is given by the
image of the map R* - R? defined by the matrix

SL’2 x3+21:+1
r+1 2 -1
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We put this into Smith normal form. We have that the ideal (z>, 2 +1) = 1 and 1 x 2° +
(1 =2)(1+ z) = 1. The first step in the algorithm therefore tells us to multiply from the

left by the matrix
1 1-z
—(z+1) 2 )

1 1-x LR A Y | (1 3z + 2
—(z+1) 2° J\z+1 -1 "0 -3+ 3z +2° +1)

By an elementary column operation this gives:

(é —(x0+ 1)3)

So this means that there is a different set of generators f; and f, of M that satisfies the
relations: f; =0 and (z + 1)3f2 = 0, hence:

M= Qz]/ (3 +1)°

We get

O

Exercise 4. Give an example of an infinitely generated Z-module which is not an (infinite)
direct sum of copies of Z and Z/nZ for various choices of n.

Proof. We claim that an example is given by Q as a Z-module. Indeed, assume for sake
the of contradiction that Q = 7% @ G}ZZ/nZ for some set [ and some n; = 2. Since Q is
torsion-free we see that the sum of Z/n; is empty. To prove that Q is not a free module,
we observe that every two cyclic (isomorphic to Z) submodules of @ intersect. Indeed, let
pi1/q and py/qe be two rational number belonging to two different cyclic modules. Then
PiD2 = 1P - p1/q1 = Pige - P2/ @ 1s an element in the intersection. Therefore, if Q is free,
then it must be generated by a single element, i.e. Q = Z, which of course is a contradiction.

An other way to show that Q # 7% for any I, is to notice that the endomorphism

(-2) : a > 2a is surjective on Q, but not on Z*'.
0]

2 x

0 0

(1) Show that A is not equivalent to a diagonal matrix. The equivalence that we consider
here is the one introduced in the lectures, that is, up to left or right multiplication by
an invertible matrix.

(2) Show that the cokernel of the map A : R®> » R®® is isomorphic to a direct sum of
cyclic R-modules, but is not isomorphic to an B-module of the form R®" @ @le R / (a;)
where ay,...,a, € R\ {0}.

(3) Show that (2, z) is not isomorphic to a direct sum of cyclic R-modules.

Exercise 5. Let R = Z[x] and consider the matrix A = ( ) € Matgyo(R).

Proof. (1) We will show that A is not equivalent to a diagonal matrix. Suppose that

A= (>(\)1 )(\) ) is equivalent to A. Then rank(A') = rank(A) = 1 and therefore \; = 0
2



for + = 1 or ¢« = 2. By multiplying from the left and the right by the matrix <(1] (1]), we
may assume that Ay = 0 (and denote A\ = A; from now on). Then there exists invertible

matrices S = | °1 °12) and T = b o such that SA = A'T, i.e.
S91  So9 to1  tao

2511 wsy1) _ [AMi Atge
(2521 xsgl) - ( 0 0 )
Since Z[z] is a UFD, the equality 2s,; = Mty; and xsy; = Aty implies that there exists
some t' € Z[z] such that ¢, = 2t' and ¢, = 2t'. Since the units of Z[z] are precisely
+1, we obtain +1 = det(T') = t;1tg — tyote; = 2t'tey — xt'ty;. This implies that the ideal
(2, ) contains 1, a contradiction.
Let M be the cokernel of A : Z[z]* — Z[z]°. Tt is straightforward to see that

M = Z[if]/(Q,g;) @ Z[x], which is a direct sum of cyclic R-modules. Suppose by
contradiction that there exist ai, ..., a, € Z[z] \ {0} and m = 0 such that

Z[2]/(2, ) @ Z[2] = (Z[])°" ® @ Z[z]/ (a,).

Then the torsion-submodules of the LHS and RHS must be isomorphic, i.e.

2ol (2,2) = EB 2L}/ (a),

But thus the annihilators of the LHS and the RHS must agree. For the LHS the
annihilator is (2, z), while for the RHS it is (-, (a;). But as Z[x] is a UFD, the latter
is a principal ideal (generated by the least common multiple of the a;’s), while the
former isn’t principal. This is the desired contradiction.

Suppose by contradiction that ¢ : (2,2) > €,., M, is an isomorphism, where {M;};c;
is a family of cyclic R-modules. For all i € I, let f; € (2,2) be such that ¢(f;) is
a generator of M;. Then f;f; is in the intersection o (M) n go_l(Mj), while the
intersection M; N M, inside @?:1 M; is equal to 0. Therefore all but one of the M,’s

must be trivial. But then (2, z) is principal, which is a contradiction as well.
[

Exercise 6. Set M =7 & Z/QZ, and let o : M — M be an isomorphism.

(1)
(2)

Show that a(0 X Z/ZZ) = Z/ZZ, show in general that if N is an R-module then an
automorphism ¢ of N takes Tors(/N) to Tors(NN') bijectively.
Show that a(Z x 0) is not equal necessarily to Z X 0

[Remark: The torsion submodule Torsgr(M) of an R-module M (or simply Tors(M) if the
ring is clear from the context) was used to prove the unicity of the decomposition of a
finitely generated module over a PID into cyclic modules given by Theorem 4.3.3 of the
lecture notes.|

Proof. (1) Since Tors(Z® Z[97,) = 0x Z 27, it is sufficient to show the general statement

that an automorphism ¢ of N takes Tors(/N) to Tors(N) bijectively. To this end,
suppose rn = 0, then 0 = r¢(n) and hence ¢(Tors(N)) C Tors(N), converserly,
suppose r¢(n) = 0, then rn € Ker(¢), but ¢ is injective hence rn = 0.



(2) Let (1,0) & (1,1)

Exercise 7. Show that an exact sequence
0 > M > N
of R-modules induces an exact sequence
0 —— Tors(M) —— Tors(N) —— Tors(L) ,
but not necessarily an exact sequence
0 —— Tors(M) —— Tors(N) —— Tors(L) —— 0 .

Proof. 1t is clear that any homomorphism ¢ takes torsion to torsion, hence the sequence is
well defined. Since restriction of an injection obviously is injective it is sufficient to check
exactness in the middle.
Let f: M - N and g : N — L be the morphisms in question. Since g o f = 0, the same is
true for the restriction to any submodules. Let n € Ker(Tors(g)), there exists an m € M
such that f(m) = n, we need to show that m € Tors(M). Since there exists 7 € R not
zero-divisor such that 0 = rn = f(rm) we have rm € Ker(f), but f is injective. Hence
rm =0 and m € Tors(M ).

We have a surjection of Z-modules Z — 7Z/27Z, but it does not induce a surjection on
torsion submodules. U

Exercise 8. Let M € Mat(n X n, k) for a field k. Show that there is a basis with respect
to which M is block diagonal with blocks of the form

~
t~
~
=)

0 0 .. 0 a
10 - 0 o
0 " o
0 0 * 0 ago
0 O 1 aq-1

Hint: M acts naturally on some n-dimensional k-vector space V.. Consider V as a k[x]-
module via f-v = f(M)(v) and use the classification of finitely generated modules over a
PID.

Proof. As k is a field, k[z] is a PID. Also, V is finite dimensional over k, so it is finitely
generated (by a k-basis) over k[x]. Therefore the structure theorem says that V' = k[z]® o
D.-, k[x]1/(f;) for some monic polynomials f; of degree d;. As V is finite dimensional
over k C k[x], and k[z] itself is not, we see that [ = 0. Decompose V into @,-,V; where
Vi, = k[z]/(f;), noting that V; is d;-dimensional as a k-vector space. Note that M preserves
each V; as it is a sub-k[x]-module of V. Thus if we choose a basis of V' which is a union of
bases of the V;, the matrix of ¢ is block diagonal with blocks corresponding to the V;. We
now show that if we choose these bases in a particular way, we get the required form.

The action of M on V; corresponds under this isomorphism to the k-linear map "multipli-
cation by z" on k[x]/(f;). We choose the basis of V; to be the elements which correspond
via the isomorphism to the elements {1, z, ..., z% '} of k[z]/(f,). It is clear that these span,

and are linearly independent. If we define a; by f(z) = 2% — Z?;Bl a;z’ then the matrix of

the linear map given by multiplication by = on k[x]/(f;) has the required form. O



EPFL - Fall 2023 Prof. Zs. Patakfalvi
Rings and modules Exercises
Sheet 4 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let R be a commutative ring, and let M be an R-module.
(1) Show that Homp (M, —) is left exact. That is, for any short exact sequence of R-modules

I n

0 > N > N > N >0,

there is an induced exact sequence

0 —— Hompz(M,N') —— Hompz(M, N) —— Hompzp(M,N") .

(2) Give an example of a ring R and an R-module M such that Homg(M, —) is not right
ezact. That is, give an example of a surjection of R-modules N = N" such that the
induced morphism Hompz(M, N) - Homp(M, N") is not surjective.

Proof. (1) Suppose that
0—> N ——5 N —5 N >0,
is exact. We want to show that

0 — Homp(M, N') —=2=% Homp(M, N) == Homp(M, N") ,

is exact. Let ¢ € Homp(M, N') and suppose it is mapped to 0, i.e. t0¢p : M — N'
is the zero morphism. Since i is injective this implies that ¢ = 0. So we get exactness
at Homp(M, N'). To check exactness in the middle, observe that since s o i = 0 we
have the containment im(i o —) C ker(s o —=). Let ¢ € Hompz(M, N) be such that
so¢: M — N"is the zero morphism. Then ¢(M) C ker(s) = i(N'), and therefore ¢
factors through i : N' - N.

(2) Let R = Z. Consider the surjection Z — Z/QZ and let M = Z/QZ. The induced
morphism

Homy, (% /97, Z) - Homy (227, % [27,)
can not be surjective since the first group is zero, but the other is not.
OJ

Exercise 2. Let R = k[z,y] where k is a field. Extend the complex below to a free
resolution F, of the R-module k = R/(I’y). Then compute Exty, (k, R) for each i, and
note that you get the same as for the resolutions in Example 5.3.9 in the printed course
notes.

ReR®R > R > k > 0
The first morphism is defined by sending a basis to the following elements:
(1,0,0) » 2,(0,1,0) = y,(0,0,1) » x +y

and the second morphism is the natural surjection R — k. '
[ Remark: This is an example of the fact that the Ext-modules Exty, (M, N) don’t depend
on the free resolution F, of M.]

1
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Proof. The kernel of the first map is the set of those (a, b, c) € R®® such that 0 = az + by +
c(x+y)=(a+c)r+(b+c)y. As R is UFD this means that a + ¢ = yd and b + ¢ = —xd
for some d € R. That is, we have a = yd — c and b = —xd — c. Equivalently a = yd — e and
b= —xd—e and ¢ = e (where e and d are arbitrary elements of R). From here one can read
off the following extension to a free resolution:

00— R6R—=ROR®R R k 0
(1,0,0) —— =z
(0,1,0) —y
(0,0,1) —— 2z +y
(1,0) — (1,1,-1)
(0,1) —— (y,-,0)

Upon applying Hompz(_, R) to the projective resolution determined by the complex above
(removing k) and identifying R®" = Homz(R®", R), we get

0~—R®&R~—R®R®R~—R~—0
(z,y,2+y) =1
(1,y) =——(1,0,0)
(1,-2) =——(0,1,0)

(-1,0) =<——(0,0,1)

(Notice that on the level of matrices, the morphisms here are obtained from the morphisms
above by transposing the matrix.) We calculate the cohomology of this complex, The first

map is injective, hence H" = 0, ie., Ext%.(k:, R) = 0. The solution to the system

T1+T2_T3=0

riy —rox =0
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can easily seen to be r; = rax,;ry = ry,r3 = r(x + y) for some r € R. Therefore the
above complex is exact in degree one and Ext}:.(k, R) = 0. Finally, the image of the
last map is R @ (x,y) (because r;y — rox runs through (z,y) for r;,ry running through
R and we can use r3 to get any element in the first coordinate). Thus the co-kernel is

(Re& R)/(R@ (z,y)) = R/(x,y) = k. Therefore, Exty. (k, R) = k. This agrees with the

values for these groups given by the resolutions in Example 5.3.9 in the printed course notes.
O

Exercise 3. Let 0 = M LSZ25N - 0 be a short exact sequence of R-modules.
(1) A section of p is a morphism s: N — Z such that p o s = idy. Show that p admits a

section if and only if there exists an isomorphism ® : M & N —=» Zand a commuting
diagram with exact rows:

0 s M ———s 7 —2 SN

| H

0 S M —<> Me N I3 N 50

~
o

(2) A section of i is a morphism ¢: Z — M such that ¢ o i = id),;. Show that i admits a

section if and only if there exists an isomorphism ¥ : Z — M & N and a commuting
diagram with exact rows:

p

0 s M —25 7 > N 5 0
H I H
0 S M —3> MeN -3 N > 0

We say that a short exact sequence satisfying any of these conditions is split exact.

Proof. (1) Suppose that we have a commuting diagram as the one described in the exercise.

Define s : N - Z by N SMeN g Z where ey is the canonical inclusion. We need
to check that p o s is equal to the identity on N. By the commutativity of the diagram
p=7r0<1>_1 andhencepos=7r0<1>_10(I>oeN=7roeN=idN.

Conversely, suppose that s : N — Z is a section of p. Define ® : M @ N — Z by
®(m,n) = i(m) + s(n). Then for any 2 € Z, let n = p(z2). Now z — s(n) is in
ker p = im1, so let m be a preimage under 7. Then

®(m,n) =i(m) +s(n) =z —s(n) +s(n) = z,

so as z € Z was arbitrary, ® is surjective. On the other hand, if ®(m,n) = 0, then
0 = po®(m,n) = n and thus i(m) = 0 which also gives m = 0. Hence ® is an
isomorphism. As also ® oe =4 and p o ® = 7, the diagram commutes.

(2) If the diagram exists we can define ¢ as the composition Z = M ® N = M where 7,
is the canonical projection. We need to check that ¢ o i is equal to the identity on M.
By the commutativity of the diagram i = ¥™' o ¢ and hence goi =m0 Wo ¥ ' oe =
Ty ©€ = ldM
Conversely, suppose that ¢ : Z — M is a section of ©. Now define ¥ : Z - M @& N by
U(z) = (¢(2),p(z)). Let (m,n) € M & N be arbitrary, then by surjectivity of p there



exists z € Z such that p(z) =n. As goi =idy, and poi =0 we then have
Uz +i(m—q(2))) = (q(z + ilm = q(2))), p(z + i(m = q(2)))) = (¢(2) + m = q(z),n) = (m,n).

Hence W is surjective. On the other hand, if we suppose ¥(z) = 0, then in particular
z € ker p = im i, so we can write z = i(m) for some m € M. But then 0 = ¢g(z) = m, so
in fact m = 0 and thus z = 0. Hence W is an isomorphism. As Woi =¢ and mo ¥ = p,

we then obtain that the diagram commutes.
O

Exercise 4. # Let R be a commutative ring. The projective dimension of an R-module M
is the smallest integer n = 0 such that there exists a projective resolution

0_)Pn_)Pn—1_>'°°_>PO

of M. We write projdim(M) = n, and if no finite projective resolution exists, this number
is by definition oo.
As this exercise shows, Ext-groups help us find this number.

(1) Show that an R-module M is projective if and only for any R-module N, Ext'(M, N) =
0 for all ¢+ > 0.
Hint: Using long ezact sequence of Ext-groups (see Theorem 5.5.6 in the notes) can
be useful.
(2) More generally, show that if M # 0, then M has projective dimension n = 0 if and only
if the two following conditions hold:
o for all R-module N, Ext'(M,N) =0 for all i > n;
o there exists an R-module M' such that Ext™ (M, M') # 0.
(3) As an example, show that the k[z,y]-module M := k[x,y]/(x,y) has projective di-
mension 2.
Note that it would be a mess to show directly that for any surjection f: P — M from a
projective module P, ker(f) is not projective!

Proof. (1) It is immediate by the definition of Ext-groups that if M is projective, then
Ext'(M,N) = 0 for any R-module N. On the other hand, assume that the above
vanishing of Ext-groups hold, and consider a short exact sequence

0- K 4 R" ﬁ) M -0

for some n = 0 (in other words, choose generators of M).

Applying the functor Hom(—, K'), applying the long exact sequence and using that
Ext' (M, K) = 0 gives

0 —» Hom(M, K) - Hom(R", K) —» Hom(K, K) — 0,

so in particular Hom(R", K) » Hom(K, K) is surjective. Let f: R" —» K be a mor-
phism sent to id: K — K. By definition, f o a = id, so our exact sequence is split. By
Exercise 3 of this sheet, we conclude the existence of an isomorphism R" = M & K. In
particular, M is projective (it is a direct summand of a free module).

(2) Note that if M has projective dimension n, then again by definition of the Ext-groups,
Ext'(M,N) = 0 for all i > n. Let us show by induction on n that there exists some
R-module M' such that Ext™ (M, M') # 0.

If n = 0, then we can take M' = M. Furthermore, note that in the proof, we only
used the vanishing of all groups Ext' to deduce that M was projective, so we also know
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the result for n = 1. Thus, assume that n = 2, and that we know the result for n — 1.
By definition, there exists a short exact sequence

0-K->F-M-0

such that K has projective dimension n — 1 and F, is projective. Indeed, if

05 P, 5Py > P 5P

is a projective resolution of minimal length of M, then K = Image(f) works. Note
that K # 0, as otherwise M would be projective, contradicting n = 1.

By the induction assumption, there exists K' such that Ext" ™ (K, K') # 0. Applying
Hom(—, K') to our exact sequence and taking the long exact sequence in Ext-groups
gives

-5 Ext" (P, K') » Ext" (K, K') » Ext"(M,K') » Ext"(Py, K') > ...

Since n = 2, we know that Ext" (P, K') = 0 = Ext" ™' (P, K') by the previous point,
so we conclude this part of the proof.

Now, assume that the two conditions in the bullet hold for an R-module M, and let
us show that M has projective dimension n. Again, if n = 0, the result holds by the
first point, so assume that we know the result for n — 1, and again consider a short
exact sequence

0-K->F->M-0

with P projective. For any R-module M' and i > 0, we know by the first point that
Ext'(Py, M') = 0 so the long exact sequence in Ext-groups gives isomorphisms

Ext' (K, M') = Ext"™™ (M, M")

for any ¢ = 1. Thus, by induction, K has projective dimension at most n —1, so M has
projective dimension at most n. However, since Ext"(M, M') # 0 for some R-module
M', we know by what we already proved that the projective dimension of M is at least
n, concluding the proof.

(3) By Example 5.3.9 in the lecture notes, we know that there exists a projective resolution
of M of length 2, so the projective dimension of M is at most 2. However, we know by
the same example that

Ext*(M, k[z,y]) # 0,

so we are done by the previous point.

Exercise 5. Consider the ring Z[v-5].

(1) Is the ideal (2,1 + v/=5) a free Z[v/=5]-module?
[ Hint: Consider the element 6 € Z[v—-5].]

(2) Prove that (2,1 ++/=5) is a projective Z[v—5]-module.
[ Hint: Prove that (2, 1++/=5) is projective by showing that it is a direct summand of a
free module. To do this, define the obvious surjection p : Z[\/—_5:|2 — (2,14++/-5) and

examine the assignment s : (2, 1+v=5) — Z[vV=5]" defined by s(z) = 2ze, - 1_‘2ﬁ5x62.]
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Proof. (1) The Z[v=5]-module I = (2,1 + v/=5) is not free. Suppose the contrary, then
I = Z|:\/—_5:|EBQ for some index set 2. As I can be generated by 2 elements, we must
have |Q| < 2 (to see this, try to prove that a generating set of R®" always contains
at least n elements (Hint: you know this for fields, so try to reduce to this case by
dividing by a maximal ideal)).

Suppose that |Q| = 2. Then we have a surjection Z[2]®* — I = Z[2]®* given by
mapping (1,0) to 2 and (0,1) to 1 + v/=5. But then by Exercise 4 on Sheet 2, this
surjection must be an isomorphism, which contradicts the fact that (3, -1 + v/=5) €
Z[2]® is mapped to 0.
So we must have || = 1. We first show that 1 ¢ I by proving that for all elements
a + bv/=5 € I we have that ¢ = b mod 2. We calculate (r; + rv/=5)(1 + V=5) =
r1=5re+ (11 4+75)v=5. We have that r, —5ry = 7 +75 mod 2. Obviously a = b mod 2 for
all elements a+bv/=5 € (2) hence it is sufficient to note that if r, +79v/=5 and s;+5,v/=5
are such that ;, = 7, mod 2 and s; = s, mod 2 then (r; + rov/=5) + (51 + s9v/=5) =
1 + 51 4 (9 + 55)V—=5 satisfies s; + r; = sy + 75 mod 2.
Now suppose that (a + bv/=5) = I. For any a = oy + ayvV=5 € Z[v/=5] write N(a) =
ad € Z where & = oy — apv/—5. Then N is multiplicative, so N(a + bv=5) = a” + 5b°
divides N(2) = 4 and N(1 ++v=5) = 6. This implies N (a + bv/=5) is either one or two.
The equation a” +5b° = 2 is easily seen to have no integer solutions. If N(a+bv/=5) = 1
then 1 € I which we have already proven not to be the case, hence the claim follows.
(2) Following the suggestion in the exercise we define p : Z[v=5]° —= (2,1 + v=5) by
mapping the canonical basis e, e5 to e; = 2 and e, = 1 + v/=5. If we can prove that
p admits a section s we are done by Exercise 3 on this sheet.

Claim: for all z € I we have that =2z € Z[V=5].
Proof of claim: write © = 72 + r5(1 + ¥V=5), then %?513 = (1 = V=5)r; + 3ry.
Hence the assignment s given in the hint is well-defined. Moreover, we have that

p(s(x)) = p(2ze; — 1_‘2/?55062) =4r — 3r = x.

O

Exercise 6. Prove the following.

(1) If 0 > M, > ... > M, > 0 is an exact sequence of finitely generated

modules over an Artinian and Noetherian ring R, then 0 = Z?zo(—l)i length M;.
(2) Let R = k[e] denote (as usual) the quotient k[ﬂﬂ]/(mz) where k is a field (and ¢ is the

class of z). Let M be the R-module R/(g). Show that M has no finite resolution by
finitely generated free modules.

(3) In general if R is Artinian and Noetherian, and length R } length M, prove that M has
no finite resolution by finitely generated free modules.

(4) Prove that over a PID every finitely generated module has a finite free resolution.

Proof. (1) This follows from the additivity of lengths proven in a previous exercise (Exercise
2.4) after slicing the long exact sequence into short exact sequences. Since ker(f;) =
im( fj41) for 1 =i <n—1 we get an exact commuting diagram as follow:



S
ker(f,—1) ker( f,,—3)
e N
0 0
\ /
ker( fy) im(f;)
™ A
> M,y M, > M, > 0

ker(f1)

0 0

By the additivity of lengths on short exact sequences, we have length(M;) = length(M;)—
length(ker(f;)) and length(ker(f;)) = length(M,,;) — length(ker(f;4;)) for 1 < i <
n — 2. Finally length(ker(f,—;) = length(M,). These equations combined yield then
the formula.

Suppose that

0 }Remk fk> f2>Rean1 fl}k‘ S 0

is a finite length free resolution of k. Then by the previous exercise and by Example
3.2.9 of the lecture notes we have 1 = Zle(—l)HlQni, but this is impossible since the
right-hand side is an even number.

Suppose that

0_>Renk fk> f2>Ren1 f1>M >0

is a finite length free resolution of M. Then by the previous exercise we have length(M) =
Zf:l(—l)Z+1 length(R)n,. Since length(R) divides the right hand side the result fol-
lows.

This follows from the structure theorem for finitely generated modules over principal
ideal domains. Let R®* —» M be a surjection, which exists as M is finitely generated.
As R is Noetherian, the kernel K is finitely generated too. But then as R is a domain,



K can’t have non-trivial torsion elements. From the classification of finitely generated
modules, we conclude that K = R® for some t. Hence we obtain an exact sequence

0o RS> R¥® 5 M >0

which is thus a finite free resolution of M.
O

Exercise 7. In this exercise R is an integral domain which is not a field; in particular it is
commutative. Recall the definition of an R-module M being divisible: for all m € M and
r € R\ {0} there exists an n € M such that rn = m. In other words, M is divisible if and
only if multiplication by r on M is surjective for every r € R\ {0}.

(1)
(2)

(3)

(4)
(5)

Show that a non-trivial free R-module is not divisible.

Show that Q is not a projective Z-module, or in general Frac(R) is not a projective
R-module.

[ Hint: Define the notion of submodule of divisible elements, and refine (1) by showing
that it is trivial for free R-modules.]

From now on, let M, N be R-modules. Let P, be a projective resolution of M and let
1 : N = N be the R-module homomorphism corresponding to multiplication by a fixed
r € R. Show that 1 induces a co-chain morphism Homg(P,, N) — Homg(P,, N). By
passing to cohomology, one obtains a map Exty(M, 1) : Extp(M, N) — Extp(M, N).
Show that Exty (M, ) is still just multiplication by r on Extyr(M, N). In particular,
it is independent of the projective resolution.

[Remark: One can in fact perform an analogous construction for any R-module ho-
momorphism v : N — L, and thus obtain a map ExtR(M,v) : Extz(M,N) -
Ext»(M, L), which as in Remark 5.4.26 of the printed course notes is independent of
the projective resolution. This makes also Exti(M, —) a functor, while in the course
we only saw that Extp(—, N) is a functor.] 4

Fix r € R, and let ¢ : M — M be the multiplication by r. Show that Extj(¢, N), as in
Definition 5.4.25 of the course notes, is also just the multiplication by r on Extzé(M, N).
Show that, despite Frac(R) being not a projective R-module, if N is an R-module such
that Ann(N) # 0, then Exts(Frac(R), N) = 0 for all i = 0 (note that for P projective,
Ext(P,N) = 0 for all i > 0 by definition).

Proof. (1) In view of the hint in the second point, for an R-module M we define

Div(M):={meM | Vre R\{0} Ane€ N: rn=m}.

One checks easily that this is in fact a submodule of M, and by definition it is clear
that M is divisible if and only if M = Div(M). Now consider a free module R® where
Q is non-empty. As R is not a field, there exists » € R\ {0} which is not a unit.
Let (2,)aco € Div(R®") and suppose that there is an 8 € 2 such that xz # 0. By
definition, we find (y, ) such that rz3-(y,) = (z,). In particular we obtain rzgys = 4,

which implies that r is a unit, contradiction. Thus Div(R®") = 0.

We directly prove the general statement. If by contradiction Frac(R) is projective,
then it is a direct summand of a free module F. But then as Frac(R) is divisible, it
injects into Div(F"), which by (1) is trivial. This is a contradiction.



(3)

Consider the diagram

coo &—— Homp(Py, N) <2 Homp(P,, N) <2~ Homp(Py, N) <— 0

- - -

»++ <—— Homp(P,, N) o Homp(P;, N) o Homp(Fy, N) <— 0

It commutes because post-composition commutes with pre-composition. Notice also
that 1 o — is just multiplication by r on Hompz(P;, N). Now to get the maps induced
on cohomology, we restrict and corestrict to the kernels of the horizontal maps, and
then quotient out the images of the horizontal maps. Under all of these operations,
multiplication by r remains multiplication by r. Hence the induced map Extr(M, )
is multiplication by 7 on Extz(M, N).

We follow the construction of Exty(¢, N) as in Definition 5.4.25 of the printed course
notes. In a first step, we have to lift the map ¢ : M — M to a chain morphism
®, : P, » P,, as in Theorem 5.4.20 of the course notes. Notice that the diagram

P2 P
> Py > P > Py > 0

1 2 2

> Py > Py > 0

p1

where vertical arrows are multiplication by 7, commutes, because multiplication by
r commutes with any R-module homomorphism by definition. As in the previous
point, this then also induces multiplication by r on homology, so it induces the map
¢ : M — M (recall that M is the 0-th homology module of P,). Therefore, if ®,
is multiplication by r on every module of the sequence, then this is a lift of ¢ as in
Theorem 5.4.20.

The next step is to apply Homp(—, N) to the entire diagram above. This will reverse
all arrows, and the vertical arrows will be pre-composition with multiplication by r.
But as again multiplication by r commutes with any R-module homomorphism, the
vertical arrows will again be multiplication by r. As in the previous point, the induced
morphism on cohomology is then also just multiplication by r. Hence Extyr(¢, N) is
multiplication by r on Extyr (M, N).

Let r € Ann(N) \ {0}. Let ¢ : Frac(R) — Frac(R) be multiplication by r, then this
is an automorphism of Frac(R). As functors preserve isomorphisms (explained at the
end), Exty (¢, N) is still an automorphism, and by the previous point it is multiplication
by r on Exty(Frac(R), N).

On the other hand, let ¢ : N —» N be multiplication by r. As r € Ann(V), this
coincides with multiplication by 0. By point (3), we then obtain that multiplication
by r on Extp(Frac(R), N) coincides with multiplication by 0 on Extp(Frac(R), N).
But above we obtained that multiplication by r is an automorphism. Therefore, we
conclude Exty(Frac(R), N) =0 for all i = 0.

Now we explain what is meant by ’functors preserve isomorphisms’. In fact, one can
verify that Ext(idy, N) = idgyi () and Extp(aca, N) = Exty(a’, N)oExty(a, N)
for any M, N, and any R-module homomorphisms o : M — M and o' : M' > M".
This is in fact part of the definition of a (contravariant) functor.
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Now let a : M — M’ be an isomorphism, with inverse o' : M' — M. Then we have
idExet, (vr,n) = Ext%(oz' oa,N) = Extlé(oz, N)o Ext;(oz', N)

and
idgxei (1, Ny = Exth(aoa',N) = Exth(a', N) o Exth(a, N).

Hence Exth(a, N) : Exth(M',N) - Exth(M,N) is an isomorphism with inverse

Extr(a, N). So functors preserve isomorphisms.
O
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Exercise 1. For two short exact sequences

0 —— M, > M,

~
=
~

jen)

and

we say that there is a map between them if there exists morphisms f; : M; — N,, for
1 =4 < 3 and a commuting diagram

0 > M, > M, > M, > 0
\Lfl \sz \Lfs
0 > N, > N, > N > 0.

Show that whenever there is a map between two short exact sequences, then there is an
induced map between long exact sequences of Ext-modules, making the suitable diagram
commute.

Proof. By applying the Horseshoe Lemma 5.5.5 in the lecture notes there exists projective
resolutions P.]v li of M; and P.N “of N; for i = 1,2,3 and a commuting three dimensional
diagram:

M;

0—s P — P 5P 0

0 — M, > M, > M; > 0
— P ——|—— " l » P — 0

By Theorem 5.4.20 in the Lecture notes we can extend this diagram, by extending f; :

M; = N; to a (unique up to homotopy) morphism of chain complexes f, : PM o PN for
1



2

1 =1,2,3. Therefore we have a three dimensional diagram commuting up to homotopy:

0—>P.Ml—>P.MQ—>P,M3—>0

/

0 > M, l > M, l > M, >
—ph—|— pF l s PN — 0
0— N > N, > Ny > 0

Let K be some R-module, we can apply Homp(—, K') to the above diagram, then we get a
diagram which commutes up to homotopy by Remark 5.4.15 and with the backside of the
diagram still having exact rows as explained in (5.6.i) in the proof of Theorem 5.5.6. If we
take cohomology we get an induced morphism f; ; : Ext’(M;, K) — Ext'(N;, K) for every
J 2 0 and 72 = 1,2,3 which commutes with the horizontal morphisms in the diagram by
Proposition 5.4.17. We want to show that these morphisms commute with the connecting
homomorphism (denoted §,; and Jy respectively) appearing in the long exact sequence Prop
4.5.1, i.e., from what has been said above we have a diagram :

Ext'™ (M, K) =2 Ext'(My, K) — Ext'(My, K) — Ext'(M,, K)

l l l Lo

Bxt'™ (Ny, K) =2 Bxt!(Ny, K) — Bxt'(Ny, K) — Ext'(Ny, K)

where only the commutativity of the first square needs to be checked. I.e we are checking
that the long exact sequence of cohomology (Proposition 5.5.1) is functorial. To this end
we revisit the set up of Proposition 5.5.1. We use the notation in Proposition 5.5.1 to
make it easier for the reader. To this end suppose we have a commutative diagram between
cocomplexes, with exact rows:

0 — F. -5 G, 23 H. — 0
e e e
0— Fi s 6L S bl —— 0

Where the structure morphism of the complexes are denoted f;, g;, h; and f,»' , g;, h; respec-
tively (as in Proposition 4.5.1). We want to check that the morphisms ¢; : H'(H,) —
H™Y(F,), 6 : H(H.) » H™'(F!) constructed in Proposition 4.5.1 commutes with the
morphisms induced by ®p, ®5. To this end let x € H'(H,), and let T € H; be a lift of z.
Let y € G; be a preimage under j3; of = then ®¢(y) € Gj is a preimage under §; of @ (z).



The situation is illustrated by the following diagram:

oy Bi
0 —— F, —— G, — H, — 0
% O DY
I y I : 1
1 1
0 > I l > Gy l > H; >
i+1 > i+l i+1 > Gi+1 i+1 \ Hi+1 0
" " l q>/
! o ] : ]
i+1 i+1
0 ? i+1 ? Gi+1 ? Hi+1 — 0

Let now z € Fj,; be such that a;,,(2z) = g¢;(y) (so that ¢;(x) is the class of z inside
H™'(F,)). It is sufficient to show that aj,, (@5 (2)) = ¢i(®4(y)). This follows by some

easy diagram chasing as follow: We have aj,,(®%'(2)) = <I>Z+1(az+1( )), but by definition

we have 04L+1(z) = gl(y) By the commutativity of the diagram @ ' (g;(y)) = gZ(CIDG(y))

Let nowz' € H' (H ) be the image of x under the morphism induced by (I>H As CVH_l(CD "(2)) =

gZ(CIDG(y)) and @, (y) is a preimage under B of ®%;(7), which is a lift of ' to H,, we obtain

that 6;(z") is equal to the class of ®2'(z) inside H*'(F.). The latter is by deﬁmtlon equal
to the image of §,(x) under the morphism induced by @z, which concludes the proof. [

Exercise 2. In this exercise we prove the the two /-lemmas. To this end, suppose that we
have a commuting diagram with exact rows:

Absp Pyo _Byp
UV
fB\Dl

A' f1 y B' f2 y Cl

(1) Show that if @ and ¢ are epimorphisms (i.e. surjective) and d is a monomorphism (i.e.
injective) then b is an epimorphism.

(2) Show that if b and d are monomorphisms and « is an epimorphism then ¢ is a monomor-
phism.

Proof. (1) Let 8 € B', we want to show that there exists 5 € B such that b(8) = . To this
end, since ¢ is surjective there exists v € C such that ¢(y) = fo(8'). By commutativity
we get dfs(7) = fze(y) = faf5(8'). By exactness of the rows fsf5(8') = 0 and hence
f3(7) € ker(d). By assumption ker(d) = 0 and hence (using exactness of the rows)
v € im(f,). Let B, € B be such that fo(8;) = 7. We have fo(b(5;) — ) = 0,
by commutativity and definition of 5; and ~. By exactness of the lower row there
therefore exists o' € A' such that f;(a') = b(8,) — 3. By assumption a is surjective,
so let & € A be such that a(a) = o'. We have bf;(a) = b(3;) = 8 by commutativity.
Let 8 = B, — fi(a), then b(B) = b(B) = b(B) + B = 5. We conclude that b is an
epimorphism.

(2) Let v € C be such that ¢(y) = 0; we want to show that v = 0. By commutativity
we have df;(y) = fsc(y) = 0, and by injectivity of d it follows that fy(y) = 0. By
exactness of the rows we get v € im(f;), so let 5 € B be such that fo(8) = +v. Now



again by commutativity we have féb(ﬂ) = c¢fy(B) = 0 and thus by exactness of the
rows there exists o' € A' such that fi(a') = b(8). Then by surjectivity of a we can also
take a € A with a(a) = o. Thus we get by commutativity bf;(a) = fia(a) = b(8),
and by injectivity of b it follows that f,(«) = 8. But thus v = f5(5) = fof1(«), which

by exactness gives v = (. Hence 7 is a monomorphism.
O

Exercise 3. Prove the following.

(1)
(2)
(3)
(4)

Show that any finitely generated module over a semi-simple ring is semi-simple
Show that any finitely generated module over a semi-simple ring is projective
Deduce that any finitely generated module over k[ G] is projective, if char k | |G|
What are the Ext-groups then for finitely generated k[G]-modules?

Proof. (1) Let ¢ : R® - M be a surjection. Since R is semi-simple so is R®*. Write

(3)
(4)

R®" = D;_, I;, where each of the I; are simple submodules (see Exercise 3 of Sheet
2). Let ¢(I;) = M,, by surjectivity, M = ) . M,;. We will prove that M; is simple or
trivial. As ¢|;, is a surjection I; = M;, we have that M; is isomorphic to —Q/Ki where
K; is the kernel of ¢|;,. But as I; is simple we have either K; = 0 or K; = I;, which
proves that either M, = 0 or M; = I,. Hence M is a sum of simple submodules and
thus semi-simple.

Let R be a semi-simple ring and P a finitely generated R-module. Let p : R®™ - P
be a surjection of R-modules, and let K be the kernel of p. Write R®" = @D, , I; as a
direct sum of simple submodules, and let B € A be a maximal subset such that

Kn@r=0

We claim that K + @D, 5 I, = R®". If it was not the case, there would exist some j ¢ B
such that I; ¢ K + @D, I;. But since [ is simple, [; "N K + @,z I; = 0, contradicting
the maximality of B.

Thus, K+ @,z = R®", and hence the restriction of R®" — P induces an isomor-

phism
P = @ I;

i€B
On the other hand, we also proved that

R"=Ke @1

1€B

so P is a direct summand of the free module R®" (and hence projective).

[ Remark: The technique used in the proof actually comes from a general statement:
a finitely generated module M over some ring R is semi-simple if and only if every
submodule N <p M admits a complement, i.e. a submdule N' <p M such that
M = N @& N'. This can be useful, so it may be worth remembering it.]
We saw in Exercise 3 on Sheet 2 that k[G] is semi-simple if char k } |G|, hence this
follows from the previous point. ‘
In class (Corollary 5.4.24 in the printed course notes) we proved that Extz(P, N) =0

for all ¢ > 0 whenever P is a projective R-module.
O
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Exercise 4. In this exercise we define injective modules and prove Baer’s criterion. Let R
be a (not necessarily commutative) ring; any R-module and any R-morphism appearing in
this exercise will be a left R-module resp. a morphism of left R-modules.

We say that an R-module () is injective if it satisfies the following universal property:
Whenever we have an injective R-morphism f : X <= Y and an R-morphism g : X — (),
then there exists an R-morphism h : Y — ) making the following diagram commute:

We will prove the following:

Theorem (Baer’s Criterion). Suppose that the left R-module Q) has the property that if I is
any left ideal of R and f : I — Q is an R-morphism, there exists an R-morphism F : R — ()
extending f. Then Q) is an injective R-module.

We will prove Baer’s criterion in several steps. Assume that the R-module () satisfies
Baer’s criterion.

(1)

Let X,Y be R-modules, and assume that Y is cyclic (generated by b € Y). Let
f + X =Y be an injective R-morphism. Show that for every R-morphism g : X — @),
there exists an R-morphism h : Y — () making the appropriate diagram commute.

[ Hint: Identify X with a submodule of Y and consider the subset I of R defined by
I={reR:rbe X}. ]

Let X,Y be left R-modules with an injective R-morphism f : X < Y (we identify
X with its image under f). Let b € Y be arbitrary. With a similar approach as in
the previous point, prove that any R-morphism g : X — @ can be extended to an
R-morphism h : X + Rb —» () making the appropriate diagram commute.

Use Zorn’s Lemma to conclude the proof.

Axiom 1 (Zorn’s Lemma / Axiom of Choice). If (P, <) is a partially ordered set
with the property that every totally ordered subset (often called a chain) has an upper
bound, then there exists a maximal M € P. (that is, for N € P, we have M £ N)

[ Hint: Try to think of what it means for one partial extension of g : X — @ to be
smaller than another. ]

Proof. (1) Let I = {r € R|rb € X} where we consider Ra € Rb via f; it is straightforward

to check that this is an ideal. Then the map [ : I —» @ defined by I(r) = g(rb) is a
homomorphism, so we can extend to L : R = @, by the hypothesis. Define h : Rb — @)
by h(rb) = L(r). This is well-defined because if rb = r'b, then » — ' € I and thus
L(r—r") = g((r=r")b) = 0. Also, it is straightforward to check that A is an R-morphism
extending g, so we are done.

As above, let I = {r € R|rb € X} and extend [ : I — Q defined by I(r) = g(rd) to
L: R — Q. Then we can define h : X + Rb —» @ by h(x +rb) = g(x) + L(r). To show
that this is well-defined, assume that « + b = ' +r'b. Then (r—r')b=2'—2 € X
and thus r — 7' € I, which implies

g(x — x’) + L(r — r') =g(x — ac') + g(r(b-— b')) = 0.



Furthermore, it is straightforward to check that h is an R-morphism extending g, so
we are done.
(3) Say that X C Y and ¢ : X — @ is a homomorphism. Consider the set

P={(X,¢) | XcX cY, g: X' >V, glx =g}

We can define a partial order < on P as follows: (X', ¢') < (X", ¢") if and only if
X'c X" and ¢"|'y = ¢. Then if {(X], ¢;)}icq is a totally ordered subset indexed by
some set €2, we can form U;eq fi * [J;eq Ai = @, which then is an upper bound to the
chain. Hence there exists a maximal b : X' — Q, by Zorn’s Lemma.

Now if we have some b € Y — X', we can extend h to X' + Rb, by the previous point.

This contradicts the maximality of h, so we must have X "= Y, and we are done.
O

Exercise 5. Use Baer’s Criterion to show that QQ is an injective Z-module.

Proof. Let I be an ideal of Z, then I = nZ some n € Z. Let g : nZ — Q be a group
homomorphism. If n = 0 then the zero map from Z to Q extends g. Otherwise suppose
g(n) = 3. We can extend f by h:Z — Q defined by h(k) = % for all k. O

Exercise 6. '

(1) Set k = F, and G = Z/pZ. Find all the submodules (i.e. ideals) of R = k[G].
[Hint: To understand F,[Z/;7] in terms of more common rings, it might be a good
idea to look for ring morphisms F,[2] — F,[Z/)7] and investigate both kernel and
image. |

(2) For p = 2, let = denote a generator of G and set M = (z + 1) € k[G]. Compute
Exty(M, M) for all i = 0.

Proof. (1) We define a k-algebra morphism (i.e. a ring morphism that is also k-linear)
® : k[x] = k[G] by mapping = = d,, where §, is defined as in the hint and g € G is
a generator (such a morphism always exists by the universal property of k[x]). Then
notice that

P(a"-1)=(6,)" -1=6p-1=6,,-1=0

and thus (2" —1) € Ker ®. Thus we obtain a k-algebra map ¢ : k:[x]/(xp - 1) = k[G].
Now as the image contains {d,i }o<i<, Which is a k-basis of k[G], we get that ¢ is a
surjective map of k-vector spaces of dimension p. Hence ¢ is an isomorphism.
Now the ideals of k[f]/(xp — 1) are in one-to-one correspondence with the ideals I of
k[z] containing 2 — 1. Notice that 2 — 1 = (z — 1)? as we are in characteristic p, and
thus as k[z] is a PID we obtain that the ideals of k[z] containing z” — 1 are exactly
I; = ((x = 1)) for 0 < i < p. Translating this to k[G], we obtain that the ideals of
k[G] are precisely ®(1;) = ((6, — 1)") for 0 < i < p.

(2) Denote R = k[G]. The map R — M mapping r € R to r(x+1) is clearly surjective. To
compute the kernel, suppose that r(z + 1) = 0. By the isomorphism ¢ of the previous
point, we can view this as an equation inside k[x]/(xQ —1). As F=1=(z+1)° =0,

las modules over k[G] correspond to representations of G over k, we see that something is really wrong

for FP[Z/pz] compared to the case of exercise 3.
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we see that the solutions to the equation are precisely the multiples of x + 1. That is,
the kernel of R = M is again M. Hence we get a free resolution

> R->R->R->M—>0
where all the arrows are just multiplication by z+1. Dropping the M from the sequence

and applying Homp(—, M), and under the identification Hompz(R, M) = M, we obtain
the sequence

ce MM M<0

where again every map is multiplication by z+ 1. But as (z+1)> = 0 in M, every map
is equal to 0, and thus all cohomology groups are equal to M. Thus ExtR(M, M) = M
for all i = 0.

O



EPFL - Fall 2023 Prof. Zs. Patakfalvi
Rings and modules Exercises
Sheet 6 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let R = k[z,y] be the polynomial ring in two variables over an algebraically
closed field k. Recall that an ideal m in a ring R is maximal if it is not properly contained
in any other proper ideal of R. In this exercise you can use freely the Theorem below, which
will be proven later in the course.

Theorem (The weak Nullstellensatz in two variables). Let k be an algebraically closed field.
Every mazimal ideal w in the ring k[x,y] is of the form m = (x —a,y—>b) for some a,b € k.

Show the following:

(1) If M is a finite length module over R, then the quotients of its composition series are
of the form R/(x —a,y—b)

(2) If M is a module such that Ann(M) 2 (z — a,y — b), then Ann(Ext'(M,N)) 2
(x —a,y — b) for every R-module N.
[Hint: Consider the multiplication by 2 — a resp. y —b on M and the induced maps
on ExtR(M, N). Recall also Exercise 7 of Sheet 4.]

(3) If N is any finitely generated module over R, then Ext’ (R/(x —a,y—b) N) has finite
length.
[ Hint: Use the previous point. ]

(4) For every finite length module M and for every finitely generated module N over R,
Ext»(M, N) has finite length.
[ Hint: Use the long exact sequence for a compostion series. |

Proof. (1) Let 0 = My < M; < +-- < M, = M be a composition series. Since @Q; :=
]\41'/]\41._1 is simple we have ); = R/Ann(Qi) by Exercise 1 on Sheet 1. As thus
R-submodules of (); correspond to ideals of R containing Ann(();), we obtain that
Ann(Q);) is maximal. Hence, we conclude by the weak Nullstellensatz.

(2) By Exercise 7.4 of Sheet 4, multiplication by » € R on M induces multiplication by r
on Ext’(M, N). Hence if r € Ann(M ), multiplication by 7 is equal to multiplication by
0 on M, and hence multiplication by r is equal to multiplication by 0 on Ext'(M, N),
and thus r € Ann(Ext'(M, N)). Hence we obtain Ann(M) € Ann(Ext'(M, N)) which
is enough to conclude.

(3) By the previous point Ext’ (R/(x —a,y —b) N) has a natural structure as
R/(x —a,y —b) = k module, and the R-submodules are precisely the k-submodules.

It is therefore sufficient to prove that Ext’ (R/(I —a,y—b) N) has finite length over
k, i.e. is a finite dimensional k-vectorspace. To achieve this, we will show that
Ext’ (R/(x —a,y —b)s N) is a finitely generated R-module. Let P, — R/(x —a,y—b)
be a free resolution. Since R is a Noetherian ring every submodule of R" is finitely gen-
erated, hence we may assume each P, is finitely generated. Observe that Homz(R", N) =
N" is finitely generated for every n = 0. Again using that R is Noetherian any sub-

module or quotient of a finitely generated module is finitely generated, therefore we
1



conclude that Ext’ (R/(x —a,y—b) N) is a finitely generated R-module. This im-

plies that Ext’ (R/(x —a,y —b)s N) is a finitely generated R/(x — a,y — b)-module
and hence a finite dimensional k-vectorspace.

(4) We prove this by induction following the hint. To this end let 0 = My < M-+ <
M, = M be a composition series, we note that since M, is simple we have that M, =
R/(x —a,y — b) and thus Extr(M;, N) is of finite length by the previous point. We
have a short exact sequence

0 > M, > M, > Myfpr, — 0
which induces an exact sequence
v —— Exty (Mo ppy, N) — Extp(My, N) — Extip(M;, N) — - .

By passing to the kernel on the left and the image on the right (since being of finite
length is stable under quotients and submodules) we can assume that Exty (M, N) is
the middle term in a short exact sequence with kernel and image of finite length, but
then it follows that Extr(M,, V) is of finite length. We can now repeat the argument for
M and so on and so forth. By induction, this proves that Ext(M, N) = Ext%(M,, N)
has finite length for all ¢ = 0.

OJ

Exercise 2. Let R = k[z,y] be as in the previous exercise (k is algebraically closed). We
say that a finite length module is supported at (z —a,y—b) if only R/(x —a,y — b) appears
as quotients in the composition series. Show that if M is a finite length module supported

at (z — a,y — b), then Ext (M, R/(x —d,y- b’)) =0 for all (a',b') # (a,b).

Proof. We first show that Ext% (R/(x —a,y—1b); R/(x —a,y— b')) =0foralli = 0. By a
similar argument as in Exercise 1 of this sheet (by using points (3) and (4) of Exercise 6 on
Sheet 4) we have that both (z —a,y—b) and (z—a',y—b) are included in the annihilator of
Exty (R/(x —a,y—1b) R/($ —a,y— b')). Therefore, the ideal (z —a,y —b) + (z —d',y —
V') = R is in the annihilator of Ext% (R/(x —a,y—b) R/(x —a,y— b')), which implies
Extp(R/(c = a,y = b), R/(z = a',y = b)) = 0.

Let 0= My < M, -+ < M, = M be a composition series. Denote N = R/(z —d',y —b').
We can now conclude by first looking at the short exact sequence

0 >]\4—1 >M2 >M2/M1HO

which induces an exact sequence
o — Exty (Ma/ ppy, N) — Extp(My, N) — ExtRp(M;, N) — - .

From here we see that Ext%(M,, N) = 0, since the other two modules are trivial by what
has already been proven. We continue, upon replacing M; with M, and M, with Ms, we can
conclude in an analog way that Extyp(M;, N) = 0. We continue step by step, to conclude
by induction that Ext% (M, R/(x —a,y— b')) = Extlé (Mn, R/(I —a,y— b')) = 0. O
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Exercise 3. Show using the long exact sequence of cohomology that if Ext}{(]\/[, N) =0,
then every extension 0 N K M 0 splits.

Proof. Denote by ¢ the injection ¢ : N - K. By the long exact sequence of Ext-modules,
we obtain that

0 — Homp(M, N) — Homp(K, N) — Homp(N, N) —=0
is exact. In particular, there exists ¢ € Hompg (K, N) such that goi = idy. Thus by Exercise
3 on Sheet 4, the sequence splits. 0]

Exercise 4. # Let R the a commutative ring, and let M be an R-module. Define an
R[x]-module M[z] by the following datum:

o as an abelian group, M[z] = @jzo Mz’

o R acts component-wise, and x acts as usual (i.e. x - (ma’) = mxj+1);
(informally, M[z] corresponds to polynomials with coefficients on M). Furthermore, for
any R-module N, we see N as an R[x]-module by letting = act as 0.

Fix two R-modules M and N, and prove the following points:

(1) Show that Hompp,j(M[z], N) = Homgz(M, N) as R-modules.
(2) Show that if M is a projective R-module, then M[x] is a projective R[x]-module.
(3) Deduce from the two previous points that for all 7 = 0,

Extp,(M[z], N) = Extyp(M, N)
as R-modules.
(4) Show that for all i = 0, we have a short exact sequence
0 — Exty(M, N) - Ext

A (M, N) = Extig (M, N) = 0
of R-modules.
Hint: Use an adequate long exact sequence in Ext-groups.
(5) Conclude that projdimpgp, (M) = projdimpg(M) + 1.
(6) What is the projective dimension of the k[z1, ..., z,]-module

k[xlw..,xn]/(xlw‘.’xn)?

Proof. (1) If f:M — N is a morphism as R-modules, we have an induced morphism
fztM[x] = N, defined as

I (ij:rj) = Z:Ejf(mj).

It is straight-forward to check that f, is a morphism of R[z]-modules.
Conversely, given g: M[x] = N a morphism of R[x]-modules, define g|;;: M —» N
as
glar(m) = g(ma").
Again, it is straight-forward to check that this defines a morphism of R-modules, and
one readily sees that these two operations are inverses of each other.

Hence, we have a bijection Homg(M, N) = Hompp,j(M[x], N), and checking that
it is R-linear is again straightforward.
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(2)

We use the same notations as in the previous point. Consider a diagram of R[x]-
modules
N

b
M[z] -2 N,
where 1 is a surjection. Then by the previous point, we have a diagram of R-modules
N
b
My N
so by projectivity of M, there exists a morphism f: M — N such that the diagram
N
Sk
M 2y N

commutes. But then, again by the previous point, the diagram

N
2l
M[z] -2 N'
also commutes. Thus, M[x] is a projective R[xz]-module.
Let P, —» M be a projective resolution of M. Then by the previous point, P,[z] —
M{[x] is also a projective resolution (checking exactness is straightforward, since for

any R-module M', M'[z] is simply an countable direct sum of copies of M' as an
R-module). Hence,

Extppa(M[z], N) = H' (Homp, (P.[z], N)) = H'(Homg(P,, N)) = Ext'(M, N).
Consider the short exact sequence
0— M[z]> M[z] » M -0

of R[z]-modules, where the first map denotes multiplication by z, and M is seen as
an R[x]-module by letting x act as zero on M. Applying the long exact sequence in
Ext-groups, we obtain

> Extiyp (M[z], N) =2 Exti, (M[z], N) — Exth, (M, N) j

i i 5,

[e Extya(M[2], N) — Exti(M[2], N) —=— ...

where 7.: Ext;%[x](M[x], N) - Exté[x](M[x], N) denotes the map induced by apply-
ing Extiz[x](—, N) to the multiplication by 2 on M[x]. Combining parts 3 and 4 of
Exercise 7 in sheet 4, we see that &7 also comes from applying Exti%[x](M[x], —) to the
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multiplication by x on N. However, x acts as zero on N, so 5i = ( for all 7 2 0. Thus,
we have short exact sequences

0 = Extppay(M, N) - Exty,(M[z], N) = Extppn(M[z], N) = 0.
We then conclude by te previous point.

(5) This is immediate from Exercise 4.2 on sheet 4.

(6) We show this by induction on n. If n = 0, this is immediate, so assume that the result
holds for n—1 (withn = 1). Let R = k[zy,...,z,1]and M = k[xy, ..., zo [ (21, ..., 20 1)-
Then as previously, we can see M as an R[x, ]-module by letting z,, act as zero, so by
the previous point and induction,

projdimgr, (M) =n-1+1=n.
Note that M, as an R[z,] = k[, ...,z,]-module, is isomorphic to

klxq,... ,mn]/(x17 )
so the proof is complete.
O

Exercise 5. Let R = k[, y] and consider the R-module M = k[, y]/(L y)- Consider the
free resolution:

0—=P=R—2ReR=P~R=P - Mm——0
L ——(y,~2)
(L) ———u

(0,1) ———y
Set M = N. Consider
(1) ¢1: P> N g%ven by ¢1(a,b) = fy(a),
(2) ¢p: PL = N given by ¢y(a,b) = fo(b).
Determine the isomorphism classes of the middle module of the Yoneda extension associated

to the classes of ¢, @, inside Extp(M, N) in Theorem 5.6.6 in the course notes.

[ Note: these modules are coker | P, ((m—’f;) N @& PO) for © = 1,2 as in the sequence 6.5.7 in

Notation 5.6.5 in the course notes. ]

Proof.
The cokernel in question is the cokernel of the map R @ R — k @& R where (a,b) goes
to (a(0,0),ax + by). Let’s investigate the elements in the image of this map, we have
(a(0,0),az +by) = a(l,z) +b(0,y). Therefore, the image is the submodule M := R(1,z) +
R(0,y). We can describe this pretty concretely: we have

M = {(a,az +p) |a€k, pe (2’ y)}.
We use @ to denote the class of an element in a quotient. By our description of M, every
element (a, f) of K® R/ ) can be written as (0, foo + (fio — a)x) where f;; denotes the
coefficient of z'y’ inside f (any term of higher order can be killed by p € (z°,y)). From this
description it is straightforward to see that (0,1) and (0, ) form a k-basis of k¥ ® R/,
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Below we present three different solutions showing that this cokernel is isomorphic as an
R-module to R/(xzjy).

(1) Fast and slick. We use ® to denote the class of an element in a quotient. Consider the
element (1,1) € ¥ ® R/ 7, we have y(1,1) = (0,y) = 0 and hence y € Ann (R - (1, 1))

Similarly z°(1,1) = (0,22) = z(1,z) = 0 while 2(1,1) = (0,z) # 0, hence (z°,y) =
Ann (R - (1, 1)) We therefore have an isomorphism 22/(32 ) = R - (1,1) defined by

1+ (1,1). We claim that in fact R - (1,1) = K® R/ps. Indeed, we have (1,1) =
(0,1-z) and 2(1,1) = (0,z), so R - (1,1) contains the k-basis (0,1) and (0, z) of
k& R/M-

(2) Explicit construction of the inverse of the isomorphism above. We define a morphism
ke R/M - R/(f, y) by showing that there is a well-defined morphism of R-modules
ko R - R/(ﬁ, y) such that (1,2) and (0,y) are in the kernel. To this end, consider
the morphism R — R/(x27y) defined by f + fz; as x and y are in the kernel,

this induces an R-module homomorphism £ — R/(xQ’y) defined by a ~ az. We
also have the R-morphism R — R/(ﬁ’y) given by f ~ f-(1—1x), and one sees
f+(1=z) = f— fox. Hence we obtain an R-morphism k & R — R/(f’y) given
by (a,f) » f—(a— fo)x. As (1,z) and (0,y) are mapped to 0, this induces an R-
morphism k@ R/ — R/(xz’y), given by (a, f) — f—(a— fy)x.

Now this is surjective as (1,1) is mapped to 1 which is a generator. But both sides
are k-vector spaces of dimension 2, and thus it is bijective, so in fact an isomorphism
of R-modules.

Remark: We could also have used (a, f) — f — ax, but this is not the inverse of the
isomorphism in (1); it corresponds instead to the isomorphism R/(xQ’ y) = k& R/M
defined by 1 — (0,1).

(3) Hands on approach. There is a natural isomorphism of R-modules from ke R/M to
ke k[ﬁ]/]{;[x] - (1, ) defined by mapping the variable y to zero (the R-module struc-
ture of the latter is given by y acting trivially). Over k, the module k¥ @ k[ﬁ]/]g[x] (1,z)
can easily be seen to have a basis given by (—1,0),(1,1). Recall that multipli-
cation by x on first coordinate is zero, hence z(1,1) = (0,z) = (-1,0) modulo
(1,2) and z*(1,1) = (0,2°) = z(1,z) and hence zero modulo (1,z). Therefore,
ke k[ﬁ]/]{;[x] -(1,z) has a natural structure of k[m]/xZ = k[e]-module. Define

a k[e]-modules morphism k[e] — k& k[x]/k[x] .(1,z) by mapping 1 = (1,1),

we check that € — z(1,1) = (=1,0). In particular, it is surjective as the image
contains a k-basis. Since the dimension over k is two for both modules it is an
isomorphism. Now adding #’s to each side and quotienting it out so that noth-
ing changes, the above isomorphism gives an isomorphism of R-modules composition

Kz, vl /(o2 y) = @Kz, 9]/ R(1, 2) + R(0, y). defined by T — (1,1).

Interchanging the variables x and y in the above argument, we find the module associated
. 2
to [ng] 15 k[.f,y]/(l’,y )



[ Remark: From the above, we have that the extension corresponding to [¢;] is given by
0—-k— k[x7y]/(x2,y) -k - 07

where the first morphism sends 1 = —z and the second x — 0. Similarly, the extension
corresponding to [¢,] is given by

0—-k— k[zvy]/(x,yz) —>]€—>0,

where the first morphism sends 1 = —y and the second y — 0. These are not isomorphic
as elements of EXt}q(k, k) since there is no R-linear isomorphism from k[%fy]/(x,y?) to

k [xvy]/(xz’y). Indeed, for any such f, f(y) = yf(1) = 0 (they are however the same as
extensions of k-algebras, by mapping = + y).] O

Exercise 6. Let R = K[z, y].

(1) Show that Ext' ((x,y), R/(x7y)) # 0.
(2) Construct a finitely generated module M such that Tors(M) € M is not a direct
summand.

[ Note: For M finitely generated over a PID R, Tors(M) € M is always a direct summand
by the fundamental theorem for finitely generated modules over PIDs.]

Proof. (1) Identity k = R/(;U7 y) as usual. As seen on several occasions in this course, we
have a projective resolution

0->R->R&R- (r,y) >0

where the morphisms are given by r — (—ry,rx) and (ry,ry) ¥ iz +ryy, respectively.
To calculate Ext' ((x,y),k) we apply Hom (—, k) and calculate the cohomology in
degree one of the corresponding complex. That is, the cokernel of £ ® k — k given by
(ri,7m9) = —ryy + rox = 0. Here we used that multiplication by x and y are zero. In
particular we obtain

Ext' ((z,y),k) = k # 0.
(2) We prove the following more general statement:

Lemma 0.1. Let R be a domain, N a torsion module (i.e. for alln € N, there ezists
a non-zero r € R such that rn =0) and L a torsion-free module. Let

0O->N->M->L-0
be a non-split short exact sequence. Then Tors(M) € M is not a direct summand.

Proof. We may assume N € M and L = M [N (this is just to make notations simpler).
First, note that Tors(M) = N. Indeed, since N is torsion, N € Tors(M). Conversely,
given m € Tors(M), let » € R be non-zero such that rm = 0. Then rx(m) = 0, where
7wt M — M|N denotes the quotient map. Since L is torsion-free, w(m) =0, sor € N.

Now, assume N = Tors(M) was a direct summand. Then there would exist a
morphism M — N such that the composition N € M — M is the identity, or in
other words there exists a section of N € M (see Exercise 3 on sheet 4). By this same
exercise, this implies that the sequence

0->N->M->MIN->0

is split, which is a contradiction with our hypotheses. O



To conclude, we have found that Ext' ((z,y),k) # 0 so there exists a non-split
extension

0o koMo (,y) >0

We are done by the previous lemma.
OJ

Exercise 7. Throughout this exercise, R will be a ring and M, N will be R-modules. We
will now see another way to compute the Ext-modules than the one we saw in the lectures
(one may say a ’dual’ way). To do so, we need the following Lemma, which you may use
without proof.

Lemma 1. For every R-module N there exists an injective R-module homomorphism N — [
where I is an injective R-module.

(1) Using the above Lemma, show that any R-module N admits an injective resolution.
That is, there exists an exact sequence

—1 .0

i 0 A 1
0— N L= 1" 51—

where I” is an injective R-module for all b = 0 (the numbers in superscript are just
indices, not exponents of any sort).
(2) Show that an R-module I is injective if and only if Homg(—, I) is exact.
[ Reminder: By Lemma 5.2.2 of the lecture notes Hompg(—, I') is always left exact. ]
(3) Fix a projective resolution P, - M and an injective resolution N < I°. Consider the
commutative diagram

" d
0 — Homp(M,I") s Homp(Py, I') — Homp(Py, I') — -
/\5—1 0 /\50,0 /\51 0
0 d-1,0 0 do,o 0
0 % HOHIR(M7I ) > HOIIlR(Po,] ) % HOHIR(Pl,I ) % oo
80.-1 01,-1
Y
do,-1
0 > Homp(Py,, N) —— Homp(P,,N) — ---
0 0
where d,;, = — © poyy and §,, = i’ o — for all a,b = —1. Briefly justify that this is
indeed commutative, and that all columns and lines of the diagram which are not blue

are exact.
(4) Show that H°(Homp(M, 1)) = H*(Homp(P,, N)).
[ Hint: Show that their images inside Hompg(P,, I") coincide.]



(5)

Show that H' (Homp(M,I")) = H'(Hompg(P., N)).

[Hint: Let C° := Homp(Py,I°) and C' = Homp(P,, I°) & Homp(Py, I'), and let
A’ : ¢ 5 ¢ be the map sending = € ° to (doo(z),000(x)) € C'. Show that
the cohomology groups in question both embed into coker(Ao) and that their images
therein coincide. ]

[ Remark: One can generalize the above results and prove that in fact H'(Homp(M,I")) =
H'(Homp(P,,N)) for all i = 0, and thus the Ext-modules may also be computed by using
an injective resolution of the second module. To do so, one defines the modules C"™ :=
D v Homp(P,,I") and connecting maps A™ : C™ — C™"" similar to A’, where one
replaces d,, by (=1)%,, to ensure A™" o A™ = 0. We thus obtain a complex C*, and
one can then prove that H (Homp(M,I*)) and H'(Homg(P,, N)) embed into H*(C"*) with
equal image. ]

Proof. (1) By the Lemma, there exists an injective map i ' : N < I° with I° injective.

Denote I~ = N for convenience. For b = 1, let I’ be an injective module such that
.b—
there exists an injective map coker(I"> —— I°™') o I°, and let i’"" be the composition

.b-2
"' = coker(I"? 2= I"™") & I". Then it is straightforward to verify that

0 >Nz>IO z>Il

~

is an injective resolution.
Suppose that I is injective, and let

0—sA—22spB-Ly0

~
o

be an exact sequence of R-modules. To verify that

0 — Homp(C, 1) —2s Homp(B, I) —2% Homp(A, 1) — 0

is exact, it suffices to verify that — o « is surjective, as Homp(—, ) is left exact by
Lemma 5.2.2. So let ¢ € Homp(A, I') be arbitrary. Then we have a diagram

0 sy A2 B

|

I

and thus by definition of I being injective, there exists ¢ : B — I making the diagram
commute. This precisely means (— o a)(v¢) = ¢, so — o « is surjective.
Conversely, suppose that Hompz(—, I) is exact, and suppose that we have a diagram

of R-modules

0 v X <Ly

Q

1.

Then as Homp(—, I) is exact, the map —o f : Hompg(Y,I) —» Homp(X, I) is surjective.
In particular, there exists h : Y — [ such that h o f = g, and thus a commutative
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diagram

al
~
~

N

A
which proves that [ is injective.
Exactness of the non-blue rows follows as they are obtained from applying the exact
functor Homp(—, Ib) to the exact sequence P, = M — 0, and exactness of the non-blue
columns follows as they are obtained from applying the exact functor Homp(P,, =) to
the exact sequence 0 = N — I°. The diagram commutes as vertical arrows are given
by post-composition and horizontal arrows are given by pre-composition, and these two
operations commute by associativity of composition.
Let ¢ -1 € Ker(dy —1) be arbitrary. Then by commutativity we have dy 00 —1(¢ -1) =
0, and so by exactness there exists ¢_; o € Hompg(M, 1) such that d_10(¢-10) =
8o,-1(do_1). This shows that d_, o(H" (Hompg(P,, N))) € 8o_1(H’(Homg(M,1.))),
and a completely symmetric argument yields also the reverse inclusion. We conclude
by injectivity of d_; o and dg _;.
We employ the notations of the Hint. To construct a map H'(Hompg(P,,N)) —
coker(A"), we have to verify that if ¢1.-1 € im(dy -1), then (01 _1(¢1-1),0) € im A,
Let ¢g -1 € Hompg(Fy, N) be such that ¢; 1 = dy —1(¢o-1). By the commutativity and
exactness properties of the diagram, it is straightforward to verify that A0(50,_1 (¢o.-1)) =
(61-1(¢1,-1),0), and thus the latter is in the image of A, Therefore, the composition
Ker(d; 1) = Hompg(P,, N) < C" — coker(A) factors through H' (Homp(P,, N)),
i.e. we obtain a map o : H (Homp(P., N)) — coker(A") given by mapping the class
of ¢ -1 € Ker(d; 1) to the class of (65 -1(¢1-1),0).
Now we verify that « is injective. To do so, suppose that ¢;_; € Ker(d;_q) is
such that (8;-1(¢1-1),0) € im(A°); we have to show that then ¢1.-1 € im(dy 1)
Let ¢oo € Homp(P,, I°) be such that Ao(qﬁo,o) = (01-1(¢1.-1),0). In particular,
we have g o(¢00) = 0, so by exactness there exists ¢y _; € Homp(Fp, N) such that
$0.0 = 60,-1(¢ -1). Hence we obtain

51,—1(9251,—1) = do,o(%,o) = d0,0(50,—1(¢07—1)) = 51,—1((10,—1(9250,—1))7

and so by injectivity of 6; _; it follows that ¢y -3 = dy —1(¢0 -1). So ¢1 1 is in the image
of dy_1, and thus « is injective.

Now by a completely symmetrical argument, there exists and injective map

B : H'(Homp(M,I")) — coker(A"), mapping the class of ¢_11 € Ker(d_y1) to the
class of (0,d_y1(¢)_11). So what is left to show is that the image of « is the same as
the image of 5. To this end, let ¢y _; € Ker(d; _;) be arbitrary. Then by commutativity
we have d; 0(01-1(¢1-1)) = 0, and so by exactness there exists ¢y € Homp (P, I°)
with dyo(¢00) = 01-1(¢1-1). Then notice that

d0,1(50,0(¢0,0)) = 51,0(d0,0(¢0,0)) = 51,0(51,—1(¢1,—1)) =0

and thus by exactness there exists ¢_,; € Hompg(M, I') such that doy1(¢p-11) =
80.0(®0,0). By a similar string of equations as above, we obtain d_; 5(6-11(¢-11)) = 0,
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which by injectivity of d_;, gives ¢_;; € Ker(d_;1). Now we verify that a(¢,_; +
im(dy -1)) = B(=¢-11 +1im(d_10)). To this end, notice that

AO(%,O) = (do,o(%,o),fso,o((bo,o)) = (51,—1(%,—1)7d—1,1(¢—1,1)) = (51,—1(¢1,—1)70) - (O7d—1,1(—¢—1,1))-

Thus the classes of (d;-1(¢1-1),0) and (0,d_; 1(—¢-11)) inside coker(A”) coincide,
which proves a(¢; -1 +im(dy—1)) = B(—=¢-11 +im(d_1)). We hence conclude that
ima € im 5. By a completely symmetrical argument we also obtain the reverse inclu-
sion, and thus we are done.

O
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Exercise 1. Let F' be an algebraically closed field, and let I, J be ideals of R = F[xy, ..., x,].
Prove that VI € v/J if and only if V(J) € V(I).

Proof. Suppose that VI € v/.J. Note that V(v/.J) = V(J) because the power of a polynomial
and the polynomial itself have the same vanishing locus. Hence, if P € V(J) then f(P) =0
for all f € vJ. But then f(P) =0 for all f € I because I € VI € +/J, and so P € V(I).
Thus V(J) € V(I).

Now suppose that V(J) € V(I). Then I(V(I)) € I(V(J)), since f € I(V(I)) iff f
vanishes on V(I), but in particular then f vanishes on V(.J). By the Nulstellensatz this
implies that VIc V. [

Exercise 2. Let F' be an algebraically closed field, and let I, J be ideals of R = F[xq, ..., x,].
Show that

(HVI)uV(J)=V{InJ)=V(IJ])

Q) VI)nV(J)=V(I+J)

Proof. (1) First we show that V(I)uV(J)cV(INnJ)cV(IJ). AsIJcInJclI, by
the previous question V(1) € V(I nJ) € V(IJ) and so by symmetry V(I) U V(J) €
V(InJ)cV(IJ).

For the other inclusion, suppose conversely that there exists P € V(IJ) \ (V(I) U
V(J)). As Pisnotin V(I)uU V(J) we can find f € I such that f(P) # 0 and g € J
such that g(P) # 0. But then (fg)(P) # 0 and fg € I.J. This contradicts P € V(I.J).

(2) AsT €I+ J wehave V(I+J)c V(I). Soby symmetry V(I +J)cV(I)nV(J).
Conversely suppose P € V(I)nV(J). Then f(P) =0 for every f € [ and g(P) =0
for every g € J, hence (f + g)(P) =0 forevery f+g€ I+ J. Thus Pe V(I +J)
and we conclude V(I +J) =V({I)nV(J)

Remark: Let ([;);es be a collection of ideals of R = F[xy,...,x, ], where ¥ is an infinite
indexing set. The same argument as in point (2) above shows that (), V([;) = V(3 LL).
However, it is not true that in general | J, V([;) = V([), ;). For example, let R = C[xz],
¥ =Nand I, = (z —n). Then J, V(2 —n) = Nand V([),(z —n)) =V(0) =C. O

Exercise 3. Let R be a commutative ring, and let I, J be ideals of R. In both Spec(R)
and m-Spec(R), show that

() V(IY)uV(J)=V({InJ)=V(IJ)

) V() nV(J)=V({I+J)

Proof. (1) Again, since IJ € InJ S I, V(I)<cV(InJ)<c V(IJ). Doing the same for J,
we deduce that
V(D) uV(J)SV(InJ)cV(IL])
so we are left to show that V(IJ) € V(I) € V(J). Let p be a prime ideal containing
IJ, and assume by contradiction that both I ¢ p (let z € I'\p) and J € p (let y € I'\p).

Since p is prime, xy € I.J \ p, which contradicts that I.J € p.
1



(2) Since I € I+J, V(I+J) € V(I). Doing the same for J gives V(I +J) € V(I)nV(J).
On the other hand, if p contains both I and J, it contains I + J, so V(I) nV(J) <
V(I+J).

[

Exercise 4. o Let R, S be commutative rings, and let f : R — S be a ring morphism.
Show that there is an induced continuous map Spec(S) — Spec(R).

o Let R bearing and I an ideal. Show that the morphism Spec(R/I) — Spec(R) induced

by the quotient map corresponds to the inclusion of the closed subset V(1) € Spec(R).

Proof. o Let 0 : Spec(S) — Spec(R) be defined by 8(p) = f~'(p) (recall from basic ring
theory that the preimage of a prime ideal is always prime). To show the continuity
of 0, we show that the preimage of closed subsets is closed. Let V(I) € Spec(R) be
a closed subsets: we claim that 07 (V(I)) = V((f(I))). If p € V((f(I))), then in
particular p 2 f(I), so 6(p) = f~"(p) 2 I.

Conversely, if p € 07 (V (1)), then I € 6(p) = f~*(p), and hence f(I) € p. Since p is
an ideal, we deduce that (f(I)) € p so we conclude.
o This is an immediate consequence of the correspondence theorem.

O

Exercise 5. Prove that Z = {(v*,v*v,uv”,v") : u,v € C} ¢ C* is an algebraic set (i.c.
there exists an ideal I of C[xy, x5, x3, 4] such that Z = V(I)). Find I(Z).
[ Hint: Make sure you have everything!]

Proof. First we prove that Z is an algebraic set. To start, let R = Clw,x,y, z]; by trying
around a bit one finds that the polynomials R wy, y2 —xz and wz — xy vanish on Z. So
if I := (2" —wy,y” — vz, wz —xy) € R, then Z € V(I). We are now going to prove that
Z = V/(I), and hence that Z is algebraic. In order to do so, let P = (xg, 2, 25, 23) € V(I)
be arbitrary. Now notice that
3 xQ—wy wz—zry 2
L1 = Toli1Tz2 = Tods,

where the polynomial over the equality sign indicates which equation is used. Similarly, we
have

3y -z wz—zy 2

Ty = T1XoTyz = XoTs.
Therefore, if 2y = 0, then z; = 5, = 0 as well, and hence by choosing any v € C such that
VP = x3 we see that P € Z. Similarly, if x3 = 0 then x; = x5 = 0 and by choosing any u € C
with u® = xo we obtain P € Z. Hence we may suppose that xoxs; # 0.
Now let @, € C \ {0} be such that z, = 4" and 23 = 0°. By substituting this into the
above two equations, we obtain that there exist «, 5 € C such that o’ = 53 =1 and

~~2

~2~
Ty =au v and x5 = fuv.

Now notice that

~,

~3~3 ~3
UV = XgTy = 1y = afUV

and so as uv # 0 we obtain a8 = 1. So by introducing v = au and v = v, we obtain
2o = u’, 3, = uv, 9 = wv” and z3 = v°. Hence P € Z, so we conclude that Z = V(I), and



thus Z is algebraic.

Now to finish the exercise, we are going to prove that I = I(Z); by the above we already
know I € I(Z). Let us investigate the class f + I of a polynomial f € R. By using the
equation xy —wz € I, we may suppose that no monomial in f contains both z and y. Then
by using the equations x° — w z,y3 —wz’ € I, we may assume that no monomial in f is
divisible by 2° nor by y3. Finally, by using the equations 2’ — wy,y2 —xz € I, we may
suppose that no monomial in f is divisible by z° nor yz. In conclusion, we have that for
every [ € R there exist pg, p1,ps € Clw, z] such that

f+1=py+axp +ypy+ 1.

Now in order to prove the inclusion of I(Z) inside I, let f € I(Z) be arbitrary. Consider
the C-algebra morphism

@:C[w,m,y,z]ﬁC[u,v]
3 2 2 3
wWHe U, TP uUY, YU, 2.

Then as f € I(Z), we have that ®(f) vanishes on every point of C*, and thus ®(f) = 0.

In particular, we have R wy,y2 —xz,wz —xy € Ker®, and so I € Ker ®. Now by the
argument in the beginning of this paragraph, there exist po, p;, p2 € Clw, 2] and g € I such
that f = py + xp; + yps + ¢g. Hence, as ®(f) = ®(g) = 0, we obtain

0= ®(po + zp1 + yp2) = po(u’,0°) + opy (v, 0”) + wv’py (u®, 0*)

inside C[u,v]. This then shows that py = p; = p, =0, and thus f =g € I. As f € I(Z)
was arbitrary, we conclude I(Z) € I, and thus I(Z) = I.

It is quite natural to expect the dimension of an algebraic set to be equal to the dimension
of the space it is embedded into minus the number of generators of its ideal, as in linear
algebra. This example shows that this idea is false in general.

O

Exercise 6. Let I’ be an algebraically closed field, and X € F an algebraic set with ideal
I = I(X). Define the coordinate ring A(X) of X to be A(X) := Fly,... >9Cm:|/]. Notice
that every element of A(X) naturally defines a set-map from X to F, and thus one may
think of A(X) as the set of global algebraic functions on X.

() If X =V({) < F" and Y = V(J) € F" are algebraic sets with ideals I = I(X)
and J = I(Y), then a morphism f : X — Y is defined to be a set-map from the
points of X to the points of Y, for which the following holds: there exists a vector
(hi,...,hy,) of polynomials h; € F[xy,...,x,,], such that for every a € X we have
fla) = (hi(a), ho(a), ..., h,(a)) €Y,

Show that whenever there is a morphism f : X — Y of algebraic sets as defined
above, there is a unique homomorphism of F-algebras A\; : A(Y') = A(X), such that



the following diagram commutes.

yi—h;
Flyi oo yul == Flay, o 20]

L,

A(Y) A(X)

Here the vertical arrows are the quotient maps stemming from the definition of A(X)
and A(Y), and the top horizontal map is given by sending y; to h;(x1, ..., x,,).

(2) With setup as above, show that if there is a homomorphism of F-algebras A : A(Y') —
A(X), then there is a morphism f : X — Y such that A = \;. Furthermore, all choices
of f are the same (as set-maps from the points of X to the points of V).

Proof. (1) Let I = I(X) and J = I(Y). Let ¢ be the given F-algebra homomorphism
Flyi, ..., yn] = Flaq, ..., 2], sending y; to h;.

If the homomorphism A = A exists, the diagram implies that for any p + J € A(Y)
we must have \(p + J) = ¢(p) + I. So A is unique if it exists.

In order to show that it exists, let 7y ¢ Fx,...,z,,] = A(X)and my ¢ Flyy,...,y,]
A(Y) be the projection maps. We want to show that 7wy o ¢ factors through A(Y’),
and to this end we want to show that J € Ker(mx o). Solet p € J be arbitrary. Then
o(p) = p(hi(xy,...,20), ..., hp(xq,. .., 2,,)). Hence, if we evaluate ¢(p) at a point
a € X, we obtain ¢(p)(a) = p(hi(a),...,h,(a)) = p(f(a)). But then as f(a) € Y
and p € J, we obtain ¢(p)(a) = p(f(a)) = 0. Hence ¢(p) vanishes on every point of
X, and thus ¢(p) € I. Hence p € Ker(nx o ¢), and thus J € Ker(nx o ¢). Therefore,
there exists a morphism of F-algebras \ : A(Y) —» A(X) such that 7x 0 ¢ = X o 7y,
i.e. the above diagram commutes.

(2) Now suppose we are given a homomorphism A : A(Y) - A(X). For j = 1,...,n, choose

h; € Flzy,...,x,]such that X(y;+J) = h;+1. Let ¢ : Flyy,...,yn] = Fl1,..., 2]
be defined as before, i.e. y; is mapped to h;.
Define the morphism of algebraic sets f : F'" = F" by f(a) = (hi(a), ..., h,,(a)). We
must show that if ¢ € X then f(a) € Y. For this it is enough to show that p(f(a)) = 0
for all p € J, by the Nullstellensatz. But as in the previous point, we have p(f(a)) =
p(hi(a), ..., hy,(a)) = ¢(p)(a). So if we can show that ¢(p) € I(X) then we are done.
But now notice that by definition of h4,...,h, we have ¢(p) + I = X(p+ J) =0, so
#(p) € I. Hence f : ™ — F" restricts and co-restricts to a morphism of algebraic
sets f : X = Y. By comparing with the previous point, it is then straightforward to
check that A = Ay, as both send y; + J to h; + I.

Now we must show that two choices of lifting k; and h; of h; result in the same map
on points of X. This holds because h; = h; + p; for some p; € I, as the lifting is well
defined up to addition of an element of I, but p; vanishes on all points of X. Hence
hi(a) = hi(a) for all a € X, so (hy,...,h,) and (hY,..., h)) define the same set-map.

OJ

Exercise 7. Let I’ be an algebraically closed field. Let X be an algebraic set in F" with
ideal I(X) = I. Prove that points of F" contained in X are naturally in bijection with

maximal ideals of the coordinate ring A(X) = Flay, ..., mn]/]



5

Proof. Given a point P = (a4, ...,a,) € X, let mp = (z; — ay,...,x,, — a,). Since P € X,
we have I € mp by Exercise 1. Thus mp is a maximal ideal containing I(X), and hence
defines a maximal ideal mp of A(X) = Flzy, ..., fUn]/[ Conversely, a maximal ideal m of
A(X) = Flzy, -~-737n]/] is equivalent to a maximal ideal m of F[zy,...,2, ] containing I.
By the Weak Nullstellensatz m = (2, — a4, ..., x,, — a, ), for some a; € F. The containment
I € m implies that P = (a4, ...,a,) € X, and thus m = mp. Thus the set of maximal ideals
of A(X) is given by {mp | P € X}. Finally, suppose that mp = mg for P,Q € X. Then
necessarily mp = mg and thus {P} = V(mp) = V(mg) = {Q}, and thus P = Q. Thus there

is a bijection between X and the set of maximal ideals A(X).
0
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There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let Rbe aringand let M, K, L and N be R-modules. Assume that Extzé(M, N),
ExtR(K,N) and ExtR(L, N) have finite length for all 7 = 0, and that there exist integers s
such that they are all zero for all ¢+ > s. Show that if

0 K M L 0

is a short exact sequence, then

> (~1)"length Extp(M, N) = ) (=1)length Extyz(K, N) + ) (=1)" length Exty(L, N)

i=0 =0 =0

Proof. There is an induced long exact sequence on Ext'’s, since this sequence eventually
terminates with all terms equal to zero this follows directly from Exercise 5.1 on Sheet, 4.

Note: Exercise 5.1 on Sheet 4 was stated for finitely generated modules M; over an Artinian
and Noetherian ring, however we only used that the M,’s where of finite length in the
solution. O

Exercise 2 (Nullstellensatz for Spec R). Let R be a commutative ring. Given a closed
subset Z € Spec R, define I(Z) := {f € R, Z € V(f)}. Show that I(Z) is an ideal, and
that for all ideals I € Spec R,

I(V(1)) = VI

In particular, show that for all ideals I, J of R,
V() =V(J) = VI=VJ

Proof. Throughout, the letter p always denotes a prime ideal.

We will show that I(Z) is an ideal by showing that if Z = V(I), then I(Z) = v/I, which
we know to be an ideal.

Therefore, let us first prove that I(V(I)) € VI, so let f € I(V(I)). By definition,

V(I) € V(f), hence by definition
fe(\p=vI

p2I

where the equality is Proposition 6.4.5 in the notes.
On the other hand, if f € VI, then f" € I for some n. Hence, V(I) € V(f"), so to
conclude that f € I(V(I)), we are left to show that V(f) = V(f"). Since (f") € (f),
V(f) € V(f"). Conversely, if p 2 f", then also p 3 f since p is prime, so V(f") € V(f)

and we are done.

In the second statement, the "left to right" implication is immediate with what we just did,
and the "right to left" follows from the general fact that for any ideal I, V/(I) = V(VI).
This is a restatement that for all primes p,

pQI«:»pQ\/T
1



O

Exercise 3. Let R be a commutative ring and I € R be a radical ideal. Show that [ is
prime if and only if V'(I) is an irreducible topological space.

Proof. We will use exercise 2 of this sheet and exercise 3 of sheet 7 without further mention.
Suppose first that I is prime, and assume that V(1) = V(J) U V(K) with J, K radical.
Then

[=VI=I(VI))=I(V(HUV(E)=I(V(JnK))=VInK=JnK

(the intersection of two radical ideals is radical). If by contradiction V(J) # V(I) (or in
other words I & J) and V(J) # V(I) (i.e. I € K), then there exist a € J\ I, b€ K\ I.
However, ab € J n K = I, which contradicts the fact that I is prime.

Conversely, assume V(1) is an irreducible topological space, and assume by contradiction
that I is not prime. Then there exist a, b ¢ I such that ab € I. But then, V(I) ¢ V(a),
V(I) ¢ V(b) and V(I) € V(ab) = V(a) n V(b). But then, setting Z;, = V(a) n V(I) and
Zy =V(b) nV(I) gives V(I) = Z; U Z,, with none of the Z; being V' (I). This contradicts
that V(1) is irreducible. O

Exercise 4. Let R = C[z,y, 2] and I = (zy - 2z°,2° = y*) € R. Identify V(I) c C*. Notice
that this naturally breaks into smaller algebraic sets. What are the ideals of each piece?

Proof. A point (p,q,r) € C’isin V(I)if and only if pg—r® = 0and p°—¢° = (p—q)(p+q) = 0.
So either p = ¢ or p = —q. In the first case, the first equation becomes 0 = p~ —r" =
(p=7r)(p+r) and so either p = r or p = —r. In the second case, the first equation becomes
0=—p’=r’=(p—ir)(p+ir) and so r =ip or r = —ip. Therefore

V(1) ={(p,p,p) :p € Cu{(p,p.—p) : p € CLU{(p,—p,ip) : p € CYU {(p, —p, —ip) : p € C}

¥

=V =V, =V3 Va

The ideals of these four pieces are p; := (x—y,x—2), ps 1= (x—y, x+2), p3 := (x+y, x+i2)
and py := (z +y,r —iz) respectively. Notice that they are all prime (because up to a linear
change of variables they are all just (z,y)), and thus V; is irreducible for all . Hence V(1)
doesn’t split up further. O

Exercise 5. Let I’ be an algebraically closed field. Let X and Y be algebraic sets in F".
(1) Prove that I(X UY) = I(X) n I(Y)
(2) By considering X = V(2> —y) and Y = V(y) for the ideals (z* —y) and (y) in F[z,y],
show that it need not be true that (X NnY) = I(X) + I(Y).
(3) Prove that in general \/I(X)+I(Y) =1(X nY).

Proof. (1) Suppose f € I(X UY). Then f(P) =0 forall P € X and all p € Y. So
f €I(X) and f € I(Y). Conversely, suppose f € I[(X) N I(Y). Then f(P) =0 for
all P € X and all P € Y. Therefore f € (X UY).

(2) I(X) = («" =), I(Y) = (y) and I(X nY) = I({(0,0)}) = (2, ). But [(X)+I(Y) =
(", y).

(3) This follows from a question on the previous exercise sheet and the Nulstellensatz. Let
I=I1(X)and J=1(Y),s0 V(I) = X and V(J) =Y. By Exercise 2 on Exercise sheet

7 we have (X NY) = I(V(I+J)). But by the Nulstellensatz, I[(V(I+J)) = VI + J.
0



Review exercises for material from “Anneaux et corps”

Exercise 6. Show that 2° + ¢y € k[, y] is irreducible.

[ Hint: Use the consequence of Gauss’s theorem saying that for a unique factorisa-
tion domain R and a primitive polynomial f € R[t], we have that f is irreducible
in Frac(R)[¢] if and only if it is irreducible in R[¢].]

Proof. We use the hint for R = k[y]. It is therefore sufficient to check that z° + y' is
irreducible in k(y)[z]. Suppose it is not, since the degree is three it has to have a linear
term in any factorisation and hence there exists f, g coprime such that 5 is a root of 2° + y7.

3 . .
We write: ;—3 + y7 = 0, and hence f3 = —g3y7. It then follows that y3 divides f but then

also that y divides g, which contradicts coprimality.
O

Review exercises for material from “Anneaux et corps”

Exercise 7. Let R = k[z,y, z]. Show that (zz° +y2° —y’2° + zyz — zy) is a prime
ideal of R.
[ Hint: Use Eisenstein’s Criterion. ]

Proof. View f = x2° 4+ y2° — y*2* + 2yz — zy as an element of k[z,y][2], so f = (z +y)z° —
y2z2 + xyz — xy. This satisfies the hypotheses of Eisenstein’s criterion for p = y, and so f

is irreducible in R. Thus (f) is a prime ideal.
0

Review exercises for material from “Anneaux et corps”

Exercise 8. Solve the following exercises:

(1) Consider the polynomial f = X’Y + X*Y*+Y? -y’ =X -Y +1in C[X,Y].
Write it as an element of (C[ X ])[Y], that is collect together terms according
to powers of Y, and then use Eisenstein’s criterion to show that f is prime
in C[X,Y].

(2) Let F be any field. Show that the polynomial f = X* 4 Y” =1 is irreducible
in F[X,Y], unless F has characteristic 2. What happens in that case?

Proof. (1) p= X —1is prime in C[ X ] and satisfies the conditions of Eisenstein’s criterion
for f.

(2) Eisenstein’s criterion gives that X + Y? — 1 is irreducible if Y =1 # Y + 1, i.e. it is
irreducible if 1 # —1, i.e. unless the characteristic is 2. In characteristic 2 we have
X°+Y?=1=(X+Y +1)* and hence this polynomial is not irreducible.

O
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Exercise 9. Show the following:

(1)

(2)

Let F' € L be a field extension, and suppose ai,...,a, are elements of L which are
algebraically independent over F. Prove that F'(a,,...,a,) is isomorphic to the fraction
field of the polynomial ring F[x;,...,z,].

Let F' € L be a field extension. Show that a subset of L is a transcendence basis for L
over F'if and only if it is a maximal algebraically independent set. As a consequence
show that a transcendence basis exists for any field extension F' € L.

Proof. (1) Define a ring homomorphism ¢ : F[xy,...,x,] = L by x; » a; and ¢|r = idp.

We claim this is injective. For suppose ¢(f) = 0 for some f. This gives a polynomial
with coefficients in F' satisfied by the a;, and so by definition of algebraic independence,
f = 0. This injectivity, along with the existence of inverses in L, means we can extend
¢ to an injective homomorphism F'(xy,...,x,) < L. Lastly, the image is a field (as
F(xy,...,z,) is) containing F' and ay,...,a,, and thus contains F(ay,...,a,). But
as every element of the image is a rational function of the aq,...,a, with coefficients
in F', we conclude that the image is precisely F(a4,...,a,). Hence F(ay,...,a,) is
isomorphic to F(zq,...,x,).

Suppose the set {a;};e; is a transcendence basis for L 2 F, with some (perhaps infinite)
indexing set I. It is algebraically independent by definition, so we need to show it is
maximal subject to this. Suppose not, so there is some element a of L which such
that {a} U {a;};er is algebraically independet. But by definition of transcendent basis,
L 2 F({a;};cr) is algebraic, so there is a non-zero polynomial p € F({a;}ic;)[X] such
that p(a) = 0. The coefficients of p are rational functions of the a;’s, so by multiplying
through to clear denominators, we can view p as a non-zero multivariate polynomial
with coefficients in F' satisfied by some subset of {a;};e; and a. This contradicts the
choice of a.

Conversely, suppose {a;};e; is a maximal algebraically independent set. We need to
show that L 2 F({a;};er) is algebraic. Let a € L be arbitrary. As {a;};e; U {a} is
not algebraically independent there is some multivariate non-zero polynomial f with
coefficients in F' such that f(a,a;,...,a; ) = 0 for some 4y,...,4, € I. This must
have some non-zero a term as otherwise it gives an algebraic dependence among the
a;’s. This gives a polynomial satisfied by a with coefficients in F'({a;},c;) by dividing
through by the coefficient of the highest power of a, and thus L 2 F({a;};c;) is alge-
braic.

To show that a transcendence basis exists, we use Zorn’s lemma on the partially
ordered set ¥ of algebraically independent sets over F inside L. If ¥ is empty then
L 2 F is algebraic and there is nothing to prove. Hence assume that Y is non-empty.
To apply Zorn’s Lemma, we must show that any chain of algebraically independent sets
has an upper bound in X. Suppose (A, )qseq is such a chain, i.e. for all indexes o, 3 € Q,
either A, € Az or A, 2 Ag holds. Then |J,_ .o A, defines an algebraically independent
set, since any polynomial relation in |J .o Aa is a polynomial relation in A4, for A,
sufficiently large. Therefore |J, .o A, is an uppe rbound for the chain (4,).eq- By
Zorn’s Lemma there exists a maximal algebraically independent set of elements in
L. By what has already been proven such a a maximal algebraically independent set

consitutes a transcendence basis for L over F.
O
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Exercise 10. Prove that if F' € K € L are field extensions such that trdeg, L < 0o, then
trdegp L = trdegp K + trdeg, L

Proof. By previous exercises trdegyp L is the cardinality of any maximal algebraically F-
independent subset {ay, ..., 0qeg, 1} € L. Let B = {B,..., Budeg, k} € K be a maximal
algebraically F-independent subset of K and let C' = {7,..., Videg,, £} € L be a maximal
algebraically K-independent subset of L. By construction,

BuC= {ﬁlv"'aﬂtrdegpl(?fylu-"77trdegKL} cL

is an algebraically F-independent subset of L. To conclude, we have to show that F/(BUC') <
L is an algebraic extension. By elementary field theory, algebraicity is transitive, and so it
it sufficient to show that both F(BuU C) € K(C) and K(C) € L are algebraic. The latter
is true by definition, so it remains to show that F(B U C) € K(C) is algebraic. But now
notice that K(C) = (F(BUC))(K) (i.e. the field obtained by adjoining the elements of K
to F(BUC(C)). So it is enough to show that every element of K is algebraic over F'(B U ('),
as then every rational function of the elements of C' with coefficients in C' is algebraic too.
This is now automatic, since F(B) € K is algebraic. Hence F(BU (') € K(C) is algebraic,
and thus also F(Bu (C) € L. So BuU C'is a transcendence basis of L over F, which proves
trdegp L = trdegp K + trdegy L. U

Exercise 11. & Consider the finitely generated C-algebra

R := (Cl:xaya Zat]/(xz — y27yt — z27;pt — yZ)
o Show that R is integral.
Hint: One way to proceed is as follows: show that the morphism Clz,y,z,t] =
Clu,v] given by sending f(z,y,z,t) to f(u®,v*v,uwv® v*) induces an injection R —
Clu,v].

o Calculate the transcendence degree over C of the fraction field of R.
Proof. o We have seen in the proof of Exercise 5 in sheet 7 that the kernel of the morphism
P (C[x,y, va] - (C[U,U]
3 2 2 3
TP U, YUY,z U, we v,

is exactly I = (y° — x2,2° — yw, 2w — yz). Hence, we have an embedding of rings
R/I = C[u,v]. Since the latter ring is integral, so is R = C[z,y, z,w]/I.

o By the previous point, there is an inclusion of fields Frac(R) € C(u,v). Moreover,
both u and v are algebraic over Frac(R). Indeed, uv” and v® are in R (hence also in
Frac(R)). Thus, the extension Frac(R) € C(u,v) is algebraic, so by Exercise 10, we
have

trdege(Frac(R)) = trdege(C(u,v)) = 2.
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Exercise 1. Show the following:

(1) Prove that the only prime ideal of height zero in a domain is the ideal (0).
(2) Prove that a prime ideal of height 1 in a UFD is principal.

(3) Compute the prime ideals of height zero in R[z, y]/(xy)

[ Hint: Recall that there is a one-to-one correspondence between the prime ideals R
containing I and the prime ideals of R/[.]

Proof. (1) In any ring R, (0) € p for every prime ideal p, hence (0) is prime (and thus R
a domain) if and only if it is the only prime ideal of height zero.

(2) Let p be a prime ideal of height one. We will prove that p contains a prime element p.
If p contains a prime element p then (p) = p, since (p) € p and the only prime ideal
that is strictly contained in p is (0) by the previous point. Let f € p be non-zero (this
is possible since p # 0 because p has height one), let f = p}"+--p," be the unique (up
to multiplication by units) prime decomposition of f. Since p is prime, we must have
p; € p for some 7 € {1,...r}. We conclude that p = (p;).

(3) The prime ideals of height zero in R[z, y]/(xy) correspond to the primes p € R[z,y]

that contain 2y and that do not contain any other prime ideal p' such that zy € p'.
Suppose xy € p, then either 2 € p or y € p, hence either (z) € p or (y) € p. Now since
(x) and (y) both are prime ideals that contain zy we conclude that p = (z) or p = (y).

O

Exercise 2. Show the following:

(1) If R is a domain with dim R = 0, then R is a field.

(2) We say that a ring R is reduced if there are no nilpotent elements in R. That is, if
r € R is such that r" = 0 for some n, then r = 0. Give an example of a reduced ring
R of dimension zero which is not a field.

Proof. (1) A ring R is a domain if and only if the zero ideal is prime. A ring R is a field if
and only if the zero ideal is maximal. Therefore, a domain is a field if and only if it is
of dimension zero.

(2) Let F be a field and define a ring structure on R = F' X F' by coordinatewise multiplica-
tion. To compute the dimension of R we investigate its prime ideals. Let p be a prime
ideal. As (1,0)-(0,1) = (0,0) € p, we must have either (1,0) € p or (0,1) € p. Hence
either F' X {0} € p or {0} X F' € p. Suppose we are in the first case; the other case is
completely symmetric. If £ x {0} & p then there is an element (a,b) € p with b # 0,
but then (1,0), (a,b) is an F basis of F' X F and thus F' X F' = p, contradiction. Thus
we conclude p = F'x{0}. This is indeed a prime ideal, because if (a,b)-(c,d) € Fx{0}
then bd = 0 and thus either (a,b) € F x {0} or (c,d) € F x {0}. Together with the
case with flipped coordinates, we conclude that the prime ideals of F' X F' are precisely
F x {0} and {0} X F. Hence, as neither contains the other, F' X F' has dimension 0. On
the other hand, suppose that (a,b)" = (a",b") = (0,0) for some (a,b) € F' X F' and
n =1. Then a" = 0 and b" = 0, since F is reduced this means that a = 0 and b = 0. So

F x F is reduced.
1



Exercise 3. Solve the following exercises:

(1) Prove that every Artinian ring has dimension 0.
(2) Compute the dimension of the ring Z|:5U:|/(47 7).
(3) Comupute the dimension of Z[z].

Proof. (1) By Exercise 1.2 of Sheet 1, every prime ideal in an Artinian ring is maximal.
Hence every prime ideal has height 0, and thus an Artinian ring has dimension 0.
(2) The ring Z[JU]/(LL’ ) is finite as a set (as a Z-module it is isomorphic to (Z/4z)e2),
so in particular Artinian. Hence by the previous point, it has dimension 0.
(3) We will show that for any PID R, we have dim R[x] = 2. This will require some serious
work!
o Let m € R be a non-zero prime element (R is not a field). We then have an chain
of inclusions
0¢c(mw)<(mux)
and each ideal is prime. Indeed, the quotients are respectively R[z], R/(7w)[x]
and R/(mw) which are all domains. Thus, the height of (7, z) is at least 2, and
hence dim(R[z]) = 2.
o Let us start by studying prime ideals of height 1. We will show that if p is a
non-zero prime ideal of R[x], then p has height 1 if and only if it is principal.
Since R is a PID, it is in particular a UFD, so by Gauss’ lemma R[x] is also a
UFD. Therefore by Exercise 1.2 any prime ideal of height 1 is principal. To see
the converse, let p = (p) be a principal prime ideal of R[x], and let q € p be a
prime sub-ideal. We want to show that if q # 0, then q = p.
By the same argument as in Exercise 1.2 there would exist a non-zero prime
element ¢ € q. But then, p divides ¢, so they must be equal, i.e. q = p.
o For any prime ideal q of R[x], we denote by q° the ideal of K[z] generated by
the elements of q.
Let p be a prime ideal of height 2. The goal now is to show that p° = K[z].
Let q € p be a prime sub-ideal of height 1, and write q = (¢) for ¢ a prime element.
If ¢ € R, then p° contains ¢, which is invertible in K[2]! Therefore p° = K[z].

Now let us deal with the case ¢ ¢ R. Then ¢ is a primitive polynomial, and hence
by Gauss’ lemma, it gives an irreducible polynomial in K[x]. Therefore (¢) = q°
is a maximal ideal in K[z]. Since q° € p°, we are left to show that q° # p°. If it
was the case, then for any a € p, a € q° = (¢), so we can write

a—g
Tr

with » € R. Thus gives ra = ¢, and since ¢ is primitive, 7 must be a unit. There-
fore this would imply p = g, but this is impossible since p has height 2.

Thus, we have proven that p© = K[z].
o In particular, 1 € p°. Write
a;
1= zl: b_ipi
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with a;,0; € R and p; € p. Multiplying by the product of the b;’s gives that
p N R # 0. Writing this elements as a product of prime elements (which must all
be in R!), we conclude that p must contain a prime element 7 € R. Let us show
how to conclude the proof from here.

Let p denote the image of p through the quotient R[z] —» R[z]/(7) = R/(x7)[z].
Since p is not principal (its height is not 1), p is a non-zero prime ideal of R/(7)[x].
However R is a PID, so R/(x) is a field, whence R/(7)[x] is a PID. This means
that p is necessarily a maximal ideal, so by the correspondence theorem p is max-
imal too.

To recapitulate, we have shown that any prime of height 2 is maximal, so there
cannot be any prime of height > 2, which gives us dim(R[z]) < 2. Thus we win
thanks to the first point.

O

[ Remark: Tt is a general fact that given a Noetherian commutative ring R of finite Krull
dimension, dim(R[xz]) = dim(R)+1. This is not so complicated once we have proven Krull’s
Hauptidealsatz, but we unfortunately do not have the time to cover this in the course. See
the course "Modern algebraic geometry" (or any book in commutative algebra) if you want
to know more about this.]

Exercise 4 (Nakayama’s Lemma). Let R be a ring and let M be a finitely generated
R-module. Show the following:

(1) Let I be an ideal of R such that IM = M. Then there exists x € 1 + I such that
xM = 0.

[ Hint: The proof is similar to the direction (3) = (1) in Proposition 6.2.3 of the
lecture notes. ]

(2) Suppose now that the ring R is local, i.e., that there is a unique maximal ideal m of
R. Show that if mM = M, then M = 0.

(3) For aring R denote by Jac(R) the intersection of all maximal ideals of R; this is called
the Jacobson radical of R (note also that nil(R) € Jac(R)). Show that if there is an
ideal I C Jac(R) such that IM = M, then this implies that M = 0. This generalizes
the previous point to any ring.

[ Hint: Prove that in (2), (3) the element z, whose existence is assured by (1), is in fact
invertible.]

Remark 0.1. Nakayama’s lemma is a very powerful tool in commutative algebra and alge-
braic geometry, so keep it mind this exists.

To illustrate its power, recall you had an exercise about showing that if R is a commutative
ring, M a finitely generated module and f : M — M a surjective endomorphism, then f is
an isomorphism. Although the proof was quite tricky (you had show it in the Noetherian
case, and then somehow reduce to this case), it follows immediately by considering M as an
R[z]-module via z - m = f(m), and taking [ = (z) in (1).

Proof. (1) Let my,...,m,, be generators of M. As IM = M, we can express every m € M
as an [-linear combination of my, ..., m,,. In particular, there is a matrix A with entries
in I such that Am = m, where m € M®" is the column vector with i" entry m,.
Therefore (Id, —A)m = 0. Multiplying by the adjugate of the matrix A — Id,, implies



that if  := det(Id,, —A) then zm; = 0 for all i. Hence M = 0, since the m,’s generate
M. If we can prove that x € 1 + I then we are done. By expanding the determinant,
we have

r= Z sgn(o) 1_[(5i,a(i) - a’i,o(i))'
o€ES, i=1
The only term in this sum which isn’t in [ is the one corresponding to o = id, which
is [Ti-,(1 —a;;). Thisisin 141, s0 € 1 + I and we are done.

(2) By the previous point, there is x € 1 + m such that M = 0. But then x ¢ m since
1 ¢ m. Suppose that x is not a unit. Then x is contained in some proper maximal ideal
by Zorn’s lemma, but this is a contradiction since x ¢ m and m is the only maximal
ideal of R.

(3) Again by (1), there is z € 1 + I such that M = 0. Suppose that x is not a unit, then
there is a maximal ideal m containing x. But then also z € 1 + m as [ € Jac(R), and
thus 1 € m, which is absurd.

O

Exercise 5. Let R be a commutative ring which is an integral domain but not a field, and
let F' be the fraction field of R. Show that F'is not finitely generated as an R-module.

Proof. Suppose on the contrary that F' is a finitely generated R-module, and let y € R be
a non-invertible element. Since yF = F, we know by Nakayama’s lemma (the version as in
Exercise 4.1) that there exists x € 1 + yR such that M = 0. Writing = 1 + yr, we obtain
that

O0=(1+yr)-1=1+yr,

so yr = —1. Hence, y is invertible, contradicting our assumption. 0

Exercise 6. Let R = F,[[t]] be the ring of power-series in the variable ¢ over the finite
field with ¢ elements [F,.

Recall that as a set, R is the set of formal power-series f = ano a,t" with coefficients a,, €
F,. For two such power series, ) . a,t" and ) . b,t", one defines the addition to be the
power-series y . (a,+b,)t" and multiplication to be the power-series Y . (Y ,_, axbn—s)t".
Recall (or do) the two following exercises from "Anneaux et corps":

(1) If f € R\ (t), then f is invertible (and hence R is a local ring with maximal ideal (t)).

(2) A formal Laurent series over the field F, is defined in a similar way to a formal power
series, except that we also allow finitely many terms of negative degree. That is, series
of the form f =) .\ a,t" where for some N € Z. Define a natural ring structure on
this set and show that with this ring structure the ring of formal Laurent series over
[F,, usually denoted F,((t)), is equal to the fraction field of R.

Now let us go to the actual exercise:
(3) Show that trdegg (Frac(R)) is infinite.

[Hint: show that F (t,,...,t,) is countable, and R is not.]
(4) Show that dim R = 1 and hence show that Theorem 6.1.12 in the course notes does
not work with non-finitely-generated algebras.

Proof. (1) Let f =ag+ Y ant" where ag # 0 define f=" =Y b,t" where (b,) is defined
recursively by by = i and b, = —i > aib,_; forn = 1.



(2)

5

Multiplication of such series can be defined similarly to the definition for formal power
series, the coefficient of t" of two series with respective sequences of coefficients {a,,}
and {b,} is defined to be: ) ., a;b,—;, this sum has only finitely many non-zero terms,
since both b,_; and a; are zero in negative enough degrees. Again ) (> .., a;b,_i)t"
is a Laurent series since if n is negative enough, then either a; or b,_; is zero for all
i. Note that every non-zero element of F,((¢)) can be written as the product of some
power of ¢t and an element of f € R\ (¢); simply factor out the lowest power of ¢ with
non-zero coefficient. The former is clearly invertible, and the latter is invertible by the
previous point. Hence F,((¢)) is a field containing R. On the other hand, the above
argument shows that every element of F,((¢)) can be written as a fraction of elements
in R, and thus F,((¢)) = Frac(R).

We first note that it is sufficient to prove the hint. We have that R C Frac(R) hence
if R is not countable neither is Frac(R). Suppose that Frac(R) has finite transcen-
dence degree over F,, then there exists ¢;,...t, such that Frac(R) is algebraic over
F,(ty,...,t.). F,(t1,...,t,) is countable then so is the set of polynomials with coef-
ficients in F,(¢1,...,t,), and so in particular every algebraic extension of IF,(¢1,...,¢,)
is countable. Hence also Frac(R) is countable, which contradicts the hint.

So it is sufficient to show the hint. We first show that F,(¢,...,t.) is countable. It
is clear that I [¢;,...,t,] is countable, because it is a countable union of polynomi-
als of bounded degree. Thus F,(¢;,...,t,) is countable as it is the fraction field of
bF,[t1,...,t.]. Lastly, we show that R is not countable. To see this, it suffices to note

that the set of sequences {0, 1}N naturally injects into R, and the set of such sequences
is uncountable by Cantor’s diagonal argument.
For f =) . a,t" € R\ {0} define deg f := inf{n =20 | a, # 0}. If I is an ideal of R,
then by point (1) we have f € I'\ {0} if and only if "8/ € I. Hence a non-zero ideal
I # 0 of R is generated by ¢* where d = inf{deg f | f € I\ {0}}. Therefore, the only
prime ideals of R are (0) C (t), and thus R has dimension 1. By the previous point,
Theorem 6.1.12 hence fails for R.

O

Exercise 7. The goal of this exercise is to show that an Artinian ring is Noetherian.
Let R be a commutative Artinian ring. Recall from Exercise 1 on Sheet 1 that every
prime ideal of R is maximal.

(1)

(2)

Show that R has finitely many maximal ideals.

[ Hint: For this you need the statement that if I; n---N I, € p for a prime ideal p € R,
then I; € p for some i, which you should also show. Now consider the set of finite
intersections of maximal ideals. ] ’

Show that is an integer j > 0 such that nil(R)’ = 0.

[ Hint: Show that nil(R)’ stabilizes for j > 0, which we denote by I. In order to arrive
at a contradiction assume that I = I> # 0. Consider a minimal element .J in the set
of ideals {J : JI # 0}, show that I.J = J, then show that J is principal. Conclude by
Nakayama’s Lemma, point (3).]

Show that if m;,..., m, are the maximal ideals of R, then m}---m’ = 0.

[ Hint: Use the statement learned in ’Anneaux et corps’ that the nilardical is the
intersection of all prime ideals. ]



(4)

Show that lengthp R < 00, and conclude that R is Noetherian.

[ Hint: Construct an increasing sequence of ideals using the products of maximal ideals.
Thereafter, you have to use multiple times the earlier exercise that Artinianity is closed
under passage to sub- and quotient-modules. ]

[ Remark: In point (7) of Example 3.1.2 in the notes you saw an example of an Artinian
module which is not Noetherian. However, the exercise above shows that an Artinian ring
is always a Noetherian ring. ]

Proof. (1) We first show the hint: Suppose by contradiction that I; ¢ p for all .. Then

for all ¢ there exist z; € [, such that z; ¢ p and thus for x = x;---z, we have
x €I, €Iin---N 1 Cp, but this contradicts that p is prime.

Now consider the set of all finite intersections of maximal ideals in R. As R is Artinian,
this set has a minimal element, say m; N -+ N m;. By minimality we have for any
maximal ideal m that mn(m;N---Nm;) = m;N- - -Nm;, and therefore m;N---Nm; € m.
By the hint we obtain m; C m for some ¢, which by maximality implies m = m;. Hence
the maximal ideals of R are exactly my,..., my.

We have a descending chain nil(R) 2 nil(R)* 2 nil(R)* 2 .... By the Artinian
property there exists j such that we have nil(R)’ = nil(R)’™ for all n > 0. Let
1= nil(R)j. If I = I° = 0 we are done, hence we assume that I = I* # 0. Since R
is Artinian there exists a minimal element J in the set of ideals {J : JI # 0}. By
assumption J # 0. We have JI C J and JII = JI # 0, hence minimality of J implies
that JI = J. In order to apply Nakayama’s Lemma point (3) to this equality, we show
that J is finitely generated. Since JI # 0 there exists a x € J such that I # 0, by
minimality of J, we have J = (x). We can therefore apply Nakayama’s Lemma point
(3) to the finitely generated module J to conclude J = 0, which is a contradiction.
Therefore, nil(R)’ = 0.

By Exercise 1 on Sheet 1, every prime ideal in R is maximal. Hence nil(R) = m;n---N
m,, where the m; are the distinct maximal ideals of R. Note also that m;n---nNm, =
m, ---m, which can be proven using the fact that m; N ---nm; and m;,, are coprime
for all 4. It therefore follows from the previous point that m}---m’ = 0.

Let 0 =ny--n; S ny-e'ny, €+ -+ €, € R, for some not necessary distinct maximal ideals
ny,...,n of R; by the previous point such a sequence exists. Let [; = qu:t n; for
0 < j =t (the empty prodcut is equal to R by convention). We now prove by induction
that every I; has finite length; this holds trivially for j = 0. Suppose this is true for some
J 2 0. Then we have the short exact sequence 0 — [; — [;,; — Ij+1/]j — (. Notice

that n;,; is contained in the annihilator of I j+1/ I, and thus the latter is naturally
a R/ n; .-module. Furthermore, we have discussed already several times that the R
submodules of ]j+1/[j coincide with the R/nj+17 and hence the length of Ij+1/[j as an

R-module is the same as the length as an R/njﬂ- But now [j+1/]j is an Artinian R-
module because Artinianity is preserved under taking submodules and quotients, and
thus it is an Artinian R/nj+1—moudle. As R/nj+1 is a field, this means that Ij+1/[j

is a finite dimensional R/nj+1—vector space, and so it has finite length. So the outer

modules in the short exact sequence 0 = I; - [;,; — Ij+1/[j — 0 both have finite
length by induction hypothesis, and thus by (the proof of) Exercise 1.1 on Sheet 2 we
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have that I,,; has finite length too. We then conclude by induction that I, = R has

finite length as an R-module.
OJ

Exercise 8. # Let R be a PID which is not a field. The goal of this exercise is to show
that dim R[z] = 2 (in particular dim k[z, y] = 2).
o Show that dim R[z] = 2.
o Let p be a non-zero prime ideal of R[x]. Show that p has height 1 if and only if it is
principal.
o Let K = Frac(R). For any prime ideal p in R[z], define p° to be the ideal of K[x]
generated by the elements of p. Show that if p is a prime ideal of height 2, then
p° = K[x]. Conclude that there exists 7 € R irreducible such that 7 € p.
[ Hint: Recall the notion of primitive polynomial, and the statements around Gauss’
lemma (see for example proposition 3.8.18 in the "Anneaux et corps” notes).]
o Conclude that any prime ideal of height 2 is maximal, and deduce that dim(R[z]) = 2.

[ Remark: It is a general fact that given a Noetherian commutative ring R of finite Krull
dimension, dim(R[z]) = dim(R)+1. This is not so complicated once we have proven Krull’s
Hauptidealsatz, but we unfortunately do not have the time to cover this in the course. See
any book in commutative algebra if you want to know more about this. ]

Proof. o Let m € R be a non-zero prime element (R is not a field). We then have an
chain of inclusions
0¢S(m)c(mux)
and each ideal is prime. Indeed, the quotients are respectively R[x], R/(7)[z] and
R/(w) which are all domains. Thus, the height of (7,z) is at least 2, and hence
dim(R[z]) = 2.

o Since R is a PID, it is in particular a UFD, so by Gauss’ lemma R[z] is also a UFD.
Therefore by Exercise 2.2 any prime ideal of height 1 is principal. To see the converse,
let p = (p) be a principal prime ideal of R[x], and let q € p be a prime sub-ideal. We
want to show that if ¢ # 0, q = p.

If it was not the case, by the same argument as in Exercise 2.2 there would exist a
non-zero prime element ¢ € q. But then, p divides ¢, so they must be equal, i.e. q = p.

o Let q € p be a prime sub-ideal of height 1, and write q = (¢) for ¢ a prime element. If

q € R, then p° contains ¢, which is invertible in K[z]! Therefore p° = K[z].

Now let us deal with the case ¢ € R. Then ¢ is a primitive polynomial, and hence
by Gauss’ lemma it gives an irreducible polynomial in K[2]. Therefore (¢) = q° is a
maximal ideal in K[z]. Since q° € p°, we are left to show that q° # p°. If it was the
case, then for any a € p, a € q° = (¢), so we can write

Lo
r
with » € R. Thus gives ra = ¢, and since ¢ is primitive, » must be a unit. Therefore

this would imply p = ¢, but this is impossible since p has height 2.

In both cases, we have proven that p° = K[x], so 1 € p°. Write

1=Z%pi



with a;,0; € R and p; € p. Multiplying by the product of the b;’s gives that pn R # 0.
Writing this elements as a product of prime elements (which must all be in R!), we
conclude that p must contain a prime element in R.

Let 1 € RNp be a prime element, and let p denote the image of p through the quotient
R[z] = R[z]/(w) = R/(x)[x]. Since p is not principal (its height is not 1), p is a
non-zero prime ideal of R/(m)[x]. However R is a PID, so R/(w) is a field, whence
R/(m)[x] is a PID. This means that p is necessarily a maximal ideal, so by the corre-
spondence theorem p is maximal too.

To recapitulate, we have shown that any prime of height 2 is maximal, so there
cannot be any prime of height > 2, which gives us dim(R[z]) < 2. Thus we win thanks
to the first point.

O
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There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let G be a finite group, R an integrally closed domain, K the fraction field
of R and let G act on K by (ring) automorphisms such that R is stable under this action,

ie.g-r€Rforallge Gandr € R. Let L := K be the fixed field of the action and set
S := L n R. In this exercise we show that S is also integrally closed.
(1) Show that each element of K can be written in the form ¥, where ¢« € R and b € S.

b )
(2) Show that L is the fraction field of S.

(3) Show that S is integrally closed.
(4)

4) Show that C[z",z" 'y, ..., zy" ", y"] € C[z,y] is integrally closed.

[ Hint: Show that there is automorphism of C(x,y) that sends x to e
2mifn
ey ]

2mifny and y to

Proof. We denote by - the action of (; the ring multiplication is denoted by the empty
symbol.

(1) Let 2 € K be an arbitrary element, where ¢,d € R. Set x = Hg¢ec g-dand a = cx,

b = dz. Note that b # 0 as all the factors are non-zero (as G acts by automorphisms).
Then b = [[,cq9-dand thus h-b =[] ;(hg) - d =0 for all h € G. Therefore b € S
and < = .

(2) As L is a field containing S, we have to show that every element of L is a fraction of
elements in S. Let © € L be arbitrary; by the previous point we can write x = % with
b€ S. Now as x is fixed by the action of GG, we obtain

a_ a_g-a _g-a
A Sy S N
for all ¢ € G, where in the last step we used b € S. But then we obtain a = g - a
for all ¢ € GG, and thus a € S. Hence z is a fraction of elements in S, which proves
Frac(S) = L

(3) Let x € L be integral over S. Then in particular, z € K it is integral over R, and thus
as R is integrally closed we have x € R. Hence x € LN R = S, and thus S is integrally
closed. '

(4) Denote R = C[x,y], K = C(z,y) and ( := ™™ By the universal property of C[z,y]
there exists a C-algebra endomorphism ¢ of R mapping = to (x and y to Cy. This
is easily seen to be bijective, and thus it induces an automorphism & of K such that
®|z = ¢. But then ®°" |5 = ¢°" = Idg, and thus ®°" = Idg. Solet G = (®) be the finite

subgroup of automorphisms of K generated by ®. If we are able to show that S := K “n
R is equal to C[z", 2" 'y, ..., 2y" ™", y"] € C[z,y] then we are done by the previous

point. As every element of C and every monomial among z", 2" 'y, ..., zy" ", y" is

fixed by ¢, we may conclude already that C[z", 2" 'y, .. xy" Yyt e S. Now let

f € R be an element fixed by ¢, and write f = Z” fiz'y’. Then f; = " f,; for all

i,7 and hence f;; = 0 unless i + j is divisible by n. If i + j is divisible by n then (i, j)
1



can be expressed as an Z(-linear combination of (n,0),(n—1,1)...,(1,n—1),(0,n);
simply write ¢ = an+ b and j = cn +d with 0 < b,d < n, then b + d € {0,n} and
thus either b = d = 0 in which case (7,j) = a(n,0) + ¢(0,n), or b + d = n in which
case (i,7) = a(n,0) + ¢(0,n) + (b,d). Hence every monomial appearing in f with non-
zero coeflicient is inside C[z", 2" 'y, ..., 2y" ", y"], and thus also f itself. Therefore
S =C[z", 2" "y, ....,2y" ", y"], so we are done.

0

Exercise 2. Let k£ be a field. For the following finitely generated k-algebras R, find a
sub-algebra S € R such that S € R is integral and S is isomorphic to a polynomial ring:

(1)
(2)
(3)

R= k[xbx%x?ny17y27y3]/(([;1x21'3 + y1y2y3);
R= k[$7y7 Z]/(xy,xz — yz)

Proof. The idea is to make a change a variable (hence an automorphism of the polynomial
ring) to get an ideal which is much easier to work with (notice this is exactly what we do
in the proof of Noether’s normalization!).

(1)

Let 2 = 2 —y. Thenzy —1 = (z+y)y—1 = y° + yz — 1. Thus, J satisfies a
monic equation with coefficients in & [Z] which is isomorphic to a polynomial ring, so
S =k[z] = k[T —y] € R does the job.

Before doing the other points, let us rephrase what we have just done in a more precise
way. Let x, y, z denote variables, and let 6 : k[x,y] — k[z,y] be the automorphism
sending x to z + y. This automorphism induces

k[xvy]/(xy — 1) = k[zay]/(z + y)y — 1) = k[zvy]/(y2 + 2y — 1)
Since y satisfies a monic equation over k[z], we know by Proposition 8.1.4 in the
notes that k[z] ¢ K[z, ?J]/(y2 + zy — 1) is an integral extension. Therefore k[7 —y] €
k[, y]/(xy — 1) is also an integral extension. Finally, k[T —¥] = k[Z] is isomorphic to
a polynomial ring, because of the following lemma (apply it to R = k[z], f = y2+zy+ 1):

Lemma 0.1. Let R be a commutative ring, f € R[y] be a monic polynomial of degree
at least 1. Then R — R[y]/([f) is injective.

Proof. If not, there exists r # 0 such that f divides r. Since f is monic and of degree
at least 1, this is impossible. O

Apply :z:'l =T, — Is, x'Q = ry — I3 so that the equation becomes
I I 3 2 I ! |
(71 + 23) (2o + 73) T3 + Y112ys = T + 23(2) + 72) + 23)T1 75 + Y1Y2ys3

which is monic as a polynomial in k[, x5, y1, ys, y3 |[23]. Thus, as before,

S = k[T1 - 75,73 — T3, 71 U U] € FL20 220 23,00, 02,01 | (0 g + y1905)

works.

Since we have to cut down by two equations, the computations is a bit more subtle, so
we will use the language of the end of the first part, instead of the one of the second
part. However, in order not to use too many different letters, we will stick with just z,



Yy, 2.

Consider the automorphism k[z,y,z] — k[z,y, 2] sending = to x + y. Then we
deduce an isomorphism

k[z,y, Z]/(:Uy, rz—yz) = klz,y, Z]/(y2 + yx,x2)

and as before we see that k[7,Z] € k[xayvz]/(yQ + yx,xz) is an integral extension.
However k[Z,Z] is not a polynomial ring, so we have to do one more step.

Let ¢ : k[z, 2] » Flz,y, Z]/(y2 + yx, zz) be the map sending = to 7 and 2 to Z. Let
us compute ker(¢).

Clearly, zz € ker(¢). Let us show we actually have (xz) = ker(¢), so let p(x,z) €
ker(¢). Then we can write

2
p(z,2) = oz, y,z)xz + Bz, y, 2)(y" +yx)
In particular, setting y = 0 gives
p(z,2) = a(z,0,2)xz

so p(x, z) € (x2)

Thus, ¢ induces an inclusion (and actually an integral extension) k[z,z]/(zz) €
k[z,v,2]/(y" + yz,zz). Now, the change of variables = — x — z shows that k[T +Z] €
k[x,z]/(xz) is an integral extension, but this time k[Z + z] is a polynomial ring!

By Corollary 8.1.6 in the notes, we conclude that

KT +7] € 2.y 21/ (2 4 2y, 22)
is an integral extension, so
k‘[f -y + E] c ]C[I, Y, Z]/(ij’ xrz — yz)
works.
([l

Exercise 3. Compute the integral closure of the following domains (you do not need to
show they are domains):

(1) *zl/ o + 2°)

(2) My, 21/ 4 g% + ya? + 2™2)
Proof. For this solution, let R denote the ring we are working with, S its integral closure
(which we want to find) and K its field of fractions.

(1) Since §° = =%, we have

(0.1.a) (2)2—§=0

T
in K, so % is integral over R. Hence, S contains R[%] Let ¢ : k[t] — R[%] be the
map sending t to % We want to show that it is an isomorphism.

To show that its surjectivity, it is enough to show that 7, ¥ and % are in the image.
For the third element this is clear. However by equation 0.1.a, also 7 is in the image.



W, since w Y x and Z, w ve 1y W u is surjective.
Now, since we have both audi7 e have v, so we deduce ¢ is surjective

Now let us show the injectivity. This can be done in a direct way with actual
equations, but let us give an easier solution: if it was not injective, we would obtain
an isomorphism

Lt p(ry = RIZ)

with p irreducible. But then k’[t]/p(t) is simply a finite field extension of k, so its
transcendence degree must be 0. On the other hand,

K = Frac(S) = /747(95)[y:|/(y2 + 353)

(explained at the end) which is algebraic over k(x), hence it transcendence degree
is 1, so we have a contradiction. Thus, ¢ is injective, so it is an isomorphism, and
hence R[%] is isomorphic to a polynomial ring. In particular it is integrally closed by

Example 8.2.3 from the notes, so S = R[%]

Now let us explain why K = Frac(S) = k(x)[y]/y2 + 2. The first equality is
immediate since R € S € K and K = Frac(R). The second one follows from the
following general statement:

Lemma 0.2. Let R be a UFD, and let p an irreducible primitive polynomial in R[t].

Then
FraC(R[t]/(p)) = FT&C(R)[t]/(p)
Proof. We know by Gauss lemma that p(t¢) is irreducible in Frac(R)[t], so since
this ring is a PID, the quotient Frac(R)[t]/(p) is a field. But for any element in
Frac(R)[t]/(p)’ so multiple by an element in R lands in R[t]/p(t), SO we win. O
(2) By definition, we have
—\3 —\2
Y Y
(0.2.b) (E)+y(5)+

+z2=0

gll<|

is integral over R. Let ¢ : k[u,v] = R[%] be the map sending u to T and v to %
This map is surjective, because in the image we have , %, and hence also y. Finally,
we have Z because of equation 0.2.b.

This map is also injective, because otherwise we would obtain an isomorphism

T = kuv]/p= R[%]

for some non-zero prime ideal p. But then any element in p gives an algebraic relation
between u and v, so

SO

8l

trdeg, (Frac(T)) < 2
On the other hand, we have as in the previous point that

Frac(S) = Frac(R) = k(z, z)[y]/(y3 +y’2” + oy’ +2°2)

which is algebraic over k(x,z). Hence it transcendence degree is 2, contradiction.
Thus, R[£] = k[u,v], so it is integrall closed, and hence S = R[£].
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Exercise 4. Let R be a ring. Let M, N be R-modules and [ an ideal of R. Prove that
there are isomorphisms of R-modules M ® zk N = N ® M and M @, (R/1)= M [1)/.

Proof. The solution consists of the following steps.

(1) We first prove that M ® R N = N ®r M. For this purpose, we construct mutually
inverse maps from one side to the other. To construct, M @ z N = N & N we just
observe that the map M X N - N ® ; M given by (m,n) — n ® m is bilinear. Hence
we obtain a map M ® gy N = N ®r N given on simple tensors by m & n = n & m.
By swapping the roles of M and N we obtain also a map in the reverse direction, and
the two maps are mutually inverse as their composition is the the identity on simple
tensors (and simple tensors generate the tensor product).

(2) Let us give two proofs:

Proof 1: The bilinear map M x /1 — M [ 17 sending (m,7) to rm (it is straight-
forward to see it is well-defined) induces

Mep R[> My

On the other hand, we have a map M — M ®p R/] sending m to m ® 1. Furthermore,
any element of the form rm with r € I, m € M in sent torm® 1 =m ®7r = 0, so since
these elements generate I M, we deduce a map

My - Mer Bl
These two maps are inverses of each other, so we win.

Proof 2: We consider the exact sequence 0 - [ - R — R/[ — (. Taking its tensor
product with a module M and using right exactness we obtain an exact sequence

I®x M —>Re®y M- (R]/1)®z M - 0.

The middle group R®z M can be identified with M using the map r® m +— rm. Under
this identification the image of the homomorphism [ ® p M = R®p M is equal to I M.
This implies that (R/[) ®pr M is isomorphic to M/[M.

O

Exercise 5. Let R be a ring, and M, N and P be R-modules. Show that there exists a
natural bijection
Hompzp(M ® N, P) = Homp(M,Hompz(N, P)).
Use this to prove that
— ®pr N : {R-modules} —» {R-modules}, A A®p N

is a right exact covariant functor.

Proof. We start by proving that — ® p N is a covariant functor. For this we need to assign
to an R-module homomorphism f : M — M "an R-module homomorphism M &, N —
M' ®z N, which for conceptual reasons we will denote by f ®r idy (but you may also
denote it f ®p N if you like). To construct f ®pidy, let ¢« : M @ N - M ®p N and
/'t M &N - M ®g N be the unique R-bilinear maps in the definition of the tensor
product. Let f @ idy : M @ N - M @& N be defined by (f @ idy)(n,m) = (f(n),m),
then f & idy is obviously R-linear. The composition ' o F defines an R-bilinear map
M &N — M ®p N. By the universal property of M ®z N there exists a unique morphism
f®pidy : M ®g N = M ®g N such that ¢ o (f @ idy) = (f ®gidy) o ¢. Notice that on
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simple tensors, f @y idy is given by m @ n = f(m) ® n. We now have to verify points (1)
and (2) in the definition of a covariant functor given on the Sheet. It is a very useful thing
to note that as simple tensors generate the tensor product, two maps with domain a tensor
product agree if and only if they agree on simple tensors.
(1) By the above description, id); ® pidy maps any simple tensor m ® n to m ® n, and
thus idy ®gidy = idye,N
(2) Let f : M — M and f': M' - M" be R-module homomorphisms. Both the map
(f' ®gidy) o (f ®ridy) and the map (f' o f) ®idy send any simple tensor m & n to
F'(f(m)) ® n. As simple tensors generate M ® z N we hence have (f ®zidy) o (f ®g
idy) = (f'o f) ®pidy.
We now construct the bijection in question. Let « : M & N - M ®r N be the R-bilinear
map from the definition of the tensor product. Let f : M ® s N — P be an R-module
homomorphism. Then fo.: M &N — P is R-bilinear. Define the map n(f) = ny np(f) :
M — Homp(N, P) by
n(f): M —» Homp(N, P)
m (n€Nwe (for)(m,n) €P).
Using R-bilinearity of f o ¢ it is straightforward to verify that this is well-defined, i.e. that
n(f)(m) € Homz(N, P) an that 7 is an R-linear map.
To show that 7 is bijective, we also perform a construction in the reverse direction. Let
F : M - Hompg(N,P) be R-linear, then it is straightforward to verify that the map
F:M@eN — P defined by F(m,n) = F(m)(n) is R-bilinear. Hence the universal property
of the tensor product gives an R-module homomorphism 6(F') = 6y, y p(F) : M ®z N = P
such that 0(F)or = F. We hence obtain a map 6 : Homp(M, Hompz(N, P)) — Homp(M ®p
N, P).
We now verify that the above two constructions are mutually inverse. Let f : M ®z N —» P
be R-linear, then

(O(())m @ n) = n(F)(m,n) = n(f)(m)(n) = (f o 1)(m,n) = f(m & n)

for all simple tensors m ® n. As simple tensors generate M ® p N we conclude 0(n(f)) = f.
On the other hand, let F' : M — Homp(N, P) be R-linear. Then we have for all m € M
and n € N that

[(n(6(F)))(m)](n) = (O(F) 0 :)(m,n) = F(m,n) = F(m)(n).

Hence we obtain n(6(F)) = F.

We conclude that 7 and 0 are mutually inverse (and in particular also € is R-linear, as 7 is).
In fact, ny v p is a natural bijection, which means that it is functorial in M, N, P (i.e. it
makes the appropriate commutative diagram commute). We will need only functoriality in
M, so we only show this part: let g : M — M' be an R-module homomorphism. To show
that for fixed N, P, the map ) := ny n p is natural in M, means by definition that we
need to verify that the diagram

Hompz(M ®x N, P) —% Homp(M, Homz(N, P))
HomR(g®RidN,P)T THomR(g,HomR(N,P))

Homp(M' ®5 N, P) —22% Homp(M', Homp(N, P))
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commutes. To do so, let f' : M ®pr N — P be arbitrary. Then for any m € M and n € N
we have

[13s © Homp(g ® idy, P)(f)I(m)(n) = [nu(f o (9 @ idy))1(m)(n) =
= f'o (g ®gidy) o (m,n) = f(g(m) ®n).
On the other hand, we have

[Homp(g, Homp(N, P)) o nap(f)1(m)(n) = [nar(f') © g1(m)(n) = ms(f)(g(m))(n) =
= [ o i (g(m),n) = f'(g(m) ®n).

As both results agree, the above diagram indeed commutes, and thus the bijection is natural
in M. If you want to verify that it is natural in all components the you need to take
simultaneously R-module homomorphisms M — M ''N - N'and P - P' and show that
the appropriate diagram commutes, but this is more of a language verification and messy
so we omit it here.

We now proceed to show right exactness. Let

0-K->L->M-0
be an exact sequence of R-modules. We want to show that the sequence
K@RN—)L®RN_)M®RN—)O

is exact. As we want to use the natural bijection constructed above, we want to apply
Homp(—, P) to this sequence and see what happens. To keep track of exactness, this
suggests proving the following lemma.

Lemma 1. Consider R-module homomorphisms a« : A - B and f : B - C. If0 —

Homp(C, P) » Homp(B, P) » Homp(A, P) is ezact for all R-modules P, then A > B 5
C — 0 is exact. (This is in fact an ’if and only if’ but we don’t need it for this exercise.)

Proof. We start by verifying exactness at C', i.e. that (§ is surjective. To do so, take P =
coker(f3), and let ¢ : C' = P be the natural surjection. Note that Homp(3, P)(q) = go8 = 0,
and thus by injectivity of Hompg(/3, P) we conclude ¢ = 0. Hence coker(3) = 0 which implies
that [ is surjective.

Now we verify exactness at B. Take P = C and idgy € Homp(C,C'). Then

0 = Hompg(a, C) o Homp(5,C)(ide) = B o a.

Thus im(«) € ker(3). To verify the reverse inclusion, take P = coker(a) and let p: B —» P
be the natural surjection. Then Homp(a, P)(p) = p o a = 0, and thus by the exactness
assumption we obtain that there exists ¢ € Hompz(C, P) such that Homp(5, P)(¢) = p.
That is, ¢ o 8 = p and in particular ker(/3) € ker(p) = im(«). Hence we have exactness at
B. 0]

We are now ready to prove right exactness. As Homp(—, Homz(N, P)) is left exact, the
sequence

0 —» Hompz(M,Hompz(N, P)) » Homp(L, Homg(N, P)) » Homz(K, Homz(N, P))
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is exact. By naturality of n we have a commutative diagram

0 —— Hompz(M,Hompz(N, P)) —— Homp(L,Hompz(N, P)) —— Homp (K, Homg(N, P))

n]bfT WLT WKT
O % HOIHR(M ®RN,P) % HOHIR(L ®RN7P) % HomR(K ®RN,P)

As the vertical arrows are bijective R-module homomorphisms, it is straightforward to verify
that exactness of the top row implies exactness of the bottom row. As hence the bottom row
is exact for any R-module P, the Lemma 1 allows us to conclude that K @ zk, N - L&z N —
M ®r N — 0 is exact. Hence — ® z N is a right exact covariant functor. O

Exercise 6. Let A be a ring, with A-algebras B and C' and an A-module M. Show that:

(1) B ®4 M naturally has the structure of a B-module,
(2) B ® 4 C naturally has the structure of an A-algebra,
(3) B ® 4 B naturally has a ring morphism to B.

Proof. (1) Giving a B-module structure on B ® , M is equivalent to giving a ring map
A : B - Endy(B ®,4 M). To define \(b), note that the map B& M — B ®, M
given by (b',m) + (bb') ® m is A-bilinear. Hence we obtain a map of A-modules
Ab): B®4 M — B®,4 M given on simple tensors by A(b)(b' ® m) = (bb') ® m. In
particular, \(b) is a Z-endomorphism of B ® 4 M. It is then straightforward to verify
that A(1) = idgen, A+ D) = A(b) + M(b') and A(bb') = A(b) o A(V) for all b,b' € B;
simply check these identities on simple tensors where they easily follow.

(2) First we need to construct a ring structure on B ® 4 C. On simple tensors, it would
be natural to suspect (b®¢) - (b'® ¢') = (bb') ® (cc') to work, but of course one needs
to verify that this is well defined. A clean way is to do the following: For b € B and
c € C, the map

Be(C - B ® 4 C
(b, ¢y P (bb) ® (cc)

is easily verified to be A-bilinear, and hence induces an A-linear map A, ) given on
simple tensors by )\(b#)(b' ®c) = (b)) ® (¢'). Next, one may verify that the map
Aot BoC — Endy(B®4C) given by (b, c) = A is A-bilinear, and hence induces an
A-linear map A : B® 4, C — End (B ®4C), given on simple tensors by A(b®c) = \y..
Now for 7,7 € B® 4 C we define their product by 7-7 := A(7)(r'). On simple tensors
this indeed gives (b ® ¢) - (b ® ¢') = (bb') ® (¢c'), and it is straightforward to verify
the axioms of (commutative) ring multiplication. As A is a morphism of A-modules,
it is also straightforward that the map A - B® 4, C given by a = a® 1 =1 ® a gives
B ® 4 C the structure of an A-algebra.

(3) The map B@® B — B given by (b,b') = bb' is A-bilinear and hence induces an A-linear
map A : B®,4 B — B, given on simple tensors by A(b ® b') = bb'. As simple tensors
generate B ® 4 B as an A-module, and hence also as an A-algebra, it suffices to verify

multiplicativity on simple tensors. This is easily checked.
OJ

Exercise 7. Prove the following assertions:
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(1) Let R be a commutative ring, and let M; and M, be free R-modules with bases
{ei,...,e,} and {fi, ..., [} respectively. Show that a basis of M; ® z M, is given by

{e; ® fj}isism.

1<j=n

ence show tha e element e ® o +6e9 @ f; cannot be written as u ® v 1or any v € M,

2) H how that the el t tb itt fi y M
and v € M,.

Proof. (1) As we have already seen, tensor products are distributive with respect to direct
sums and for any R-module N, we have N ® p R = N. Thus, we have

= m n = m &n mn
M, ®p My =) R® ®r R® —(2) (Re) ®r R) —(3) R®™.

Hence, M ®px N is free of the right rank. Let us find an explicit basis by precisely
remembering what our isomorphisms do. Let w; denote the standard i’th coordinate
vector (which we see both in R®™ and R®"). Then by definition, our choice of isomor-
phism (1) sends e; ® f; to w; ® w;.

Recall that the isomorphism M @z (S@T) - (M ®5 S) & (M ®;T) is given by

me® (s, t)» (m®s,m®et).
Hence, isomorphism (2) sends w; ® w; to
(w,®0,,wz®1,,wl®0)

where the only w; ® 1 term is the j’th one. Finally, in general, the isomorphism
M ®pr R — M is given by m ® r = rm, so we conclude that the image of the elements
e; ® f; through this whole string os isomorphism is

@UZJ = (O,...,QUm...,O).

Since these elements form a basis of R®™, we win.

(2) Suppose we can write e; ® fo + e, ® fi = u ® v for u € M; and v € M,. Then writing
u =) ae; and v = Z]. bif; we get e; ® fo+e3® f; = Z” a;bje; ® f;. But this is
a linear combination among basis vectors, so we have a;by = asb; = 1 and all other
a;b; = 0. The first implies that all of a;, by, as, by are non-zero, which implies that a,b,

is also non-zero. But this is a contradiction.
OJ

Exercise 8. # We will define the exterior product of a module. This construction is
especially important, for example in differential/algebraic geometry when one considers
differential forms.

Let R be a commutative ring, and let M be an R-module. For any n > 0, define T" (M) =
M®pg- - ®grM (n times). We also set T°(M) = R. For any n = 0, we define A" M as the
quotient of 7" M by the submodule I generated by elements of the form

my® -+ ®m,,

with m,; = m; for some 7 # j. The image of m;®---®m,, in A" M is denoted my A« - - Am,,.
Note that if f: M — N is a morphism of R-modules, then it naturally induced a morphism

T"(f): T"(M) - T"(N) of R-modules (apply f to each tensor), and passes to the quotient
N fiN'M—- A"N.

From now on, assume that M is free of finite rank r > 1, with basis B = {ey,..., e, }.

o Show that A" M is free with basis e, A - -+ A e,, and that A' M =0 for any [ > r.
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o Show that for 0 <i <r, A\"M is free of rank (:)

Hint: First find a the appropriate number of generators. To show that it is a basis

(i.e. the linear independance), wedge it by an appropriate element to get something in
A" M, where you know an explicit basis.

o Fix the isomorphism §: A" M — R corresponding to the basis found in the first point.

Let f: M — M be an endomorphism, corresponding to a matrix A € M,,(R) (with

respect to BB). Show that the diagram

AT' M /\rf1 AT M

>
>

<det(A)

R———— R

commutes.

o Use the above to give a new proof that if A and B are two r X r-matrices, then
det(AB) = det(A) det(B).
Hint: \ is functorial.

Proof. Before anything, let us show the following lemma:
Lemma 0.3. For anyn >0, my,...,m, € M and o € S,, :== Bij{l,...,n}, we have
Mo(1) A=+ N Mgy = sgn(o)my A -« Am,.

Proof of the lemma. Since the group S, is generated by transpositions of the form o; =
(i,7 + 1), it is enough to show the result for these elements. Hence, it is enough to show
that

My A AMy_] Ay A Aeos Amy, = —mqg A=+ Am,,.
Up to wedging on the left by m; A -+ A m,;_; and on the right by m;,o A -+« A m,,, we are
left to show that
Mypr A = =My A My
Since by assumption (m; + m;q) A (m; + m;.1) = 0, we obtain that by multilinearity that
O=m; Am; +m; Ay + My Amy + Mypg A Mg,

Since the extremal terms of the right-hand-side are zero by definition, we conclude. U

Now, let us start the proof if the exercise.

o By Exercise 7, we know that for any n > 0, a basis of T" (M) is given by the elements
€,L'1 ®"'®€Z’n7

with 7;,...,4, € {1,...,r}. By the lemma we just proved, we obtain that each /\l M
is generated by the elements

e, N+ Ae

il i,»?
with 1 <¢; < -+ <4, <r. This shows immediately that /\l M =0 for [ > r, and that
A" M is generated by e; A - -+ Ae,.

Our goal is to show that this element is a basis of A"M. Hence, assuming that there

exists s € R such that s(e; A -+ Ae,) =0, we want to show that s = 0.
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Consider the map M®" = R®™" — R given by taking the determinant, where the
isomorphism above is induced by the basis B. Since this map is multilinear, it induces
an R-linear morphism

det: T"(M) - R.

Furthermore, recall that if a matrix A has two identical colons, then det(A) = 0. Thus,
det induces an R-linear morphism at the level of quotients

,
det: /\ M - R.
By definition, it sends e; A - -+ A e, to 1, so
0 =det(s(e; A+ Ae,))=sdet(eg A+ Ae,) =s.

In particular, s = 0 so this point is proven.
o For any J = {ji,...,J;} € B, set e; := e;, A -+ Ae;. By our proof of the previous
point, we know that A" M is generated by the elements e; with |J| = i. Note that

r

there are exactly (Z) of these elements, so our goal is to show that they form a basis.
Assume that there exist elements \; € R such that

Z Ajer =0,

|J]=i

and let J' € B with |J'| = i. Denote J. := B\ J. Then for any J # J', e; A ey =0, s0
we obtain that
0=€JLAZ)\J€J= i)\J'€1/\"'/\€n.
7

By the previous point, we deduce that Ay = 0. Doing this for all J', we conclude.
o Write f(e;) = Zj aj;ej, so that A = {a;;};;. Then we obtain that

(/\f)(el A--+Ae.) = (Zaﬂej)/\ cee A (Z%r@j)

r -

J
Z (ﬂ%i)% A

jl?"'ij i

? Z (1_[ aa(z‘)i) €a(1) N = A Eg(r)

g€S,. i

we must have {j;,...,7,.} = {1,...,7} (i.e. i » j; is a permutation) to have a non-zero term

? ( Z sgn(o) Hao(i)i)el AorAe,

og€ES,. )

=det(A)(e; A--- Ae,).

o Let f4: R®" —» R®" denote the morphism corresponding to A (and similarly define fg).
Note that by definition, we have A"(f40 fz) = A" fa©o A" f5. By the previous point,
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we have

det(AB)ey A+ A, = (f\(fA 0 fB)) CYSHIYS

= (/\fA)(/\fB)(@l/\”‘/\en) = (/\fA)(det(B)elA-~'Aen)

= det(A)det(B)e, A --- Ae,.
In particular,
det(AB) = det(A) det(B).
O

Exercise 9. Prove the following:

(1)
(2)

Let R be a ring, and let [ and J be two ideals such that I + J = R. Prove that

R/] ®r R/J =0.
Show that if /' € L is a field extension, L ® » L is a field if and only if F' = L.

Proof. (1) We give two proofs:

Proof 1:Since I + J = (1), there are two element ¢ € [ and j € J such that i+ j = 1.
Consider a simple tensor (r + I) ® (s + J). Then we have

(r+)®(s+)=0+7)-((r+)®(s+J)) =
=(-(r+1)®(s+J)+(r+I1)®(j-(s+.J))=0.

As R/[ ®r R/J is generated by simple tensors, this implies R/_] ®r R/J =0
Proof 2: By exercise 4, we have

RirepRly=(R[1)](s-Rjp)y=(BID)](1+J/p)= Rl1+ =0

where the last equality comes from I + J = R.

If FF = L, then the ring in question is F' ®p F, and it holds for any ring R that
R ®xr R = R. This is easily checked to be a ring isomorphism for the ring structure
given by point (2) of Exercise 3.

Conversely, assume that /' ¢ L, and we show that L ® L is not a field. To do this
it is enough to show that it has a non-zero proper ideal, for a field has no non-zero
proper ideals. By the previous point (3) of Exercise 3, there is a ring homomorphism
¢: L® L — L given by b® b ~ bb. This is surjective, but it is not injective.
This is because we will find [ € L\F such that r =1 ® 1 —=1® [ # 0 but ¢(r) = 0.
Any such r satisfies that ¢(r) = 0, hence it is sufficient to find [ € L\F such that
r=1®1—-1®1[ # 0. To construct such an [, we apply the universal property of tensor
products. It is enough to exhibit an F-bilinear map 6 : L & L. —» Z of F-modules for
some F-module Z which has different values at (I,1) and (1,1), for the bilinear map
factors through L@® L — L ®p L. As L # F, there is a non-trivial (not equal to the
identity) F-module homomorphism ¢ : L — L such that ¢(1) = 1 (simply pick an
F-basis starting with 1, send 1 to itself and for example send all the other elements to
0). Define 6(a,b) = a - ¢(b). Then 6 is F-bilinear and since ¢ # id there exists an [
such that ¢(1) # [. Therefore, 0(1,1) = 1¢(1) # 1 = ¢(1)I = 6(l,1). Thus we are done.

O
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There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let R be aring and let M, N be R-modules. Prove that TorOR(M, N)= M®pN.
[ Hint: Try to adapt the proof of Proposition 5.3.8 in the printed course notes. ]

Proof. Let P, = M be a projective resolution. Notice that we have a short exact sequence

0 — im(p;) - P, B Mo By right exactness of the tensor product, it follows that
im(p;)®z N - Py®z N - M ® N — 0 is exact. To conclude, it suffices to verify that the
image of i ® zidy coincides with the image of p, ® pidy. For this, notice that p, = iop, |™®),

m(

where p, |i 1) is the corestriction of p; to im(p;). Hence

p1®ridy = (i ®gidy) 0 (p1|lm(m) ®ridy),
but p, | is surjective and thus by right exactness also p, | ® pidy, and thus im(p; ®
idy) = im(i ®p idy ). Hence we have
R
M ®R N = PO ®R N/lm(Z ®R ldN) = PO ®R N/lm(p1 ®R ldN) = Ho(P. ®R N) = TOI'O (MuN)
O
Exercise 2. Let R be a ring and N an R-module. We say that N is flat if for every short
exact sequence of R-modules
0> M- M > M -0
the sequence
0->M®rN—>M®&yN—->M &N -0
is exact. Prove that the following are equivalent:
(1) N is flat,
(2) Tor?(]\/[, N) =0 for every R-module M and every i > 0,
(3) Tor;(M, N) = 0 for every R-module M.
[Hint: For (1)=(2) take a free resolution of M and tensor it with N to compute the
Tor-functors. For (3)=>(1) use the long exact sequence for left derived functors.]
Proof. We prove a cycle of implications:

(1) = (2) : Let P, > M be a projective resolution of some R-module M. As N is flat, the chain
complex (P, - M) ®g N (with the M at position —1) is still exact, and thus its
homology groups vanish. Thus for ¢ > 0 we obtain

Tor; (M, N) = Hy(P,) = Hy(P, = M) = 0.

(2) = (3) : Trivial.
= (1): Let0 > M — M'— M" - 0 be an exact sequence of R-modules. From the long exact
sequence for left derived functors, we obtain an exact sequence

oo o Tort (M',N) = Tori (M" N) > M ®z N > M &, N > M"®r N - 0.
%—I

=0



In particular, 0 > M @z N » M' @, N » M" ® N — 0 is exact, and thus N is flat.
O

Exercise 3. Let R = k[x,y] where k is a field. Consider the R-modules M := (x,y) (i.e.
the ideal generated by x and y) and N := R/ .
(1) Compute Tor (M, N) for all integers i = 0.
[ Hint: Use the definition. ]
(2) Is N flat?
(3) Compute Tor (N, N) for all integers i = 0.
[ Hint: Use the long exact sequence. |

Proof. (1) We saw already a couple of times that M admits the free resolution P, — M
given by
0)— =P =R——>R®R=Py—> M —>0

l— (y, —x)
(1,0) ———=x
(0,1) ———u.

This already shows that Tor, (M,N) = 0 for all i > 2. Furthermore, we have
Toer(M7 N) = ker(p; ®p idy). Notice that p; ® p idy maps a simple tensor r ® n
to (ry,—rz) ® n, and
(ry,—rz) ®@n=(ry,0)®@n—(0,rz) ® n=(r,0) ® (yn) — (0,7) ® (fo_l,) = 0.
(-
=0 =0
Hence p; ®y idy is equal to 0 on simple tensors, and thus equal to 0. We therefore
obtain Torf”(M,N) = R®z N = N. Also, as then im(p; ®3 idy) = 0 we have
Torg (M,N) = (R® R)®r N = N @ N. In conclusion
NeN ifi=0
Tor (M, N) = {N ifi=1,
0 otherwise.

(2) We have Torf(M,N) = N # 0 and thus N isn’t flat by Exercise 2.

(3) Notice that we have a short exact sequence 0 - M —» R - N — 0. We would like to
tensor this with N and take the induced long exact sequence. To prepare this, notice
that Torf(R,N) = 0 for all integers ¢+ > 0. Indeed, a projective resolution of R is
provided by - = 0 —» R % R - 0. As we have the 0 module on positions with
index ¢+ > 0, and this remains the case after tensoring with N, we conclude that indeed
Tor®(R,N) = 0 for all integers i > 0. For i > 1, consider now the following excerpt
from the long exact sequence

v Torf’(R,N) - Torf(N,N) - Toril(M,N) - Torf_l(R,N) — e,
%—J %—J
=0 =0

Hence we obtain that Tor. (N, N) = Torl (M, N) for all integers i > 1, and thus by
point (1) we have Tor, (N, N) = 0 for all integers i > 2 and Tory (N, N) = N. Now we



focus on the start of the long exact sequence:

(%) cee o Tort (R, N) = Tori(N,N) > M®z N » R®z N » N®z N — 0.
%—I
=0
The key observation here is that the map M ® , N - R®p N is the zero map. Indeed,
ifr®(s+M)eM®pN is a simple tensor then this is mapped to

r®(s+M)=1® (r(s+M)) =0
%_J
=0
insinde R®r N. So as simple tensors generate the tensor product, we indeed have that
the map M ® g N - R®p N is trivial. Plugging this back into (%) we directly obtain

Tor?(N, N)=M®&zN = N & N, where we used the previous point and Exercise 6.
Finally, as the image of M ®x N inside R ® g N is 0, we obtain also from (%) that

R®pr N - N ®x N is an isomorphism. Hence TorOR(N,N) = N®@zN = N. In

conclusion,
N if 1 € {0,2},
Torl(N,N)={Ne N ifi=1,
0 otherwise.

Exercise 4. Let R be a ring.

(1) Prove that free R-modules are flat.

(2) Prove that projective R-modules are flat.
[Hint: Use the characterization of projective modules as direct summands of free
modules. |

(3) Assume that R is an integral domain. Determine for which ideals I of R the R-module
R / J is flat.

Remark 0.1. There exists a partial converse of (2): a flat finitely generated module over a
Noetherian ring is projective.

The finite generation hypothesis is very important, as the Z-module Q is flat (see exercise
6.3), but not projective. There are also counter-examples in the Non-noetherian case.

Proof. (1) It suffices to prove that R®' is flat, where I is an arbitrary set. Notice that for
an R-module M, we have a natural isomorphism 7, : M ®p R® > MM, given on
simple tensors by m® (r;); = (r;m);. Indeed, n;,; exists as it is the map induced by the
R-bliniear map (m, (r;);) € M & R®" v (r;m); € M®'. We now construct an inverse:
let 6, : M®" = M ®p R®" be the map defined by sending (m;); to ¥ om0 15 @ (857)i:
It is straightforward to verify that this is the inverse of 7,,. Lastly, note that n,, is
natural. To see this, let f : M — N is an R-module homomorphism. We must verify
that f® omy = ny o (f ®pidger). It suffices to verify this on simple tensors: the LHS
maps m ® (r;); via (r;m); to (f(r;m)),, and the RHS maps m & (r;); via f(m) ® (r;);
to (r;f(m));. These two agree as as f is R-linear.

Now to show that R®' is flat, it suffices to show that — ®p R® preserves injections (as
we already know that it is right exact by Exercise 5 of sheet 10). So let f : M — N be
injective, then by what we showed above, under the identifications M ®p R® = M@



and N ®p R® = NM, the map f ®pidger is just fe[. So as fel is injective, f ® pidper
is too, and hence R®" is flat.

(2) Suppose M is projective and let M' be an R-module such that M & M' = R". In

a similar way as for the previous point, if A is an R-module, then there is a natural
isomorphism 7, : A®gz (M @& M') - (A®zr M) & (A®z M') which maps a ® (m,m')
to (a ® m,a ® m'). Under this identification, if f : A — B is an R-linear map, then
f ®prid e corresponds to (f ®pidy,) ® (f ® pidy); it suffices to check this on simple
tensors.
Now if f is injective, then by the previous point f ®p idy;ear, and thus under the
identifications provided by 7, the map (f ®p idy) @ (f ®p idys) is injective. In
particular, f ® pid,, is injective. Hence — ® p M preserves injections, which proves that
M is flat.

(3) If I = 0 then /1 = Ris flat. If I = R then £2/] = 0 is also flat. We will show that
R/] = ( is flat only in these two cases. Let I C R be a non-zero proper ideal and let
a € I be non-zero. Since R is a domain the R-module morphism m, : R — R defined by
me(r) = ar is injective. However, if we apply — ®p R/] and identify R®p R/_] = R/L
we obtain m,®gidg;; : R/] - R/] which maps r+1 to ar+1 = 0. Therefore m,®idg,;
is the zero map, which is not injective since I # R, hence R/[ is not flat.

O

Exercise 5. Let R be a ring containing a multiplicatively closed subset 7', and let M be
an R-module. Show that there is an isomorphism of R-modules

T'M=T"'Rey M.

Further show that this is an isomorphism of T~' R-modules.
[ Remark: The right hand side naturally has the structure of a 7~ R-module by point (1)
of Exercise 6 on Sheet 10.]

Proof. Let b : TR ®p M — T~ "M be defined as being induced from the bilinear map
T'Re M — T™'M given by (7,m) = ZF; that the latter is well-defined and bilinear is
direct. In formulas, ¢ is given on simple tensors by = c®m - %

Defining an inverse to ¢ can be done by hand (by mapping m/t to (1/t) ® m and showing
that it is well-defined and a morphism), and this approach will be given first. A more con-
ceptual approach is to prove a universal property for T—'M , similar to the one in Theorem
9.2.3 of the notes, that allows to construct a map out of T~'M from a map out of M. This
is stated in Remark 9.2.8, and proven below the approach by hand.

First the approach by hand. We show that g : T-'M — T 'R ®z M defined by g($) =

% ® m for m € M and t € T is well-defined and inverse to 1. Suppose that ﬂ = T—; Then

'ty
oty ®my = oty
® ttlmg, which is equal to t— ® my by a symmetrical argument. This shows that g

there is ¢ € T such that t'(tym, — t1m2) = (. Thus ti ®m, = ® t'tym, =

tt t1
is well defined. To show that it is a T~ R-module homomorphism, we must show that

it respects addition and scalar multiplication' for addition, g+ 32) = g(%) =
1 2 12
—— @ (tymy +tymy) = ® tomy + — ® time = - @ my + ti ® my as required. For scalar
2

multlphcatlon g(t3) = —t ® rm = E ® m = 8(1 ® m) = ~¢(}). Now it remains to show



that v and ¢ are mutually inverse: we have

o)) = v @ m) =

and on simple tensors (it suffices to check these as they generate the tensor product)

oG em) =g(F) = @rm=1om

So g and v are isomorphisms, and as g is T R-linear, v is too. As a side note, notice that
it follows from this isomorphism that every element of T’ 'R® r M is expressible as a simple
tensor.

Conceptual approach:

Theorem. Let R be a ring with multiplicatively closed subset T' and let M be an R-module.
Leti: M — T™'M be the R-module homomorphism defined by m % Lastly, an R-module
N will be called T-invertible if for every t € T the multiplication map p; :mn € N = tn € N
15 an isomorphism.

(1) A T-invertible R-module N admits a natural T~ R-module structure, defined by Tem =
pe (rn).

(2) For every R-module homomorphism <b M — N with N being T'- invem‘ible, there exists
a unique R module homomorphism ¢ : T~ 'M - N such that ¢ = ¢ o i. Furthermore,

¢ is a T™ 'R-module homomorphism for the T 'R-module structure on N from the
Previous point.

Proof. (1) The R-module structure is equivalent to a ring homomorphism A : R — Endy(N),
mapping r to u,. The ring End; (V) isn’t necessarily commutative, so to get around
this let S € Endz(N) be the subring generated by A(R) and {u;" | ¢ € T'}. Then it is
straightforward to check that S is commutative, and that the corestriction )\|S )
maps every element of T to a unit. Hence, by the universal property of T_lR, there
exists amap A : T7'R —» S o Endy (V) extending A|°. This gives N the structure of
a T™'R-module, and it is straightforward to check that Zen = 1wy (rn).

(2) We define ¢ : T-'M = N by the formula 5(?) = %o(m) (where we make use of the
T~ R-module structure on N). We have to check that this is well defined: suppose T—ll =
T—;, i.e. there is a t' € T such that ¢ (tym; — t;my) = 0. Then by applying ¢ we obtain
t'(ta(my) — t16(my)) = 0 inside N, and as N is T-invertible this implies i¢(m1) =
igb(mQ). Hence ¢ is well-defined. Note that ¢ = ¢ o i follows immediately from the

construction. So what is left to check is that ¢ is a T _1R—module homomorphism
(additive): & (ZL + ’j—) = -o(tomy + tims) = Lo(my) + Lo(my) = (7”) + (M) for all
l,t € T and my,my € M.
(T_IR—linear) @ (;m) ;qS(rm) = ~p(m) = —¢( ) forallr € R, s,t € T and m € M.
Hence ¢ is a T~ ' R-module homomorphism (and in particular an R-module homomor-
phism).
O



With this at hand, notice that T'R ®r M is T-invertible: indeed, by Exercise 6.1 on
Sheet 10, T7'R ®pr M has the structure of a T~' R-module (such that multiplication by
r/1 is multiplication by r). In particular, multiplication by ¢ € T is invertible (the inverse
being multiplication by %) Therefore, by the universal property of 77 M, the map ¢ :
M — T7'R ®p M which sends m +— 1 ® m induces ¢ : 7'M — T 'R ®p M defined
by % - %(1 ® m) = % ® m. It is then easy to see that ¢ is inverse to v, and as ¢ is a

T~' R-module homomorphism, 1 is too. O

Exercise 6. Let R be a ring with multiplicative subset T, and suppose that L, M and N
are R-modules.
(1) Show that if there is an R-module homomorphism f : M — N then there is a natural
T~' R-module homomorphism fr: T 'M —» T 'N.
(2) Show that there is an isomorphism of T~' R-modules T~ (M &N) = (T™'M)&(T"'N).
(3) Suppose there is an exact sequence
0=-L->M->N-=0.
Prove that the sequence
0T 'L>T " 'M—-T"'N-0
is also exact. Deduce that if L ¢ M is a sub R-module, then 7" (M]p)= T_lM/T‘lL

and that localization by T is an exact functor of R-modules and that T'R is a flat
R-module.

(4) Let p be a prime ideal of R. Show that there is an isomorphism of rings Frac ( R/p) =
[ Remark: For a local ring A with maximal ideal m we call A/m the residue field of A.]

Proof. There are two possible approaches to the first three points: either one uses the
universal property of localisation of a module proven in the conceptual solution to Exercise
5, or one uses the description of localisation of a module by a tensor product provided by
Exercise 5. Both have their advantages and disadvantages, so will discuss both.

(1) Tensor approach: By applying the functor T'R ®pr — we obtain a map idp-1p ®rf :
T'R®&z M —» T'R®p N which on simple tensors is defined by L@m 7 ® f(m).
Under the identification provided by Exercise 5, this gives a map of R-modules fr :
T™'M - T7'N defined by i @ It is then straightforward to check to see that

this is a 7' R-module homomorphism.

Pure localisation approach: Denote by i, resp. iy the natural maps ¢, : M — T'M
and iy : N » T7'N. Then as T~'N seen as an R-module is T-invertible, the map
iyof: M —> T~'N induces a T~" R-module homomorphism fr: T'M - T~'N such
that fr o iy =iy o f (by the universal property of module localisation proven in the
solution to Exercise 5). It is straightforward to check that fr maps =€ T™'M to
fm) e 77N,

(2) Ténsor approach: The functor L ®  — is additive for any R-module L, meaning more
precisely that the map L @z (M &@ N) —» (L ®p M) & (L ®r N) sending a simple
tensor [ ® (m,n) to (I ® m,l ® n) is a well-defined isomorphism of R-modules. By
applying this to L = T'R and using the identification provided by Exercise 5, we
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obtain that the map 77 (M & N) — (T"'M) & (T"'N) defined by sending (mt’") to
(%, %) is an R-module isomorphism. It is then straightforward to check that this is in
fact a T~ ' R-module homomorphism.

Pure localisation approach: Denote by i, ix resp. iyen the natural localisation
maps. The map iy @iy : MO®N > T ' M&T 'N goes to a T-invertible module, and
hence by the universal property induces a map of 77" R-modules ¢ : T~ (M & N) —

T'M ® T"'N such that ¢ oiyen = iy ® in (which in particular implies that @
is mapped to (%, %)) Now either one checks by hand that this is bijective (which is
straightforward), or one constructs an inverse (which is a bit heavy on notation but
a good exercise). We will do the latter. If jy; resp. jy are the natural inclusions
Jm s M = M & N resp. jy : N = M @& N, then the maps iy;en © Jar and ipen © JN
induce ™' R-maps ¢y : T"'M » T- (M @& N) and oy : T'N —» T~ (M & N) such

that wM o ’LM = Z.MGBN o .]M and 1/1]\7 o ’LN = iMeN o .]N (Wthh n particular 1mplles that

(m,0) M)

% is mapped to —). Then ), and ¢y together induce
Vv:T'MeT 'N - T '(MeN), given by mapping (m ") to {9 4 01 which

PR t P

and % is mapped to

can also be written as (“?—t,m) It is then straightforward to check that ¢ and v are

mutually inverse.
We first prove exactness of the sequence.

Tensor approach: As T'R ®r — is right exact by Exercise 5 on sheet 10, we already
have that T'L » T 'M — T™'N — 0 is exact. Let f be the map f : L - M; to
conclude, we must show that fr is injective. So suppose that % is mapped to 0 by fr,
ie. @ is 0 inside 77'M. This means that there is t' € 7" such that ¢ f(I) = 0 in M,
which by injectivity of f means that ¢1 = 0. But then % = 0 inside T_lL, so fr is
injective. Hence 0 » T7'L » T7'M — T™'N — 0.

Pure localisation approach: Denote by f : L — M and g : M — N the maps of
the sequence. Just as in the tensor approach, one proves that fr is injective. To show
that gp is surjective, let = € T 'N be arbitrary. Then as ¢ is surjective, there is

m € M such that g(m) = n, and thus gr maps % to %, SO gr is surjective. So it

remains to show exactness at T~ M. As gr © fr is equal to (g o f)r which is 0, we
obtain im f7 € ker gr. To prove the reverse inclusion, let take % € ker gr. That is,

we have that @ is 0 inside 77N, i.e. there exists ¢ € T such that t'g(m) = 0. By

exactness of the original sequence, there exists [ € L such that f(I) = tm. Hence
m

we obtain that fr maps # to =. Thus we proved that also ker gr € im f7, and thus
0T 'L >T"'M>T'N > 0is exact.

Note that for any R-submodule L € M we can set N := M/L to obtain an exact
sequence 0 » L - M — N — 0, and then as 0 — T'L>T"'M->T'N > 0is also

exact we obtain

- 13

T (ML) =T N=T M [,

Note that under this isomorphism, mTJ’L is mapped to % +T'L.
To prove that localisation by T is a (covariant) functor, we must show that (idy;)r =



idp-1p, and (g o f)r = gr o fr for any R-module homomorphisms f : L - M and
g : M — N, which are both straightforward. The above then implies that localisation
by T' is moreover exact.
Finally, the identification provided by Exercise 5 shows that T’ "R® r — 1s an exact
functor, which means that T7'R is a flat R-module.

(4) We construct mutually inverse morphisms. First, notice that the composition R —
R, - Rp/pRp has kernel equal to p. Indeed, every element of p is mapped to 0, and

T

if r € R is mapped to 0 then I is inside pR,, which means that there exists r e P

and t € R\ p such that 7 = —. This in turn means that there is t' € R\ p such that

t'(rt =) = 0. In partlcular rtt € p, and as tt' & p we obtain r € p. Therefore, we
obtain an injective ring morphism R/p - R /pRp. Notice that if t+p # 0, then thls is

mapped to % + pR,. This has inverse % + pR,, so every non-zero element is mapped to
an invertible element in / PR, Thus the universal property of localisation induces
a ring morphism Frac (R/p) - Rp/pRp7 mapping % to % + pR,.
On the other hand, the composition R — R/p - Frac(R/p) maps every element of
R\ p to an invertible element, and hence induces a ring map R, — Frac ( R / p) given by
sendmg - to T+p . Then, if r € p, then = T is mapped to 0, and thus the ideal generated by
elements of thls form, ie. pR,,isin the kernel. Hence we obtain 1 /pR — Frac ( R/p)
given by sending 7 /¢ + pR, to T+p . This is clearly inverse to the morphism constructed
in the previous paragraph, so 1t 1s an isomorphism of rings.

OJ

Exercise 7. Let R be a ring, let S be a multiplicatively closed subset, and let M and N
be R-modules. Show that for all ¢ > 0,

-1
ST TorX (M, N) = Tor? ®(S™'M,S™'N).

If furthermore R is Noetherian and M is finitely generated, then also
S™'Extp(M, N) = Exty o(S™ M, S7'N).

Proof. Let us first show the statement about Tor’s. Let P, = M be a projective resolution.
Note that each S_lPl- is also projective about ST'R (for example use Exercise 5, and the
analogous fact for tensor products). Furthermore, by exactness of the functor st (see
Exercise 6), we deduce that S7'P, is a projective resolution (over S_lR) of ST'M.

Before, concluding, let us show that for any R-modules A, B, we have S'A ®g-1p S7'B =
ST (A®gB).

This follows from the computation

ST A®s1pS ' B=A®rS R®¢1pS 'B=A®pS 'B= A®pB®rS 'R=S(A®xDB).
Combining all this, we deduce that S™'P, ®¢-15 S™' N = S~ (P, ®; N). Taking i’th

homology (and again using exactness of S™') shows the statement.

Now, let us show the statement about Ext-functors. The exact same argument will work,
once we know that S~ Homp(M, N) = Homg-1(S~ "M, S™'N). First of all, there is always



a natural map
Oyrn: S~ Homp(M, N) = Homg-15(S~ M, S™'N)

given by sending an element f (with f: M — N and s € S) to the map
m_ f(m)

s' ss'

If M = R®™ (let eq,...,e,, denote a basis of M), then this map is an isomorphism.
Indeed, we have

ST Homp(M, N) = S~ Homg(R®™, N) = STH(N®™) = (' N)®",
where the isomorphism sends

Lo (o), | feal)

S S

On the other hand, we also have an isomorphism

Homg-12(S™' M, S™'N) = Homg-15((S™'R)®", S7'N) = (S7'N)®"

7= (9(5)0(F)).

We then immediately see that the triangle

sending

O, N

S~ Hompg(M, N) > Homg-15(S™ M, S™'N)

(s7IN)e" _

commutes, so 0, x is an isomorphism in this case.
For the general case, consider an exact sequence

R®™ S5 R®™ 5 M -0

(recall that M is finitely generated and R is Noetherian). We can then apply Homg(—, V)
and then S~ to obtain an exact sequence

0 — S 'Homp(M,N) — S~ " Homp(R®™,N) — S™'Homp(R®™, N).
We could also have applied first S~ and then Homg-1 (-, S_lN) to obtain
0 —— Homg-17(S™'M,S™'N) — Homg-1z(S" ' R®™, S™'N) —— Homg15(S” ' R®™, S™'N).
Our natural maps 6 give the following commutative diagram with exact rows:

0 — ST'Homp(M,N) ——— S 'Homp(R®"™",N) —— S 'Homp(R®"™, N)

\LQJ\/I,N \LQR‘WH N \LGRWW N

0 — Homg-12(S™'M,S™'N) — Homg-15z(S™ ' R®™,S™'N) —— Homg15z(S™ ' R®™, S7'N)

Since both Opem: y and frems y are isomorphisms, we deduce by the 5-lemma (Lemma 5.6.2
in the notes) that ), y is an isomorphism. O
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Exercise 8. # Many algebraic geometers tend not to say “projective modules”, but more
“locally free modules” or even “vector bundles” (as in differential geometry!). It would take
us too far to understand the name “vector bundle” (see the course Algebraic Geometry 1I),
but we can already understand the name “locally free”.

Let R be a commutative Noetherian ring, and let M be a finitely generated R-module.
Our goal is to show that M is projective if and only if there exists a collection of elements
{a;}; of R such that each M, is free as an R, -module, and Spec R = J; D(a;) (we call such
a module a locally free module).

Throughout, you may freely use the following statement, which will be an exercise in the
next exercise sheet.

Proposition 0.2. For any finitely generated R-module N, we have
N=0 < N,=0Vp € Spec(R).

We will prove our result in several steps:

o Show that M is locally free if and only if M, is free as an R,-module for all p € Spec(R).

Hint: It can be useful to show that for any finitely generated module N and p €
Spec(R), if N, = 0, then there exists a € p such that N, = 0.

o Show that if M is locally free, then it is projective.
Hint: Remember that projectivity can be detected by exactness of a certain functor.
o Assume that R is a local ring (i.e. it has a unique maximal ideal). Show that M is
projective if and only if it is free.

Hint: Let m be the mazrimal ideal of R. A good starting idea would be to show that
if my,...,m, € M is a basis of M [mM, then M is in fact generated by my,...,m,.
Nakayama’s lemma can help.

o Conclude that if M is projective, then it is locally free.

Proof. o Assume first that M is locally free, and let p € Spec R. By assumption, there
exists a € R such that p € D(a) (ie. a ¢ p) and for some n = 0, we have M, = R>"
as R,-modules. Let T := R, \ p° (since a ¢ p, p° is still a prime ideal). Then

M, = (R\p)"'M=T""M,.

Intuitively, this comes from the fact that M, is obtained form M by inverting the
action of all elements outside of p. Instead of inverting everything at once, one may
first invert a and then the other elements. This observation is exactly a rephrasement
of the isomorphism above.

A precise way to prove this is to invoke Exercise 7.3 of sheet 12. We leave the reader
to work out these exact details.

Once we have this isomorphism, we win since

M,=T"'M, =T (R") = (T"'R,)®" = R{".

Now, assume that M, is free for all p. Our goal is to show that M is locally free. In
fact, fix some prime p. We will show that if M, is free, then there exists some a € p
such that M, is free (by definition, this will conclude). We will need the following:

Lemma 0.3. Let N be a finitely generated module. If N, = 0, then there erists a & p
such that N, = 0.
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Proof. Let ny,...,n; be generators of N. Since N, = 0, we have that each elements "T
are zero, so for all ¢ there exists a; ¢ p such that

a;n; = 0.

Let a:ny...n; ¢ p. Then an; = 0 for all 7, so alN = 0. In other words, we deduce that

N, = 0. 0
Let =t,..., == denote free generators of M,. Up to multiplying by a unit (the
1 s
elements r;), we may assume that r; = -+ =r, = 1.

Consider the morphism 6: R®® — M given by sending e; to m,;. By construction,
we have ker(6,) = coker(,) = 0. By exactness of localization (see Exercise 6.3), we
know that ker(6,) = ker(6), (and similarly for coker(#)). Using the lemma, we then
conclude that for some a ¢ p,

coker(6), = ker(0), =0

so as before,
coker(6,) = ker(6,) = 0.

In other words, 0,: RS® — M, is an isomorphism, so M, is free.
We will show that the functor Hom (M, —) preserves surjections (by definition, this is
equivalent to M being projective). Let N — L be a surjection, and let J denote the
cokernel of the induced map Hom(M, N) - Hom(M, L). Fix some prime ideal p. By
definition, we an exact sequence

Hom(M, N) - Hom(M,L) - J - 0.
Since localization is exact, we then obtian an exact sequence
Hom(M, N), = Hom(M, L), = J, = 0.

By Exercise 7, we have natural isomorphisms Hom(M, N), — Hom(M,, N,) and
Hom(M, L), — Hom(M,, L,). A quick compatibility check shows that we have an
exact sequence

Hom(M,, N,) S Hom(M,, L, = J, = 0,

where the morphism ¢ is induced by applying Hom(A,, —) to the surjection N, — L,

By projectivity of M, as an R,-module, we deduce that Hom(M, L), — Hom(M,, L,)
is surjective. In other words, J, = 0.

Since this holds for all p € Spec(R) by the first point, we conclude by Proposition
0.2 (see the satum of the exercise).
A free module is always projective, so we have to show the converse. Hence, assume
that M is projective, and let us show that M is free.

Let mq,...,m, € M be elements such that their reduction module the maximal
ideal m of R forms a basis of M /mM as an R/m-vector space.

In particular, they generate M /mM, so if N denotes the submodule generated by
my,...,m,, we obtain that

M =mM + N.
A way to rephrase this is that

M|N =mM|/N.
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By Nakayama’s lemma (see Exercise 4.2 of sheet 9), we deduce that M /N = 0, so
M = N.
Hence, the morphism R®" — M given by sending e; to m; is surjective, so we have
a short exact sequence
0-K—R" > M-0.
Since M is projective, this sequence actually splits, so R®" = M & K. Reducing
modulo m shows that
R/m®" = M/m e K/mK.
Since by construction, the map R/m®" — M /m is an isomorphism, we deduce that
K[/mK =0. Hence, K = mK, so again by Nakayama’s lemma, K = 0.
In other words, R®" — M is an isomorphism, so M is free.
Let p be a prime ideal. Since M is projective, so is M, (a direct way to see this is using
that a module is projective if and only if it is a direct summand of a free module). By
the previous point and the fact that R, is local, we deduce that M, is free. Since this

holds for any prime ideal p, we conclude that M is locally free.
O
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Exercise 1. The goal of this exercise is to see that the statement of Exercise 8 is wrong
without the algebraically closed assumption.

(1) Let R = S be a morphism of commutative rings (thus making S an R-algebra), and
let I be an ideal of R[x4,...,x,]. Then we have an isomorphism of S-algebras

R[a:l,...,:cn]/]®RS§ S[:(Jl,...,:z:n]/([)

[ Hint: First show it for I =0, and then deduce the general case using right exactness
of the tensor product. The case I = 0 can be handled by a direct computation, or by
showing that both sides satisfy the same universal property.]

(2) Show that

CerC=CxC

and hence it is not a domain (but it is nevertheless reduced!)
(3) Show that

F,(7) ®p, (or) Fp(z) = IFzn(x)[t:l/(t —z)

which is not even reduced.

Proof. (1) First let us deal with the case I = 0.

Hands-on approach: There is a bilinear map
Rl[xy,...,x,] XS - S[zy,...,2,]
given (p,s) — sp, so by definition this induced a morphism
R[zy,...,2,]®r S = S[x1,...,5,]

and it is staightforward to see that this is an S-alebra morphism. Thus we are left to
show that it is bijective. The point is that R[zy,...,,] is free as an R-module, with
basis {z] ---x," i, »0- Therefore, as an S-module,

i1y,
Rlxy,...,7,] ®r S

is also free with basis B; = {xlllx;" ® 1};, . i s0 (we are using that R®z S = S and

that tensor products commute with direct sums). On the other hand, S[zy,...,z,]
is free with basis By = {@7' -2, }i, i s0, S0 since the maps R[zy,...,7,] ® S —
S[xy,...,x,] described before maps bijectively B; to By, we win.

Categorical approach: We will freely use the categorical language here (i.e. cate-
gories, functors, adjoints, universal properties). Given A a ring, we denote by Alg, the
category of A-algebras. We have the obvious forgetful functor Algg — Algp. Let us
show that — ®z S defines a left adjoint.

Given A € Algg, B € Algg, we have to show that there is a natural bijection

Homyy, (A ®% S, B) = Homy,,, (A, B)
1



Given f: A —» B a map of R-algebras, define
fftA® S > R

by f'(a ® s) = sf(a), and conversely given a map f : A®p S — B of S-algebras,
define f : A » B via f(a) = f'(a®1). We leave the fact that this gives a well-defined
bijection to the reader (note that we could replace the word "algebras" by "modules"
and this would work exactly the same way).

Note that if A is any ring, and B is an A-algebra,

Homyy, (Alzy,....2,]. B) = [ [ B
i=1

by definition of a polynomial ring (we can send the xz;’s wherever we want, and this
defines a ring map form the polynomial algebra).
From the above discussion, we obtain that if 7" is any S algebra, we have a natural
bijection
Hom sy, (Rl21, ..., 2,185S, T) = Hompy, (R, ..., 2,1, T) = | [T = Hompy (S[ay,...,2,],T)
i=1
so both R[zy,...,2,]®z S and S[xz,...,x,] share the same universal property in the

category of S-algebras, so there is a natural isomorphism between these two objects.
To find it explicitly, we simply have to see what

id € Hompy, (S[21,...,2,],S[21,...,2,])

corresponds to in Homyy, (R[21,...,2,] ®% S, S[zy,...,2,]). Unraveling the defini-
tions gives us that this morphism is exactly the one given with the previous strategy.

Now let us work out the general case (i.e. I is not necessarily 0). We have a short
exact sequence

0—-1- R[x,...,2,] = R[z1,...,2,]/T =0
Tensoring by S gives the exact sequence
I®rS — R[xy,...,2,]®r S = R[xy,...,2,]/I®r S = 0
Note that the composition
I®rS — R[xy,...,2,]®p S = S[x;,...,2,]

simply sends ) ,p; ® s; to ), p;s;, so by definition its image is (I'), whence we deduce
that
R[zy,...,2,]/[I®pr S = S[xy,...,x,]/(])
It is striaghtforward to check that this map is not only an isomorphism of S-modules,
but actually S-algebras.
(2) Since C = R[z]/(2” + 1), we see by the previous point that

C®y C=R[z]/(z* +1) ® C = C[z]/(z" + 1)
by the Chinese remainder theorem,

C[z]/(z" + 1) = C[2]/(x + i) X C[z]/(z = i) = C x C
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(3) Let us show the following result: let k be a field of characteristic p > 0 and a € k \ £,
and let a'/” be a p’th root living in some higher extension L of k. Then

k(') = K[£]/(# = a)
Proof. The only thing to show is that ¢ —a is irreducible, so let us write by contradiction
that ¢ — a = a(t)8(t). Since in L, & —a = (t — a''")?, we can write a(t) = (t — a'/?)"

and B(t) = (¢t = a'™")™ for some m + n = p. Therefore we get

1

E[t] 2 a(t) =t" —nt"" a'? + lower order terms

so since a'/” ¢ k, we must have n = 0 € k, so since k has characteristic p either
n=0€Zorn =p € Z In other words, either a(t) or S(¢) is a unit, hence we
win. 0

From the above, we deduce that

Fy(2)®, o Fy(x) = Fy(a")[t]/ (t"=2")®x, (o) Fy(2) = F,(2)[t]/ (" =2") = F,(2)[t]/(t-2)"
U

Exercise 2. Let M be an A-module, and let a be an ideal in A. Show that the following
are equivalent:

(1) M =0,

(2) M, =0, for every prime ideal p € A,

(3) M, =0, for every maximal ideal m € A.
Moreover, suppose that M is a finitely generated A-module, under this assumption prove
that M = aM if and only if M, = 0 for all maximal ideals m satisfying a € m.
[ Hint/Remark: Although the exercise can be solved without directly proving the implication
(3) = (2), it is highly instructive for anyone who thinks about studying more commutative
algebra/algebraic geometry, to think through the (3) = (2) implication using Exercise 7.]

Proof. The implications (1) = (2) = (3) are obvious. Note also that by Exercise 7,
the implication (3) == (2) is also straightforward: if (3) holds and p is any prime ideal,
then let m be a maximal ideal containing p. Set T'= R\ m and S = R\ pso that T € S,
and define S € T7'R as in Exercise 7. Then we have

M,=S8"M=5"T"M)=5"M, =0,

as any localization of the zero module is the zero module. Thus (2) holds as well.

Now to prove (3) = (1), assume by contradiction that M # 0 but that M, = 0, for every
maximal ideal m. Then there exists z € M \ {0}, and in particular Ann(z) # A. Consider
the inclusion Az — M and let m be a maximal ideal of A containing Ann(x). As localisa-
tion is exact, localisation at m preserves injectivity, so (Axz), <= M, = 0 is still injective.
Therefore (Ax), = 0, which implies in particular that x/1 is equal to 0 inside (Azx),. By
definition, this means that there exists t € A \ m such that txr = 0, which contradicts
Ann(z) € m. Hence we must have M = 0, and thus we proved the equivalence of the three
statements.

Now to the second part. We have M = aM if and only if M/aM = 0, which by the
above is equivalent to (M [q)f)n = 0 for every maximal ideal m of A. By exactness of
taking localization (see Exercise 6.3 of sheet 11), we have (M/aM)m = Mm/(aM)m, and
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notice that (aM),, can be naturally identified with the submodule (aA, )M, of M, (as the
localization of the inclusion aM < M at m has image (aAy)M,).

Thus (M [qpr),, is zero iff My, = (ady,)M,. If a is not contained in the maximal ideal m
then a contains a unit of A, and thus M, = (aA,)M,. Therefore, M = aM if and only if
M,, = (aA,,)M,, for all maximal ideals m satisfying a € m. Finally, observe that if M, then
trivially M, = (aAy,)M,. On the other hand, if M, = (aA,)M,, then as a € m we also
have M,, = (mA,,)M,,. By applying Nakayama’s Lemma (Exercise 4.2 on sheet 9) to the
finitely generated A,-module M, and the local ring (A, mA,,), this implies M, = 0. So
M, = (aAy) M, for a € m if and only if M, = 0. By combining all of the above, we hence
obtain that M = aM if and only if M, = 0 for all maximal ideals m with a € m. O

Exercise 3. Let R = F[x], where F is a field.

(1) If F is algebraically closed, then show that for every prime ideal p of R, either R, =
F(xz) or R, = F[x](,), where these isomorphisms are isomorphisms of F-algebras.
Show that the above two cases are not isomorphic.

(2) If F = R, then show that up to ring isomorphism there are three possibilities for R,
where p is a prime ideal of F[z].

[ Hint: To tell the three cases apart, consider the residue field, to show that there are
only three cases, apply linear transformations to z.]

(3) Show that if F' is algebraically closed, then F[z,y] has infinitely many prime ideals p
for which F[z,y], are pairwise non-isomorphic F-algebras. For this, you can use the
following theorem of algebraic geometry:

Theorem. There exists a sequence of irreducible polynomials ( fq)aem\o2y i Flx,y]

such that f; is of degree d and such that the fields Frac(F[%y]/(fd)) are pairwise
non-isomorphic as F-algebras.

Proof. Let us first prove a useful result which we will use throughout this solution.

Lemma 0.1. Let R, S be two local rings with respective mazximal ideals mp and mg. If
R =S, then we also have an isomorphism of residue fields Rjmp = S[mg.

Proof. Recall that given a local ring 7', its maximal ideal is exactly the set of non-invertible
elements of T', which is certainly a notion preserved by isomorphisms.

Thus, in our case, an isomorphism 6 : R — S must satisfy 67 (mg) = mp, so it induces
an isomorphism of residue fields. O

(1) Every non-zero prime ideal of F[z] is principal of the form (z — a) since F' is alge-
braically closed. We have F[xz]y = F'(x), hence it is sufficient to prove that there is
a F-algebra isomorphism F[x]—q) = F[2]@-p) for all a,b € F. First, consider the
F-algebra endomorphism ¢, : F[x] = F[x] obtained by mapping « to x +a—b. Then

the composition F'[x] = Flxz] = F[x](-p) maps every element not divisible by z — a
to a unit in F[x](,_y), and thus induces an F-algebra map Bap Fl2]@—a) = FL2]-0)
which sends f(x)/g(x) to f(z +a—"0)/g(x+a—0b). It is thus clear that ¢,, and ¢,
are mutually inverse, and hence F[x](—q) = F[x](,—p) for all a,b € F. Finally, there
is an inclusion F[z]y = F(x), but the two rings aren’t isomorphic as « € F[x](,) is
a non-zero non-unit, but F(x) is a field.
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(2) There are three options for prime ideals in R[z] we have that p = 0 or p is prin-
cipal generated by (z — a) for @ € R or p is principal generated by a degree two
polynomial with no real roots. With the same proof as in the previous point one has
R[#](z-a) = R[2](z—py for all a,b € R[z]. Now let 2”4 bz + ¢ be a monic quadratic
polynomial without real roots (we can assume monicity without loss of generality).
That is, we have d° := ¢ — b2/4 > (0. Then the linear change of coordinates where x is
replaced by dz + e where e : —b/2 transforms z° + bz + ¢ into d*(z° + 1). Another way
of putting this, is that under the R-agebra map ¢ : R[z] — R[x] which sends z to
dx + e, the polynomial 2’ + b +cis mapped to d2(31:2 +1). Therefore, the composition

R[z] kA R[z] = R[x]42(,2+1) maps elements outside of (2°+bz+c) to units, and thus we
obtain an induced map of R-algebras ¢ : Rlz ]2 4be+e) = Rl2]a2(2+1)) = Rl@]241)-
By performing the inverse linear substitution (i.e. mapping = to (z — e)/d) one
can construct an inverse to ¢ with the same argument, and thus we obtain that
R[&](z2+b0+e) = R[2](z241) for all quadratic irreducible polynomials 2° +bx+c€R[z].
So to conclude, we need to show that R(z), R[z],) and R[z](,24) are pairwise non-
isomorphic. Notice that z € R[z],) and P +1€ R[x](424+1) are non-zero non-units,
and thus R(x) is not isomorphic to R[x](,) nor to R[z]¢,241). Now the residue field
of R[x](,, i.e. R[m](m)/x -R[x](4) 18, by Exercise 6.4 on sheet 11, isomorphic to
FraC(R[f]/(x)) = R. By the same argument, the residue field of R[z](,241) is iso-

morphic to Frac (R[ﬂﬂ]/(x2 + 1)) = Frac(C) = C. As R ¢ C we conclude that R[z],)
and R[x](,2+1) are non-isomorphic.

(3) Let (fs)q be as in the theorem; we will show that (F[z,y]s,))s are pairwise non-
isomorphic for d € N'\ {0,2}. Suppose that there is an isomorphism ¢ : F[z,y]s,) =
Flz,y](s, for some d, d'. Then the residue fields must be isomorphic too. However
recall that in general, given a ring R and a prime ideal p, the maximal ideal of R, is
pR, and the residue field is isomorphic to Frac(R/p).

Using this fact in our case contradicts the choices of f; and fy.

Exercise 4. Let I’ be an algebraically closed field.

(1) List the prime ideals of R = F[z, ?J]/(xy)
[ Hint: Consider the implications of a containment xy € p, for a prime ideal p. Consider
the projections R — R/(x) and R — R/(y) and use that you know the prime ideals
of Fly] and F[z].]

(2) Show that for all prime ideals p of R, R, falls into three cases up to F-algebra isomor-
phism, one which is a field, one which is a domain but not a field and one which is not
a domain.

Proof. (1) The prime ideals of R = Flz, y]/(ggy) corresponds to prime ideals inside F[x, y]
containing xy. If zy € p for p prime, then either (z) € p or (y) € p. Suppose (x) € p,
then the image q of p under the projection F[z,y] —» F[%y]/(x) = [[y] is prime
(where the last isomorphism is given by setting z to 0). As F is algebraically closed, g
must be either (0), or of the form q = (y—b) for some b € F. As p is the preimage of g,
we obtain that p is either equal to (x), or equal to (x,y — b), and it is straightforward



to see that any such ideal is prime. By doing the same argument where the roles of x
and y are swapped, we hence conclude that prime ideals of F[x,y] containing zy are
precisely (z), (y), (x —a,y) for a € F and (z,y —b) for b € F. Hence the prime ideals
of R are precisely (Z), (i), (x —a,y) for a € F and (Z,y — b) for b € F, where we use
® to denote the class of an element.

(2) For this exercise, it is useful to know (and prove) the following lemma.

Lemma 1. Let R be a ring with multiplicative subset T and ideal I. Let S = R/_]
and let T be the image of T under R — S. Then there is a natural ring isomorphism

T 'S = T_lR/[ .T'R.

Proof. Consider the composition R — T7'R - T_IR/[ .T7'R. As every element

of I is mapped to 0, this induces a map S — T_lR/] . T~'R which sends r + I to

% +1-T7'R. In particular, let £ € T be arbitrary, and write t = t+ [ forat € T. Then
t is mapped to f +17- T_IR, which has inverse % +1-T 'R. Hence every element of

T is mapped to a unit, and thus we obtain a ring map T_IS - T_lR/[ . TR, given
by sending =L (with t € T) to £+ 1 -T7'R.

t+1
On the other hand, consider the composition R = S — T_IS. Then an element t € T
is mapped to (t+1)/1, which is a unit since t+7 € T. Hence we obtain an induced map
T'R->T 'S sending 7 to % Notice that every element of the form r/1 with r € T
is mapped to 0 by this mapped, and thus the ideal generated by elements of this form,

i.e. I-T7'R, is in the kernel. Hence we obtain a map T_IR/] T 'R - T_lS which

maps ; + [ - T'R to ::f It is then easy to see that this is inverse to the morphism

constructed in the previous paragraph. 0

Now to the exercise. By the above Lemma, we have
(Lol (ay),y, = FlasyI\ @7 FLey) [ (ay) - (FLay]\ ()7 FLa,y] =
= F[337y:|(x)/x - Fla,y] = Frac (F[%y]/(m)) = F(y)

where in the second to last isomorphism we Fxercise 6.4 on sheet 11. By swapping the
roles of x and y, one obtains R = F(x).
Now let b € F'\ {0}, then

(FLe91/ (ay)) gy = FLo9IN ooy =07 FLsy] [ () - (Pl ]\ (= 0) 7 Pl ] =

= F[$7 y](m,y—b)/x . F[fL‘, y](%y_b) = F[y](y—b)

where the last isomorphism is induced by sending x to 0 (or identifying F[y] =
F[xay]/(x) and using the Lemma). Again by swapping the roles of x and y we
obtain (F[ajv y]/(xy))(ﬁ@ = F[x](4—q) for all a € F'\ {0}. These are all isomorphic
by the proof of point Exercise 3.1, and are a domain which isn’t a field.

Finally, ( [z, y]/(xy))@@ is not a domain, since neither Z/1 nor /1 are zero, but
their product is 0.
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To sum up, up to a linear coordinate change we have R, = F(y) a field, R, = F[y],
which is a domain but not a field or R, = (F[x,y]/(zy)) @) which is not a domain.
0]

Exercise 5. Let R be a ring.

(1) Let T € R a multiplicatively closed subset of R. Let q be a prime ideal of T™'R. Let
q° be the contraction of ¢ under R —» T~ 'R. Prove that ht(q) = ht(q°).
(2) Let p be a prime ideal of R. Prove that ht(p) = dim R,.

Proof. The proof consists of the following steps based on the observation that both heights
and dimensions are defined in terms of chains of ideals.

(1) Prime ideals of T7™'R are in one-to-one correspondence with prime ideals of R that
do not intersect T'. A strictly increasing chain of prime ideals ending in q induces a
strictly increasing chain of prime ideals ending in q° by contraction. Conversely, if
p € q° is prime, then in particular it must avoid T' (as otherwise q would contain a
unit), and thus in a strictly increasing chain of prime ideals ending in q° induces a
strictly increasing chain of prime ideals ending in p by extension.

(2) Prime ideals of R, are in an inclusion preserving one-to-one correspondence with prime
ideals of R avoiding R \ p, i.e. contained in p.

O

Exercise 6. Let S = R be a morphism of rings. Show that a prime ideal p of S is the
contraction of a prime ideal of R if and only if p = p.

[ Hint: For one direction use ideas from the proof of Going-Up Theorem (Proposition 9.4.2
of the lecture notes).]

Proof. Recall that if p is an ideal of S and ¢ is an ideal of R then there are always con-
tainments q° € q and p™ 2 p. If there exists a prime ideal q of R such that p = q°, then
p° = q“ € q and therefore p°“ € q° = p. Since the inclusion p € p° holds always this shows
that p“ = p.

Conversely, denote R, := (¢(S \ p))™'R (this is a common notation so remember it) where
¢ S — R is the ring morphism from the statement. If p°° = p holds, then the ideal p°
doesn’t meet the image of S\p in R. Thus p°R, is a proper ideal of R,. Let m be a maximal
ideal of R, that contains p°R,. Let q & R be the contraction of m along R — R,. Then
q is a prime ideal of R that doesn’t intersect the image of S \ p in R, and p° € q. Hence,
p=p“cqandgSpasqgn(S\p)=2. O

Exercise 7. Let R be a ring, let M be an R-module and let~T ,S € R be two multiplicatively
closed subsets of R. Define ST := {st | s€ S,t € T} and S := {s/1 | s€ S} € T™'R.

(1) Show that ST and S are multiplicatively closed subsets of R resp. T R.

(2) Show that there exists a ring morphism S™MT™'R) - (ST) 'R sending (r/t)/(s/1) €
S™HT'R) to T/(St) € (ST) 'R. Show further that this is an 1somorph1sm

(3) Show that ST M) and (ST) "M are isomorphic as (ST)™' R-modules, where the
(ST) ™' R-module structure of S~ (77" M) is provided via the isomorphism of the pre-
vious point.

(4) Show that if " € S then ST = S, and formulate the results of points (2) and (3) in
this case.
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Proof. (1) Note that 1 € SN T and thus 1 = 1-1 € ST. Furthermore, if s,s €8

and ¢t € T then (st)(s't') = (ss')(tt') € ST as ss € S and tt' € T. Hence ST is
multlphcatlvely closed. As for § note that if ¢ : R = R' is any ring morphism, then
¢(S) € R' is multiplicatively closed as ¢(1) = 1 and ¢ preserves multiplication. So as
S is the i image of S under the locahsatlon morphism R — T R we conclude that it is
a multiplicatively closed subset of T" 'R.

Denote by tp : R = T7'R, tgr : R = (ST) 'R and 15 : T"'R —» S"(T™'R) the
localization morphisms. As 7' € ST, the morphism tgp sends every element of T to
a unit. Hence by the universal property of localization, there exists a ring morphism
LrsT : T'R - (ST)_IR such that tpgr © 17 = tgp. This implies that any % €
T™'R is mapped to - € (ST) 'R. Now let s/l € S be arbitrary. Then vr st sends

s/1 to s/1 € (ST) 'R, which is a unit (with inverse 1/s). Hence by the universal
property of localization, there exists a ring morphism ¢ : S (T"'R) —» (ST)™'R
such that ¢ o 13 = tpgp. This implies that ¢ sends any (r/t)/(s/1) € S™MT'R) to
L57ST(T/25)(LS7ST(S/1))_1 = r/(ts) € (ST) 'R, so this is the morphism we sought to
construct.

To prove that ¢ is an isomorphism, we construct an inverse. Note that tg o 1 :
R — S™YT7'R) sends any st € ST to (st/1)/(1/1), which has inverse (1/t)/(s/1) €
S™HT'R). Indeed, we have

(/) E) -1

Hence by the universal property of localization, there exists a ring morphism ) :
(ST) 'R —» S (T7'R) such that 1orgp = tgoup. This implies that any r/(st) € S™'R
is mapped to

Brle) = Gs o () - Gs oerts)™ = ((1)1(5))((5)1(3)) = ()1 (3))-

(3)

Hence ¢ and v are mutually inverse, and thus isomorphisms.
The structure of S~ (77"M) as an (ST)™" R-module is given by the formula

(V)= @) - (G ()

Tensor approach: Note that by Exercise 5 of Sheet 11, we have
(ST)'M = (ST) 'R®r M
and
SHT'M) = S(T'R) @15 (TT'R®yz M).
Note that we have
SMT'R) @1z (TT'R®z M) = (S (TT'R) @15 T 'R)®p M =
= SNTT'R)®r M = (ST) 'R &y M,

at the very least as R-modules. By following the chain of isomorphisms, the above
isomorphism is given on simple tensors by mapping (r/t)/(s/1) ® (r'/t ® m) to
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((rr')/(tt's)) ® m. Tt is then straightforward to check that this map is in fact (ST) ™" R-
linear, and thus an isomorphism of (ST)_lR—modules.

Pure localization approach: Denote by o @ M — T'M, 15 : M - (ST)'M
and L? : T'M — S (T™'M) the localization morphisms. Recall that S~ (7 M)
is naturally an R-module, via the localization morphisms (i.e. multiplication by r
is multiplication by (r/1)/(1/1)). Notice that multiplication by any st € ST on
ST 'M) is invertible, with inverse being multiplication by (1/¢)/(s/1). Hence
by the universal property of localization of a module (see the solution of Exercise 1
on Sheet 10), S™YT ' M) naturally has the structure of an (ST)™ R-module via the
formula

. ((%) / (T)) = ((r/ 1)/ (/1) - (D)) (/1) ((%) / (T)) - ((%) / (T))

and there exists an (ST)™'M-module morphism ¢ : (ST)'M - S™Y(T7'M) such
that ¢ o 13 = Li\g o ). Notice that the (ST) ™' M-module structure on S~ (7' M)

is the same as the one defined via the isomorphism of the previous point, and that wM
maps an element m/(st) to (m/t)/(s/1).

Now either one constructs an inverse to wM with a similar procedure, or one proves di-
rectly that ¢" is an isomorphism. We will do the latter for once: if y := (m/t)/(s/1) €
STNT™' M) is arbitrary, then ¢ maps x := m/(ts) to (m/t)/(s/1), so v™ is surjec-
tive. Finally, suppose that 1" maps some m/(st) € (ST)™"M to 0. Then there exists
s'/1 € S such that (s'/1)(m/t) = 0 inside T "M. Therefore, there exists t' € T such
that t's'm = 0 inside M. But then as t's' € S, this means m/(st) = 0 inside (ST) " M.
Thus wM is also injective, and hence an isomorphism.

(4) As 1 € T we have S € ST. On the other hand, we have ST € SS ¢ S as S is
multiplicatively closed, so ST = S. Hence point (2) gives S~ (T 'R) = S™'R as rings,
and point (3) gives SHT'M) = ST'M as S”' R-modules.

0

Exercise 8. In Exercise 6 of sheet 10, we saw how to construct the tensor product of two
R-algebras. The goal is to show the following result:

Proposition 0.2. Let k be an algebraically closed field, and let R, S two finitely generated
k-algebras which are domains. Then R ®; S is again a domain.

During this exercise, you can freely use the following results (which you will see shortly) :

o Nullstellensatz (Theorem 6.5.4 from the notes)

o For any finitely generated k-algebra T and any maximal ideal m, the composition
k - T — T/m is an isomorphism (see the proof of the weak Nullstelensatz, which is
Theorem 6.2.2 in the notes).

Proceed as follows:

(1) Let T be a finitely generated k-algebra which is a domain, and let a;,...a, € T be
non-zero. Show that there is a maximal ideal m of T" such that a; ¢ m for all 7.
[ Hint: write T as a quotient of a polynomial ring, and use Nullstellensatz. ]
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(2) Show that any element in R ®;, S can be written as
Z a; ® bl

with the 0;’s linearly independent over k.

(3) Assume that

]

J
where both families (b;); and (b;) ; are linearly independent. Let m be a maximal ideal
not containing any of the a;, a;.
Show by applying the ring map
R®,S > R/m®,S=S
that one of the factors must be zero, and hence conclude that R ®; S is a domain.

Proof. (1) We give two proofs of this part: one uses the intended way (which is more
“geometric”), while the other one works over arbitrary fields (and is more “algebraic”).
Note that in both cases, we may assume s = 1 (we will write a = a;). Indeed, since

T is a domain, [ [, a; # 0, so we reduce to the case s = 1 since maximal ideals are prime.

Intended way: Let us write T = k[xy,...,x,]/I (this is possible by definitionof a
finitely generated k-algebra). We need to find a maximal ideal in 7" which does not
contain a. Let b € k[x,...,7,] be a lift of a. By the correspondence theorem, we
need to find a maximal ideal in k[x,...,x,] which contains I but not b.

By Nullstellensatz, this is equivalent to finding some = € k" such that x € V(I) but
x ¢ V(D). Indeed, if we had such an element, the maximal ideal m := I({x}) would do
the job by Nullstellensatz.

If such an x did not exist, then we would have V(I) € V(b). Applying Nullstensatz
would then give

be(b)=I(V(b)) s (V) =VI=1
where the last equality holds since I is prime (T = k[z1,...,z,]/] is a domain). How-

ever, b € I implies that a = 0 (recall bis a lift of a € k[zy,...,x,]/I) which contradicts
the hypothesis.

More general way: Let us show the following result:

Lemma 0.3. Let k be an arbitrary field, and let f : T — S be a morphism of finitely
generated k-algebras. Then for all maximal ideal m € S, f_l(m) 15 maximal.

Proof. The map f induces an injection
T/f(m) - S/m
Since S/m is a field, we have
trdeg, (S/m) = dim(S/m) =0

Since T'/f~'(m) € S/m, we also have trdeg, (T'/ ' (m)) = 0, and hence dim(7"/ f " (m)) =
0. This means by definition that any prime ideal of dim(7'/f~'(m)) is maximal. Since
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T/ f_l(m) is a domain (the preimage of a prime ideal is always a prime ideall), we
deduce that (0) is maximal, so 7'/ f ™' (m) is a field (i.e. f~'(m) is maximal). O

Remark 0.4. This lemma above is completely wrong for non-finitely generated k-
algebras! For example k[z] € k(x) gives a counterexample ((0) is maximal in k(z),
but not in k[x]).

Now, the point is that T, is again a finitely generated k-algebra! (indeed, we have

T, = T[x]/(xa — 1)). Thus, given any maximal ideal m € T},, its preimage m® will be
maximal in 7" by the lemma above. Since it cannot contain a, we win.

(2) Let ) ,.;r ® s; € R®, S. If the elements s; are linearly independent, we are fine. If

not, we can write s; = ) . a;s;, we
ZT,i@SZ' = Z(TZ®SZ)+TJ ®ZO[ZSZ = Z(Tl®sl) +Z(CI{2TJ)®SZ = Z(T,L+Oél7"])®3l
i€l it] 1%] i%] i%] 1%]

Note that in the right-hand side, s; never appears. Since the index set [ is finite, this
process has to finish at some point.
(3) Let us show that R ®, S is a domain. Assume that

(Zai®bi)-<2a;®b;) =0

)

J

and assume that both families (b;); and (b; ); are linearly independent (see the previ-
ous point). By contradiction, further assume that both elements above are non-zero.
Therefore, a;, # 0 and a}l # 0 for some 7, j;. By the first point, there exists a maximal
ideal m be a maximal ideal not containing a;, and a;,.

Since k is algebraically closed, R/m = k by the weak Nullstellensatz. Let 6 : R/m —
k denote an isomorphism. Thus there is a ring map R®,S — Sis given by ) .7, ®s; —
>, 0(77)s;. Applying our ring map above gives the element

(Z“a_ﬂbi) : (Z 9@)@) =0

Since S is a domain, one of the two terms above is 0 (without loss of generality we may
assume ) . 0(a;)b; = 0).
Since the b;’s are linearly independent, we have 6(a;) = 0 for all i. However, 6 is an
isomorphism, so a; = 0. This is impossible since a;, € m by assumption.
O
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Exercise 1. Let F be a field and let R be a ring, let I = (f) € F[z] be a principal ideal,
and let ¢ : F[x] = R be a ring morphism. If we speak of extensions and contractions
of ideals in this exercise, they are always understood to be with respect to ¢. Let g be a
generator of the ideal I°“ € F[z], and note that g is uniquely defined up to multiplication
by a unit. Give a formula for g in terms of the prime factors of f when ¢ is

(1) the localization F[z] - F[x],.

(2) the localization F[x] = F[2]) (i.e. localization at the prime ideal (x) € F[x]).

Additionally, characterize in both casers when I°“ = I, in terms of the prime factors of f.

Proof. If f = 0 we have ¢ = 0 in both cases, so suppose f # 0. Write f = 2" f, where
fo € F[x] \ {0} is such that x doesn’t divide f; and n € Zs,.

(1) Using point (2) of Proposition 9.3.8 of the printed course notes we have
I = U(I :2") ={r € F[z] such that Am =2 0: 2"'r € I}

mz20

={r € F[z] such that Am =0: z"f, | 2"'r}
= {r € F[x] such that fy | } = (fp)-

Hence g = f,, and thus I = I if and only if f = 0 or z doesn’t divide f, i.e. f(0) # 0.
(2) Using point (2) of Proposition 9.3.8 of the printed course notes we have

I“ = U (I:h)={re€ F[z]such that 3h ¢ (x): hr € I}
hé(x)
= {r € F[z] such that 3h & (z) : 2" f, | hr}
= {r € F[xz] such that 2" | r}

where for the last equality we used that as 2" |hr and h ¢ (z) we have 2"|r and if
2" |r then we can take h = f, to obtain z" fy| for. Hence I = (2"), ie. g = 2". In
particular, we have I°° = I if and only if f is of the form f = 2" for A € F' and n = 0.

U

Exercise 2. If S € R is a ring extension and p and q are prime ideals of S resp. R,
respectively, we say that q lies above p if and only if ¢° = p. Show the following:

(1) Let R be a UFD. Then an ideal p € R is a prime ideal of height 1 if and only there
exists an irreducible element f € R such that p = (f).

(2) If S € R is an integral extension and p € S is a prime ideal, then all prime ideals lying
over p have height at most that of p, with equality for at least one of them.
[ Hint: Localize at p.]

(3) If S € R is an integral extension of domains, then all primes of R lying over height 1
primes of S are of height 1.

(4) The ideal p = (¢° +y° + 1) € C[z”, 4] is a height 1 prime, and there is a single prime
in C[z,y] lying over it.

1
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Proof. (1) Let f be an irreducible element of R. Then if ab € (f) for some a,b € R we

have that f divides ab, and thus f must appear in the irreducible factor decomposition
of either a or b. That is, either a € (f) or b € (f), and thus (f) is prime.

Now suppose that p € R is a prime of height 1. In particular p # (0), so let » € p be
non-zero. As p is prime, there must be an irreducible factor f of r such that f € p.
But then (0) € (f) € p, so as p is of height 1 and (0), (f) are prime, we must have
p=(f)

Finally, if f € R is irreducible and by contradiction we have a chain (0) € q € (f)
with q a prime ideal. Take some non-zero sy € q. Then f divides sg, so there is s; € R
with 5o = fs1. As f € q, this implies s; € q. Repeating this argument, we obtain a
sequence of elements (s;); of q such that s; = fs;,1, and thus f divides s, for every
i = 0. This is a contradiction, so (f) must have height 1.

Let q be a prime of R lying over p. Let q9 € ** & q,, = q be a strictly increasing chain
of prime ideals of R. Then by point (2) of the Going-Up Theorem (Proposition 9.4.2
of the printed course notes) go NS & =+ € g, N .S = p is a strictly increasing chain of
prime ideals of S, and thus n < ht p. Thus we conclude ht q < ht p.

To construct a prime ideal where we have equality, as in the proof of Proposition 9.4.2
denote R, := (S \ p)_lR, and observe that S, — R, is integral. Hence by Corollary
9.4.4 in the printed course notes we have dim R, = dim S, and by point (2) of Exercise
5 on Sheet 12 we have dim S, = htp. Therefore, there exists a maximal ideal n of
R, such that htn = htp. Just as in the proof of Proposition 9.4.2, if q denotes the
contraction of n under R — R, then q lies over p. But then by point (1) of Exercise 5
on Sheet 12 we have ht n = ht q and thus q is a prime lying over p with same height as
p.
Let p € S be a prime of height 1 and let ¢ € R be a prime lying over S. By the previous
point, we have ht q < 1. If by contradiction ht ¢ = 0, then as R is a domain we must
have q = 0, and thus also p = 0, which contradicts htp = 1. Hence htq = 1.

As C[2°,y°] = C[u,v], it is a UFD. Notice also that C[z°,y”] € C[x,y] is an integral
extension, as z,y are integral over C[z>, y*].
First of all, notice that 2° + > + 1 is an irreducible element of C[z”, 4], and thus by
point (1) it is a prime of height 1. Let g € C[x,y] be a prime lying over p, which exists
by Going-Up. But now notice that 2+ y2 + 1 is also irreducible in C[z,y], by seeing
it as an element of C[x][y] and applying Eisenstein’s criterion with the prime element
z +i. Thus (z° +y* + 1) - C[z,y] is a prime contained inside g, and as the latter is
of height 1, we must have q = (z° + y° + 1) - C[z, y]. This is clearly a prime of height
1, and it lays over p: indeed, if f € C[z,y] is such that (z° + y° + 1)f € C[z°,v°],
then f can’t contain a monomial of the form 'y’ with at least one of 7, j being odd,
because if we take such 4,7 with i + j minimal then z'y’ also appears in 2° + y° + 1,
contradiction. So q = (z° + 4 + 1) - C[z, y] is the only prime of height 1 lying over p.
O

Exercise 3. Let R be a ring which is the quotient of a polynomial ring over an algebraically
closed field F' by a radical ideal. This naturally determines an algebraic set X whose
coordinate ring is R. Noether normalisation says there is a subring S € R such that

S =

F[ty,...,t,] and R is an integral extension of S. Give a geometric interpretation of

Noether normalisation. That is, the inclusion S — R corresponds to a morphism f of
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algebraic sets. Prove that the fibres of f are finite, i.e. the preimage of any point in F"
under f consists of a finite set of points in X.

Proof. Recall that if for two algebraic sets X € F" and Y € F" we have an F-algebra
morphism A : A(Y) - A(X) then this determines a morphism of algebraic sets f : X - Y
such that A = A;. Following the hint and using the same notations as in the solution
to Exercise 5, let mp be a maximal ideal of A(X) (where P = (ay,...,a,,) € X). Let
hi,...,h, € Flzy,...,z,] be such that X(y; + I(Y)) = h; + I(X) for all j. Let ¢ :
Flyi,...,yn] = Flz1,...,2,] be the F-algebra morphism defined by mapping y; to h;,
and let 7y : Flzy,...,2,,] = A(X) and 7y : Flyi,...,ym] = A(Y) be the projection
maps. Then by Exercise 4 we have mx o ¢ = X\ o my-. Therefore

Ty (AT (@p)) = ¢ (my (Mp)) = ¢ (mp).
Now by construction we have ¢(y; — f(P);) = h; —h;(P) and thus evaluating ¢(y; — f(P);)
at P gives 0. Hence y; — f(P); € ¢~ (mp) for all j, and thus nepy = (y1 = f(P)1y o Y —
F(P),) € ¢ "(mp). As ny(py is maximal and 1 ¢ ¢~ '(mp), we thus have

Nepy) = ¢_1(mP) = W;I(A_I(HP))-

Applying 7y on both sides this gives
Mppy = A7 (mp).

This expresses how one can obtain f : X - Y from A : A(Y) - A(X) in terms of maximal
ideals.

Now we are ready to tackle the Exercise. Let A : S = R be the inclusion. By Exercise 7
of sheet 7, the algebraic sets determined by S and R can be identified with MaxSpec(S)
resp. MaxSpec(R), and by the paragraph above A determines a morphism of algebraic sets
f : MaxSpec(R) — MaxSpec(S) = F" given by m » A™'m = mn S. So to show that f
has finite fibers, we need to show that for every maximal ideal n € S, there exist at most
finitely many maximal ideals m of R such that m NS = n. Any such m contains n° = R - n,
so we may suppose that the latter is non-trivial, and then the maximal ideals m € R with
m N .S =n are in one-to-one correspondence with the maximal ideals of R/ne. Note that
A gives rise to a map A S/n - R/ne. Furthermore, we have S/n = F (by sending a
scalar « to its class « + n), and as the target ring is non-trivial we must have ker A = 0.
Hence, under the identification S/n = F, we have that \ is just the natural inclusion of F’
into R/ne (as R is a quotient of a polynomial ring over F, R/ne is too, and thus there is
a natural inclusion F' — R/ne). On the other hand, as A is an integral extension, A is too.
Indeed, if » + n° € R/ne then there is a monic polynomial T + sy T 4+ oo+ 55 € S[T]
annihilating 7, and thus 7% + (sy_; + 0)T " + <« + (5o + n) € (5/n)[T] is a monic poly-
nomial annihilating r + n°. In conclusion, R/ n¢ is a finitely generated F-algebra which is
integral over F. Let ¢gy,...,q; be generators of R/ne, ie. R/ne = Flgy,...,q]. Now let
N € Z,, be such that for every g, there exists a monic polynomial in F[T] annihilating
it. Then every power of g; can be written as an F-linear combination of 1,g¢;,... ,gfv_l.
Hence every element of 2/1° = F[gy,...,g] can be written as an F-linear combination of
{97 9" | c1,...,c0€{0,...,N = 1}}. In partiular, R/ne is finite as an F-vector space, so
in particular Artinian. So by Exercise 7 on Sheet 9, R / n¢ has only finitely many maximal
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ideals, and hence the fiber £~ (n) is finite.

Alternative approach, following the proof of Noether Normalization S is itself a polynomial
ring, so it is the co-ordinate ring of the algebraic set F". Thus by the previous Question,
the inclusion S — R corresponds to a morphism f : X — F".

To show that the fibres (i.e. the set of pre-images of a point) are finite, use the notation of
the proof of Noether normalisation for an infinite field as in the lecture notes. That is, we
use induction on the number of variables n such that R is a quotient of a polynomial ring
in n variables to prove that there exists a poynomial ring S C R over which R is integral
and such that the induced morphism of algebraic sets has finite fibers. Hence, we only need
to modify the proof in the lecture notes slightly. For n = 1 the statement is clear since
the algebraic set X in this case is the finite set of roots of the polynomial f. Let X' be
the algebraic set determined by the ring R’ as a quotient of F[2, — 12y, .., Tpey — Cpe1Zn ]
(notation as in the lecture notes). If we show that the fibres of X — X' are finite then we
are done by induction. Suppose P = (py, ..., pp_1) € X' € F"™'. Then we wish to show that
the set A ={x € F: (p, —c1z,...,pp-1 — Cp_1x,z) € X} is finite. In the proof of Noether
normalisation, we found a polynomial ¢' (Y1 = C1Yn, o, Ynoi — Crne1Yns Yn) which is satisfied
everywhere on X but which is monic as a polynomial in y,,. But this then implies there can
be only finitely many possible values of z in A, as these are the solutions of this polynomial
for certain values of y; fort =1,...,n — 1.

O

Exercise 4. Let F' be an algebraically closed field. Calculate the Krull dimension of the
ring

F[w,x,y,z]/(x2 —wy,y’ — xz, wz — TY)-

Proof. We saw already in Exercise 5 of sheet 7 (the same proof works over any algebraically
closed ﬁeld) that the R = F[wa z,y, Z]/(xQ - wy, y2 - rz,wz — :L'y) is the coordinate ring

of the algebraic set Z = {(u”,u’v,uv”,v®) | u,v € F}. In fact, define ® : F[w,z,y,z] —
FIu’ w0, un®, 0° by w b o,z o o,y b w2z - 0° (as in the solution to Exercise
3). The kernel is precisely the set of all polynomials f € F[w,z,y, 2] that vanish on the
set Z, i.e., the kernel of ® is the ideal I(Z) = (2° — wy,y” — zz,wz — zy). Thus R is
isomorphic to the image of ®, which is F [ug,u2v,uv2,v3]. There is an obvious inclusion
of rings F[u’®, u*v, uwv®,v*] € F[u,v] and the latter is obviously integral over the former.
Therefore the dimension of R = F[us,uzv,uvz,vg] is the same as the dimension of the
polynomial ring F[u,v]. As we have seen repeatedly in this course the dimension of a
polynomial ring in two variables is two. So dim R = 2. U

Exercise 5. Let I’ be an algebraically closed field. Calculate a primary decomposition for
the ideals

(1) (2" - 22° — 42° + 22 + 3) € F[x],

(2) («,2y") € Flx,y],

(3) (%, 2y, 22, y2) € Flz,y, 2].
Proof. (1) Factorizing the polynomial, we get:

et =22" -4 + 22+ 3= (2 -3)(xz - 1)(z +1)°
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Therefore the ideal is the intersection of the primary factors (z—3), (x—1) and (z+1)°.
These are primary because their radicals are maximal.

(2) A primary decomposition is

(2%, zy%) = (2", y") 0 ()
The first factor is primary as it has a radical which is a maximal ideal, while the second

is prime. The above equation holds because if p € (z°,y%) N (z), then p = 2°a + y°b
2 2 2 2
and z | p, so b = xc for some c and p = z°a + xy“c. Hence p € (z°, xy").

(3) It may help to first calculate the irreducible components of V (I) where I = (2%, 2y, 22, yz).
If (a,b,c) is a point of F? where a2, ab, ac, be all vanish, the first thing we can deduce
from a” = 0 is that @ = 0. Hence ab = ac = 0 gives us no new information, and bc = 0
implies that at least one of b and ¢ is zero. Hence V(1) = V{((z,y)) UV ((x, 2)) is the
decomposition into irreducible components of V' (I), and hence as a first guess, we may
try if (z,vy) and (z, z) themselves appear in the minimal primary decomposition. As

(z,y) N (z,2) = (z,y2)

we need at least another ideal. The point is that, as you may see later in your studies,
the primary decomposition is somewhat related to the order of vanishing of elements
in the ideal. Here, all elements vanish at order 2 at the origin (and no other point
has this property). This suggests that we should try (z,v, 2)2 as the corresponding
primary ideal (this is (x,y, z)-primary as its radical is (x,y, z) and hence maximal).

So let us try to show that I = (z,yz)n(z,y,2)°. Let p € (x,yz) N (z,y, 2)°, then on
the one hand we can write p as p = xa + yz(y, z), where we can suppose that 3 only
depends on y, z as we can put everything with an x into a. On the other hand, as p is a
combination of xz, yz, 22, XY, Yz, zx, we can write it as p = 2a+ xyb+zze+yzd(y, z2) +
yle(y, z) + 2°f(y, z), where we can suppose that d, e, f only depend on y, z as we can
put everything with zy resp. xz into b resp. c. Hence by evaluating at x = 0 we obtain
y2B(y, z) = yzd(y, z) + y’e(y, ) + 2°f(y, 2), so p = 2°a + zyb+ zzc + yz5(y, ). Hence
p €I

Hence I = (z,y) N (z,2) N (z,y,2)” is a primary decomposition of 1.

O

Exercise 6. Let T € R be a multiplicative subset of a ring R and let {I;},<;<, be finitely
many ideals in R. By extension and contraction of ideals we shall mean extension and
contraction via the natural morphism R — T~ R. Prove the following:
L) (1) =LL"
@) (ML) =1
(3) Show that T_l(R/]) = T_IR/]e as R-modules. Use this to endow T_l(R/[) with a
ring structure, so that it becomes in fact an isomorphism of rings.
(4) If I is primary, and u ¢ VI, then (I :u) = I
(5) For an ideal I of a ring R admitting a finite primary decomposition, let I = [, I; be
such a primary decomposition, and show the following
(i) I° = ﬂTnL:z I,
(i) I = Nrar-o 1
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(6) From now on, let R = F[x,y] for a field ', I, = (x), I, = m® where m = (z,y) and
s > 1 is some integer, Iy = (z,y — 1)°, and p € R a prime ideal for which we set
T = R\ p. Show that

(i) if p = (z), then T (R, n [, n I) = F(y).
.. . —_ _1
(i) if p = (z,9), then T (R/ [, nl,ng) = T R/Jf NI
(iii) if p = (x,y), compute the smallest integer n such that (%)n eT? (R/[1 nI,N [3)

18 zero.

Proof. (1) We have

(mji)ec Pr0p=9.3.8 U ((ﬂ[,) : u) Prop ;0.3.19 U (m(lz : U))

u€e’T 7 u€eT 7

Now we would like to swap the [ ] and the (). To this end, note that if (u;); is a
sequence of elements of T', and u := HZ u;, then

ﬂ([i tu;) € ﬂ([i L ).
Hence
AU e )W),

i u€T u€T 1

and as the reverse inclusion is elementary set theory we have

=1 (ﬂui : u>) = U0 ™= 1

u€T % i u€eT

(2) By Prop 9.3.8.(1), two ideals of S™'R are equal if and only if their contractions are
equal. From the previous point we have

(V2= (ﬂ If)

i
where for the last equality we used that contraction (i.e. taking preimage) commutes
with intersections. Hence it follows that ([, ;) =), I}

(3) The structure of T_IR/[e as an R-module is given by 7+ (#'[t + I) = (rr') [t + I°.
We have a natural morphism of R-modules R — T_IR/]e given by mapping r € R to
rfl+1°€ T_IR/]e. This morphism has I in its kernel, so we obtain a morphism of

R-modules R/] - T_IR/]e. Notice that T_IR/]e is T-invertible (see the solution
of Exercise 5 on Exercise Sheet 11), and thus by the universal property of localization
of a module we obtain an R-module homomorphism ¢ : T_l(R/]) - T_IR/_IB given
by mapping (r + I)/t to r/t + I°. This is clearly surjective, so to prove injectivity
suppose that (r + I)/t is mapped to 0. Then r/t € I°, and thus by the proof of point
(2) of Proposition 9.3.8 there exist r' €I and t' € T such that rft= r'/t'. Hence there
exists t' € T such that ¢ (rt —r't) = 0. Hence we have t't (r + I) = 0 inside R/, and
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thus (r+ 1)/t = 0 inside T_l(R/]). Hence our map ¢ : T_l(R/]) - T_lR/[e is also

injective. This endows T_l(PL/]) with a natural ring structure by the formula

r+I r+1 _1 r+1 P+ T _1 rr' B rr' 4 T
T (¢( t )¢( ¢ ))'d) (EJJ)_ t
With this ring structure, ¢ is tautologically a ring morphism.
(4) te (I :u) =tu€ I =1te€ I, where in the last implication we used that no power of
wisin [.
(5) Let I = nI; be such a primary decomposition.
(i) From point (2) we have I° = () I;, but for I; intersecting 7" non-trivially we have
If = S7'R. Hence I = (N, o Ii -
(i) Since (S™'R)° = R it follows from taking the contraction of the identity of point
(2) that I°° = [V, .o [;"- Now for an ideal I; with T'n I; = @, notice that as T

is multiplicatively closed we also have T' N \/_Z = @. Hence it follows that

Iiec Pr0p£9.3.8 U(Iz : u) (i) U [Z- _ Il

u€T u€T

So I = ﬂTnIFQ I;.
(6) Note that I; is primary for all i, as I, is prime, and /I, = (z,y) and /T; = (z,y — 1)
are maximal. Let [ = I} n I, N I3. We start with the following lemma.

L~emma 1. Let R be a ming, T' € R a multiplicatige subset and I S R an ideal. Let
T:={t+I|teT}yc B[ Then T_l(R/]) = T_l(R/]) as rings, where the ring
structure on T_l(R/[) is given by point (3).

Proof. 1t is straightforward to see that the localisation map of R-modules R/ I~
T_I(R/[) is a ring morphism for the ring structure on T_I(R/[) given by point
(3). Furthermore, ¢ + I € T is mapped to (¢ + I)/1, which is a unit with inverse
(1+I)/t. Hence by the universal property of localisation there exists a ring morphism
T RIT) - T R[ 1) mapping (r+1)/(t+1)to (r+1)/t. This is clearly surjective.
To prove that it is injective, let (r + I)/(t + I) be in the kernel, i.e. there exists ¢ € T
such that ¢'(r + I) = 0. But then (¢ + I)(r+ 1) =0, s0 (r + I)/(t +I) = 0 as well.
Hence f_l(R/]) - T_l(R/]) is an isomorphism. O

(i) By the previous point we have I° = ], ., I;. As I, is the only ideal contained in

p we hence have I° = I{ = (2)°. Therefore, by point (3) we have

(3) Lemma 1

TR E TR =T R [ TR (0)) E TR (1))

Now notice that T' = {p + () | p & (2)} = {p(y) + () | p(y) € Fly]\ {0}}. So
under the identification F[‘ruy]/(g’j) = Fly] we have T = F[y] \ {0} and thus

THR[L) = F(y).



(ii) Note that I3 is not contained in p, while I, and I, are. Hence by points (5) and
(3) we have

L TR QTR

(iii) Under the isomorphism of the previous point, (z+1)/1 is mapped to z/1+ 1] N I3.
So we need to compute the smalles integer n > 0 such that 2" /1 € I and 2" /1 €
I5. Or equivalently, the smallest integer n > 0 such that 2" € I and 2" € I5°.
But by the argument in point (5).(ii) we have I{° = I, and I5;° = I,, so we need to
find the smallest integer n with 2" € I; and 2" € I,. Clearly n = s works, and if
2" € I, we must have n > s as every non-zero element of I, has degree at least s.

Hence n = s is the minimal integer with the searched property.
OJ



