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Exercise 1. Let R = k[x, y]. We make N = R ⊕ R into a two-sided R-module via
f · (p, q) = (fp, fq) (direct sum of R with itself).

(1) Let M be the submodule generated by the element (x, y) ∈ R⊕R. Is N/M ∼=
R as R-modules? Hint: R is a free R-module.

(2) Now let M be the submodule generated by the two elements (x, 0) and (0, y)
of R⊕R. Is N/M ∼= R? Hint: Torsion

Proof. (1) R is a free R-module with one generator, so we are done if we show
that N/M cannot be generated by one element. Suppose on the contrary that
there is an element (r1, r2) + M which generates N/M . We will show that
(r1, r2) has to be equal to (xs1, ys2) for some s1, s2 ∈ R. This will give a
contradiction since otherwise we could write (1, 1) = j · (xs1, ys2) + (xp, yp)
in R ⊕ R, which is clearly impossible since neither x nor y is a unit of R.
In order to prove that (r1, r2) is equal to (xs1, ys2) + M for some s1, s2 ∈ R
we will use the fact that R is a unique factorization domain. Assume that
(r1, r2) + M generates N/M , then in particular there are polynomials g, h, p
and q in k[x, y] such that

(y, 0) = g · (r1, r2) + (xp, yp)

(0, x) = h · (r1, r2) + (xq, yq)

Then we have

gr1 + px = y hr2 + qy = x(Eq. 1)
gr2 + py = 0 hr1 + qx = 0(Eq. 2)

From (Eq. 2) we see that y divides gr2. In order to derive a contradiction
assume that y does not divide r2, then y necessarily divides g. Inspection of
the first equation (Eq. 1) then tells us that y in fact most divide p. However,
this implies (by (Eq. 2)) that y2 divides g. This in particular means that y2
divides y−px, but this is impossible. We therefore conclude that y divides r2.
The same argument applied to the equations involving h shows that x divides
r1.

(2) The element (y, 0) represents a non-zero class in N/M . However, x · (y, 0) =
(xy, 0) is inM . But R is an integral domain, so in particular there is no f ∈ R
such that f · x = 0.

�

Exercise 2. Recall that a R-module M is simple if the only submodules N ⊂M are
N = 0 and N = M .
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(1) Show that any simple left R-module M is cyclic, i.e., isomorphic to the R-
module Rm defined in the lecture, for some m ∈M .

(2) Let M be a left R-module and let m ∈ M be an element of M . Define
Ann(m) ⊂ R to be the set of elements r ∈ R such that rm = 0. Show that
Ann(m) is a left ideal of R and that the cyclic left R-module Rm is isomorphic
to the left R-module R/Ann(m).
Hint: Prove both statements by defining a morphism of R-modules R→ Rm
and investigate its kernel.

(3) Let M be a simple k[x]-module. Prove that M ∼= k[x]/(f) where f is an
irreducible polynomial in k[x] and (f) denotes the ideal generated by f .

(4) Which of the following Z-modules are simple?
(a) Z
(b) Z/6Z
(c) Z/7Z

Proof. (1) If M = 0 then M = R0 and the assertion is true. Hence assume that
M 6= 0. Let m 6= 0 ∈ M , then Rm is a left submodule of M . Since Rm 6= 0
and M is simple we conclude that Rm = M .

(2) We define a homomorphism of left R-modulues Φm : R→ Rm by Φm(r) = rm.
The kernel of Φm is by definition the elements r ∈ R such that rm = 0, i.e.,
ker(Φm) = Ann(m). This proves that Ann(m) is a left ideal of R and that
Rm ∼= R/Ann(m).

(3) By 2 M is isomorphisc to k[x]/Ann(m) for some m ∈M . Let Ann(m) = (f),
we need to prove that f is irreducible. To this end let g divide f , k[x]g+(f) is
a left k[x]-submodule of k[x]/(f), since by assumptionM = k[x]/(f) is simple
we must have that g ∈ (f) or g = 1, in particular f is irreducible.

(4) Notice that if R is a ring, then R has no proper nontrivial left ideals if and
only if R is simple as a left R-modulue (by definition). In all of these examples
R = Z is a commutative ring so the question reduces to finding proper non-
trivial ideals. As you know a commutative ring has no non-zero proper ideals
if and only if it is a field, in particular only c) gives a simple Z-module.

�

Exercise 3. Let R be a ring, M a left R-module and m ∈M .

(1) In the previous exercise you proved that Ann(m) is a left ideal of R. Give an
example to show that Ann(m) might not be a two sided ideal of R.

(2) Define Ann(M) to the set of elements r ∈ R such that rm = 0 for all m ∈M .
Prove that Ann(M) is a two sided ideal of R.

Proof. (1) We need to consider a non-commutative ring R to create an example,
since left and right ideals coincide in commutative rings. The first example of
a non-commutative ring R that comes to mind will suffice. That is, let R be
the ring of 2×2 matrices over some field k. To keep things as simple as possible
we consider R as a left R-module by left multiplication. Let a 6= 0 ∈ k, we

will calculate the annihilator of ma =

[
0 a
0 0

]
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I.e., we are interested in solving the matrix equation[
b11 b12
b21 b22

]
×
[
0 a
0 0

]
=

[
0 0
0 0

]
.

The solution is hence b11 = b21 = 0. Therefore Ann(

[
0 a
0 0

]
) =

[
0 b
0 c

]
where

b, c ∈ k. This is not a right ideal of R because multiplying such an element
from the right with an arbitrary matrix in R does in general not give a matrix

of this form. For example multiplication from the right with
[
0 0
1 0

]
gives

b11 = b, which is non-zero whenever b is.
(2) Let r, s ∈ Ann(M) and l ∈ R. Then l(r + s)m = lrm + lsm = 0 and

(r + s)lm = rlm+ slm = 0.
�

Exercise 4. Let k be an algebraically closed field. In this exercise we define a
non-commutative ring D(k[x]/k) of differential operators on k[x] over k. The non-
commutative ring D(k[x]/k) is a sub k-algebra (which we will abbreviate as D) of
Homk(k[x], k[x]) generated by the element ∂ and x where ∂ sends a polynomial p(x)
to its algebraic derivative with respect to x and the element x ∈ Homk(k[x], k[x]) is
multiplication by x.

(a) Show that the following relation hold in D: for any polynomial P (x) ∈ k[x],

∂P (x) =
∂

∂x
P (x) + P (x)∂.

where ∂
∂x
P (x) denotes the formal derivative of P (x) with respect to the vari-

able x. [Hint: Prove it by induction on the degree of P(x) and use linearity.]
(b) Show that a basis of D as a k-vector space is given by the elements xi∂j,

where (i, j) ∈ (Z≥0)2 if the characteristic of k is zero and i ∈ Z and j ∈
{0, 1, . . . , p− 1} if the characteristic of k is p > 0.
[Hint: Use part (a) to show that an element of the form ∂kxs can be written
in terms of the proposed basis.]

(c) Now we consider a quotient of the free k-algebra on two generators. Dform =
k〈u, v〉/(uv − vu− 1). Show that there is a well defined ring homomorphism
φ : Dform → Endk(k[x]) sending u→ ∂ and v → x. Show that φ is surjective
onto D and prove that φ defines an isomorphism between D and Dform if and
only if the characteristic of k is zero.

(d) Determine the submodules of k[x] as a left D-module (with left D-module
structure given by the inclusion D ⊂ Endk(k[x])) in the case when k has
characteristic zero

(e) Show that D has no two sided non-trivial ideals if k has characteristic zero.
I.e., show that D is simple.

(f) Now suppose the characteristic of k is 2. Determine the left submodules of
k[x] as a D-module in this case.

Proof. (a) It is sufficient to show that the formula holds for monomials xn since all
quantities involved are k-linear. For n = 1 this amounts to the given relation
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[X, ∂] = −1. We want to show that

∂xn = nxn−1 + xn∂.

for n ≥ 2. We proceed by induction: ∂xn = ((n−1)xn−2 +xn−1∂)x = nxn−1 +
xn∂.

(b) By construction, D is the k-span of all elements of the form xi∂j and ∂jxi for
i, j ≥ 0. By successive application of part (a) all elements ∂kxs lies in the
k- span of xi∂j for i, j ≥ 0. Since the elements xi∂j obviously are linearly
independent over k the result follows.

(c) We need to check that the assignment φ : Dform → Endk(k[x]) sending u→ ∂
and v → x is well-defined. This amount to ∂x − x∂ − id being the zero
endomorphism of k[x]. I.e., for all f ∈ k[x] we have ∂

∂x
(xf) = f + x ∂

∂x
(f),

but this was proven in (a). By the previous exercise, φ is surjective since it
is surjective onto a k-basis. We now assume that the characteristic of k is
zero. Suppose that a =

∑n
j=0 fj∂

j ∈ ker(φ). Let m be minimal such that
fj ∈ k[x] is non-zero. Then φ(a)(xm) =

∑n
j=0 fj

∂
∂x

j
(xm) = m!fj(x) 6= 0. A

contradiction unless a = 0.
Now subbose that the characteristic of k is p > 0. We have ( ∂

∂x
)p = 0.

Therefore, the kernel of φ is non-trivial, containing up.
(d) We claim that k[x] is a simple D module. First note that k[x] is generated as

a D-module by the element 1 ∈ k[x], because for any f ∈ k[x], (f(x)1D)(1) =
f(x). Now suppose N is a non-zero submodule of k[x]. We will show that
1 ∈ N . As N is non-zero, it contains some non-zero element f(x) =

∑n
i aix

i.
We need to find a differential operator D such that D(f) = 1. D = 1

ann!
( ∂
∂x

)n

will do it.
(e) We will show that D has no two sided ideal. Assume on the contrary that I

is a two sided ideal of D. For any a ∈ I, write a =
∑n

i=0 pi(
∂
∂x

)i for pi ∈ k[x]
such that pn 6= 0, define the degree of a to be n. Suppose that I contains an
element a of degree 0, i.e a = p(x)1D. If the degree of the polynomial p(x)
is d and the leading coefficient is ad then 1

add!
( ∂
∂x

)dp(x) = 1. Hence we are
done if we can prove that I contains an element a of degree 0. Assume that
I contains no element of degree 0 and let b ∈ I be of minimal degree m > 0.
That is, b =

∑m
i=0 pi(

∂
∂x

)i for pi ∈ k[x] and pm 6= 0.
Write ∂

∂x
x = ( ∂

∂x
) ◦ (x1D). Then ∂

∂x
x(f) = ∂

∂x
(xf) = f + x ∂

∂x
(f). Similarly

calculate

(
∂

∂x
)ix = (

∂

∂x
)i−1 + (

∂

∂x
)i−1x

∂

∂x
= ... = i(

∂

∂x
)i−1 + x(

∂

∂x
)i

i.e.

((
∂

∂x
)ix− x(

∂

∂x
)i) = i(

∂

∂x
)i−1

But then (bx − xb) has strictly less degree then b, which contradicts the
minimality of m. Hence I contains an element of degree 0.

(f) The first thing to note is that

∂

∂x
(x2) = 2x = 0.
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Similarly ∂
∂x

(x2n) = 0 any n ∈ N. Suppose that N is a non-zero submodule of
k[x], which contains 0 6= f(x) =

∑n
1 aix

i. For convenience, record polynomials
as row vectors of coefficients, for instance

f = (a0, a1, a2, a3, ..., an)

Now we show thatN is generated by its set of elements of the form (b0, 0, b2, 0, ...).
Suppose f = (a0, a1, ..., an) ∈ N . Then:

g :=
∂

∂x
(f) = (a1, 0, a3, 0, a5, ...)

xg = (0, a1, 0, a3, 0, a5, ...)

h := f − xg = (a0, 0, a2, 0, a4, ...)

f = xg + h

Next we claim that N is generated by a single element of this form. The ring
D contains a copy of k[x] as a subring, and the induced k[x]-module structure
on k[x] is the natural one. N is also a k[x]-submodule of k[x], i.e. an ideal.
But k[x] is a PID, so N is generated by some f as a k[x]-module. Therefore
f also generates k[x] as a D-module.

Finally, each monic polynomial of this form generates a different submodule,
for it is the unique monic polynomial of least degree in D(f).

�

Exercise 5. Let
0→M → N → N/M → 0

be a short exact sequence of modules over a ring R. For each of the following assertions
either prove that the assertion holds or provide a counterexample.

(1) If M and N/M are finitely generated, then N is too.
(2) Conversely, assume that N is finitely generated. Then N/M is finitely gener-

ated.
(3) Assume that N is finitely generated. Then M is finitely generated.

Proof. (1) As M is finitely generated, we can find a subset {mi}ki=1 ⊂ M such
that any m ∈ M can be written as m =

∑k
i=1 rimi for some (possibly non-

unique) ri ∈ R. Similarly we can find a subset {ni}li=1 ⊂ N/M such that any
n ∈ N/M can be written as

∑l
i=1 rini for some ri ∈ R. For i = 1, ..., l, choose

ni ∈ N such that ni = ni +M .
We claim that N is generated by {m1, ...,mk, n1, ..., nl}. Given n ∈ N , we

can write n+M =
∑l

i=1 ri(ni+M) for some ri ∈ R, and so n−
∑l

i+1 rini ∈M .
But then there exist ri ∈ R such that n−

∑l
i+1 rini =

∑k
i=1 rimi. This exhibits

n as a linear combination of the mi and ni and so N is generated by these
elements.

(2) The statement is true. Suppose {ni}ki=1 generate N . Then {ni = ni + M}
generates N/M , because any n ∈ N/M can be written as n + M for some
n ∈ N which can then be written as

n = n+M =
k∑

i=1

rini +M =
k∑

i=1

ri(ni +M) =
k∑

i=1

rin
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(3) This statement is not true. Take R = C[x1, x2, ...], the polynomial ring in
infinitely many variables. (An element of R is by definition a polynomial in
finitely many of the variables x1, x2, ....)

Let N be R viewed as a module over itself, and take the submoduleM to be
generated by {x1, x2, ...}. This is a proper submodule, as it does not contain
the constants C ⊂ N . Any element of M is a polynomial f(x1, ..., xi) with no
constant term. Given a finite set of such polynomials {fi} ⊂ M , there is an
integer I such that any element contained in 〈{fi}〉 can be written as a linear
combination of monomials, each of which has positive degree in some xi with
i < I. So this span cannot be equal to all of M , as it does not contain xn for
n� 0.

Note: the statement in (3) is true for modules over an important class
of rings called Noetherian rings. These include many common rings such
as fields k, Z, and k[x1, ..., xn]. So C[x1, x2, ...] is an example of a non-
Noetherian ring.

�

Exercise 6. (1) Let
0→M → N → N/M → 0

be a short exact sequence of modules over a ring R.
For each of the following assertions either prove that the assertion holds or
provide a counterexample.
• If N is free, then N/M is free.
• If N is free, then M is free.
• If M and N/M are free, then N is free.

(2) Let R = Z. Is Z[x]/(x2 +1)Z[x] a free R-module? How about Z[x]/(2x2)Z[x]?
Is Q a free R-module? Is it finitely generated?

Proof. A module is free if it is of the form
⊕

I R for some (possibly infinite) indexing
set I.

Digression:

Definition 6.1. A subset {mi} ⊂M is a basis for M if:
• It spans M : every m ∈M can be written as m =

∑
rimi for some ri ∈ R.

• It is linearly independent: if
∑
rimi = 0 for ri ∈ R then ri = 0 for each i.

Lemma 6.2. The module M is free if and only if it has a basis.

Proof. Assume M is free, so M ∼=
⊕

I R. We can define a basis {ei}I for M where ei
is 1 in its ith position and zero elsewhere. It is straightforward that these span and
are linearly independent. Conversely suppose we have a module M which has a basis
{ei}i∈I . Define φ : ⊕IR → M by extending linearly from φ((δi.j)j∈I) = ei for each
i ∈ I. This is surjective, because any m ∈M can be written as a linear combination
of the ei and each of these is in the image. It is injective, because if not there is some
non-zero element of ⊕IR killed by φ. But this gives a non-trivial linear dependence
among the ei in M . �

Now we return to the solution.
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(1) • This is false: a counterexample is given by R = Z, N = Z, M = 2 ·Z, for
then N/M ∼= Z/2Z.
• This is also false: a counterexample is R = Z/4Z, N = Z/4Z and M =

2 · Z/4Z ∼= Z/2Z. This has too few elements to be a free Z/4Z-module.
• This is true. Suppose M has basis {mi} and N/M has basis {nj + M}.
We claim that {mi, nj} are a basis for N . They span: given n ∈ N we
can write n+M =

∑
rj(nj +M) for some rj ∈ R. Then n−

∑
rjnj ∈M ,

which means we can write n −
∑
rjnj =

∑
r′imi for some r′i ∈ R. This

shows spanning. For linear independence: suppose
∑
rjnj +

∑
r′imi = 0.

This implies
∑
rj(nj + M) = 0 in N/M and so the rj are all zero by

the linear independence of the nj + M . But then
∑
r′imi = 0 is a linear

dependence among a basis of M , forcing the r′i to be zero as well.
(2) • Z[x]/(x2 + 1)Z[x] is a free Z-module, with basis {1, x}.

• Z[x]/(2x2)Z[x] is not free since xn is a torsion element for all n ≥ 2.
• Q is not a free Z module. For suppose it were free, and had basis {pi

qi
}.

Then by spanning, we can write p1
2q1

=
∑n

i=1
pi
qi
. There must be some non-

zero term on the right hand side, so by multiplying the equation by 2,
we get a non-trivial linear dependence. (Non-trivial because the multiple
of p1

q1
on the right hand side is even). It is not finitely generated since if

{pi
qi
}1≤i≤n is a generating set, let q = q1 × · · · × qn then 1

q+1
does not lie

in the Z-span of {pi
qi
}1≤i≤n.

�
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There was one exercise in this problem sheet that was part of the
second homework. The exercise was denoted by the symbol ∗∗ next to
the exercise number.

Exercise 1. Answer the following questions. Provide an explanation
by a proof or a counterexample.

(1) Suppose that R is a noetherian ring. Let S ⊂ R be a subring?
Is it true that S is noetherian?

(2) Let R be an Artinian ring. Is every prime ideal of R maximal?

Proof. (a) It is not necessarily true that S is noetherian. A coun-
terexample is given by an inclusion of any non-noetherian integral
domain (e.g., k[x1, x2, . . .]) into its fraction field (clearly noether-
ian).

(b) Let p be a prime ideal of R. Since there exists a correspondence
between ideals in R/p and ideals in R containing p, we know that
R/p is an Artinian integral domain. Let x ∈ R/p be a non-zero
element. The sequence of ideal (xn) is decreasing and hence it
stabilizes which means that xn = uxn+1 for some u ∈ R/p and
n ∈ N. Since R/p is a domain, and we have xn(1 − ux) = 0, we
have ux = 1 which proves that x is invertible, and hence R/p is a
field and therefore p is maximal.

�

Exercise 2. Let R be the ring of 2 × 2 matrices
(
a b
0 c

)
such that

a ∈ Z and b, c ∈ Q.

(1) For each n ∈ N define In =

{(
0 m

2n

0 0

)
|m ∈ Z

}
. Verify that

each In is a left ideal of R, and using the chain I1 ⊂ I2 ⊂ . . .
verify that R is not left Noetherian.

(2) Show that every right ideal of R is finitely generated, and de-
duce that R is right-Noetherian.

Proof. (a) To show that In is a left ideal, first note that it is an additive
subgroup, for it is closed under addition, inverses and contains 0.
It is also closed under left multiplication by elements of R because

1
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(
a b
0 c

)(
0 m

2n

0 0

)
=

(
0 am

2n

0 0

)
because a ∈ Z.
So each In is a left ideal of R, and In ⊂ In+1 holds because

m
2n

= 2m
2n+1 . Therefore R is not left Noetherian.

(b) To determine the right ideals of R, first write down the result of
multiplying two general elements.(

l m
0 n

)(
a b
0 c

)
=

(
al bl + cm
0 cn

)
Here the first matrix is in the module, the second in the ring.

Remember that a, l ∈ Z, m,n, b, c ∈ Q. Let I be a right ideal.

Notice that
{
l :

(
l m
0 n

)
∈ I

}
forms an ideal of Z, which is

principally generated by some fixed L.
Suppose L 6= 0 and choose(

L m
0 n

)
∈ I

first assuming we can take m and n to be non-zero. Then there is
a choice of b and c which make bL+ cm and cn equal to any pair of
rational numbers, while choosing a = 1 to preserve L. Notice also
that any integer multiple of a matrix in I is in I. Therefore any
matrix of the form (

kL m
0 n

)
is in I, and this must be all of I (as there is nothing else we can
add by choice of L).

Continuing to assume that L 6= 0, we are left with the cases
where either n = 0 for all elements of I or m = 0 for all elements of
I. In either case, we can show that all potential elements of I can
be generated by a single element, and so these ideals are principal.

Finally we now assume that L = 0, so I consists of only matrices
with zero top left entry. In this case, given(

0 m
0 n

)
∈ I

we see that (
0 cm
0 cn

)
∈ I
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for each c ∈ Q. This means the ideal is generated by at most two
elements. In fact it is principal unless it contains both(

0 1
0 0

)
and

(
0 0
0 1

)
in which case it is generated by these.

Therefore R is right-Noetherian.
�

Exercise 3. Let R be a Noetherian ring. Are the following rings
Noetherian? Are they Artinian?

(1) R[x, 1
x
] := {

∑n
i=−m aix

i : ai ∈ R,m, n ∈ N}
(2) R[x1, x2, x3, ...]
(3) R[[x]], the ring of formal power series1 with coefficients in R

Hint: For each n ∈ N, let In := {an :
∑∞

i=n aix
i ∈ I}. Then

adapt the proof of the Hilbert basis theorem.
(4) C1(R), the ring of continuous functions R→ R with pointwise

operations.
(5) R[x]/(x− 1)2xR[x].

Proof. (1) We will show that R[x, 1
x
] is isomorphic to a quotient of

a polynomial ring. It then follows that it is Noetherian using
Question 2 and the Hilbert basis theorem.

The isomorphism in question comes from the ring homomor-
phism:

φ : R[u, v]→ R[x,
1

x
]

p(u, v) 7→ p(x, 1/x)

This is surjective as any element of R[x, 1/x] can be written
as some polynomial in x and 1

x
by definition. Thus it has some

kernel I, and R[x, 1
x
] ∼= R[u, v]/I.

We can go further, and identify the kernel kerφ = I to be
the ideal (uv − 1). For it is clear that uv − 1 ∈ I, and suppose
that g ∈ kerφ. Then we can use elements of (uv − 1) to cancel
mixed terms, and so write g = g1 + g2 where g1 ∈ (uv − 1) and
g2 =

∑
aiu

i +
∑
bjv

j for some ai, bj ∈ R. But it is clear that
g2 cannot be in kerφ unless all of its coefficients are zero. So
g = g1 ∈ (uv − 1).

1R[[x]] = {
∑∞

i=0 aix
i : ai ∈ R}, where multiplication and addition are defined

formally, as what you think they should be. These are purely formal objects: there
is no requirement for any kind of convergence.
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Take R 6= 0 to be any Notherianian ring. There is an infi-
nite descending chain of ideals in R[x, x−1] given by (x + 1) )
((x + 1)2) ⊇ ((x + 1)3) ⊇ .... We need to prove that the con-
tainment is strict. To this end suppose that there exists an
k > 0 such that ((x + 1)k) = ((x + 1)k+1). Then there exists
f ∈ k[x, x−1] such that (x + 1)k = f(x, x−1)(x + 1)k+1. Write
f(x, x−1) =

∑−m
i=−1 aix

i+
∑n

i=0 aix
i. Let i ≥ 0 be maximal such

that ai 6= 0, then there is a non-zero term of degree k + i + 1
on the righthandside corresponding to aix

k+i+1. This is not
possible, since the lefthand side only has terms of degree less
than or equal to k. Therefore, ai = 0 for all i ≥ 0. Let i < 0
be minimal such that ai 6= 0, then there is a non-zero term of
degree i on the righthand side corresponding to aixi. This is
not possible, since the lefthand side has no non-zero term with
negative degree. We conclude that f = 0, but this amounts to a
contradiction since (x+1)k 6= 0 since it has non-zero coefficients
in the degrees k and 0 corresponding to the terms xk and 1.

(2) R[x1, x2, ...] is not Noetherian, as the ideal (x1, x2, ...) cannot
be finitely generated. See solution to Sheet 2 Q1(c). It is not
Artinian (for any choice of R 6= 0), since it contains R[x] as a
subring and hence the descending chain (x) ) (x2) ) (x3) ) . . .

(3) R[[x]] is not Artinian (for any choice of R 6= 0), since it contains
R[x] as a subring and hence the descending chain (x) ) (x2) )
(x3) ) . . . .

R[[x]] is Noetherian, and the proof is a variant of the proof
of the Hilbert basis theorem.

To this end suppose I is an ideal of R[[x]]. For each integer
n, let

In := {an :
∞∑
i=n

aix
i ∈ I}.

For each n, this is an ideal of R, and by multiplying each power
series by x we see that In ⊆ In+1 for each n. So by the ascending
chain condition, there is N such that In = In+1 for all n ≥ N .

Also, for each i ≤ N , Ii is finitely generated, so we may
fix a finite set {ai,ji}ji of generators for Ii. For each (i, ji), fix
fi,ji ∈ R[[x]] such that

fi,ji = ai,jix
i + higher order.
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We claim that {fi,ji} generate I. Let g =
∑∞

k=n0
bkx

k ∈ I. If
k < N , we can find rjn0

∈ R such that g − rjn0
fn0,jn0

has low-
est order term of degree n0 + 1. Repeating this finitely many
times we may assume g has lowest degree at least N . Finally,
suppose g has lowest degree n0 > n. Then we can write it as
g =

∑
jN
xn0−NfN,jN + g′ where g′ had lowest degree greater

than n0. By induction this allows us to write g =
∑
hN,iNgN,iN

where the hN,iN are some power series. Thus we see that the
{fi,ji} indeed generate I.

(4) C1(R) is neighter Artinian nor Noetherian. It is not Artinian
since it contains R[x] as a subring and hence the descending
chain (x) ) (x2) ) (x3) ) . . . . We will show that it is not
Noetherian.

To this end define In = {f ∈ C(R) : f(x) = 0 for all x ≥ n}
It is clear that In ⊂ In+1. We need to show that the containment
is strict. To this end, define for example the continous function
f by f(x) = 0 for all x ≥ n + 1 and f(x) = x− (n + 1) for all
x ≤ n+1, this is a well-defined continous function f ∈ In+1−In.

(5) The ring is clearly noetherian and artinian because all its ideals
are R vector spaces of dimension smaller than the dimension of
the rings itself equal to two.

�

Exercise 4. **Show that the following holds for a R-modulue M of
finite length l(M) (i.e., an R-modulue M that admits a composition
series of finite length)

(1) If there is a short exact sequence:

0 M ′ M M ′′ 0

then l(M) = l(M ′) + l(M ′′).
(2) If N ⊂M is a proper submodule then l(N) < l(M).
(3) Use 2 to show that any strict chain of submodules in M (not

necessary a maximal chain, i.e., not necessary a composition
series) has length ≤ l(M). Conclude that a module M is of
finite length if and only if M is both Notherian and Artinian

Proof. (1) By the one to one correspondence of submodules of M ′′

and submodules of M containing M ′ it is clear that a compo-
sition series for M ′ can be extended to a composition series for
M by adding the preimage of a composition series of M ′′. This
gives a composition series for M of length l(M ′) + l(M ′′), since
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by the Jordan Holder Theorem l(M) is the length of any com-
position series l(M ′) + l(M ′′) = l(M). It is therefore sufficient
to show that M ′ and M ′′ are both of finite length when M is.
In order to do so we note that we do not use this exercise in the
solution of subsequent exercises. Therefore we may use the con-
clusion of the subsequent exercises, i.e., that M is Noetherian
and Artinian, therefore so is M ′ and M ′′.

(2) Suppose that N ⊂ M is a proper submodule. Let (Mi) be
a composition series of M and consider the submodules Ni =
Mi∩N of N . Since Ni/Ni−1 is a submodule ofMi/Mi−1 and the
latter is a simple module, we have either Ni/Ni−1 = Mi/Mi−1
or Ni = Ni−1. Therefore, removing repeated terms, we have
a composition series of N , so that l(N) ≤ l(M). If l(N) =
l(M) = n, then this means that Ni/Ni−1 = Mi/Mi−1 for all
i ∈ {1, 2, . . . , n}. In particular N1 = M1, and so N2 = M2, and
so on untilM = N . This is a contradiction to N being a proper
submodule of M .

then l(N) < l(M).
(3) Let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M be a strict chain of length

n. Then by 2 we have l(M) > l(Mn−1) > · · · > l(M0) = 0,
hence l(M) ≥ n. Since every chain of M is of finite length
bounded by l(M), M is both Noetherian and Artinian.

�

Exercise 5. Let R be a ring. Let M be a finitely generated module
over R and let f :M →M be an R-module homomorphism.

(1) Suppose that R is a Noetherian ring.
(a) Does injectivity of f implies surjectivity?
(b) Does surjectivity of f implies injectivity?
(c) What happens if R is not necessarily Noetherian?

(2) Suppose that M is a module of finite length, show that f is
injective iff f is surjective.

Proof. (1) (a) Let R be a ring with a ∈ R neither a unit nor a
zero divisor, then multiplication by a is an injective but
not surjective morphism ma : R→ R.

(b) Suppose thatM is a finitely generated module over a Nothe-
rian ring, thenM is Noetherian. Let f :M →M be surjec-
tive morphism. For all k we have containments Ker(fk) ⊂
Ker(fk+1). Therefore, there exists a positive integer m
such thatKer(fm+1) = Ker(fm). In particular, f : Im(fm)→
M is injective, but by surjectivity Im(fm) =M , therefore
f is injective.



PROBLEM SHEET 2 7

(c) The statement remains true even if R is not Noetherian.
Let ei for 1 ≤ i ≤ n be generators of M as an R-module.
Let f(ei) =

∑n
i=1 aijej for all i. By surjectivity there exists

bjk such that ej =
∑n

k=1 bjkf(ek) for all j. Suppose that
m ∈ Ker(f) with m =

∑
imiei. Let Z[aij, bij,mk] → R

be the natural morphism. There is therefore an induced
structure of R′ = Z[aij, bij,mk]-module on M . Let M ′

be the R′ - submodule generated by ei for 1 ≤ i ≤ n.
By definition of M ′ the morphism f induces a morphism
f ′ : M ′ → M ′, it is surjective since ei = f(

∑
k bikek).

By construction the element m ∈ Ker(f ′) which by the
discussion in the previous exercise is zero. This implies
that m = 0.

(2) Consider the short exact sequence

0 Ker(f) M Im(f) 0 .

By Exercise 4, we have l(M) = l(Ker(f)) + l(Im(f)). Since the
zero module is the only module of length zero, f is surjective
implies that Ker(f) = 0. Converserly, if f is injective l(M) =
l(Im(f)), hence l(Im(f)) can not be a proper submodule of M
by the same exercise, i.e., M = Im(f).

�

Exercise 6. This exercise is about semi-simple modules.

Definition 6.1. A module M over a ring R is semi-simple, if it is
a finite sum of its simple submodules. That is, M =

∑d
i=1Mi, where

Mi ≤R M are simple. A ring R is semi-simple if it is semi-simple as
a left R-module.

(1) Prove that M is semi-simple if and only if M =
⊕

Mi for some
Mi ≤R M simple. I.e., prove that if M =

∑d
i=1Mi where d ∈ N

is minimal with this property, then Mi ∩Mj = 0 for all i 6= j.
(2) In this exercise we prove Maschke’s theorem. Let G be a finite

group, and k a field such that (|G|, char(k)) = 1. Then k[G] is
semi-simple.
(a) For any ring R and any R-module M and any submodule

N show that M = N ⊕ L for some submodule L if and
only if there exists an element φ ∈ HomR(M,N) such that
φ(n) = n for all n ∈ N . Hint: Use the universal property
of direct sums

(b) LetM be any k[G]-module which has finite dimension over
k. Show that for any submodule N there exists an element
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φ ∈ Homk[G](M,N) such that φ(n) = n. Hint: Take
ξ ∈ Homk(M,N) such that ξ(n) = n for all n ∈ N . Show
that φ defined by φ(x) = 1

|G|
∑

g∈G gξ(g
−1x) is k[G]-linear.

(c) Conclude the proof.

Proof. (1) The ⇐ direction is immediate from Definition 6.1. So,
we prove direction ⇒.

Let us start with an arbitrary finite collection of simple sub-
modules Mi of M (given by 6.1), such that

∑d
i=1Mi =M . We

may further also assume that d is minimal with this property.
We have that

∑d
i=1Mi

∼=
⊕d

i=1Mi if and only if for some
1 ≤ j ≤ i, Mj ∩

∑
i 6=jMj = 0. If this is the case, we are ready,

so we may assume the contrary. By reindexing, we may assume
then that M1 ∩

∑d
i=2Mi 6= 0. However, since M1 ∩

(∑d
i=2Mi

)
is then a non-zero submodule of M1, and therefore it equals
M1. Hence, M1 ⊆

∑d
i=2Mi, and then M =

∑d
i=2Mi. This

contradicts the choice of d, and also concludes our proof.
(2) We prove Maschke’s theorem:

(a) We will show that M = Ker(φ) ⊕ N . To this end let iN :
N ↪→M and iKer(φ) : Ker(φ) ↪→M denote the inclusion of
the two submodules. By the universal property of direct
sums there exists a unique morphism iKer(φ) + iN = ψ :
Ker(φ)⊕N →M , it is injective since N ∩Ker(φ) = 0. We
show that ψ is surjective. Let m ∈ M , let φ(m) = n, we
have m − n ∈ Ker(φ), say m − n = l. Hence m = ψ(l, n)
where l ∈ Ker(φ) and n ∈ N .

(b) We prove that for every k[G]-module M , which is finite
dimensional over k, and every submoduleN ≤k[G] M , there
is a direct complement. By the previous exercise, to prove
our goal, we have to find φ ∈ Homk[G](M,N), such that
φ|N = IdN . Let us start with a k-vector space projection
ξ ∈ Homk(M,N), such that ξ|N = IdN . Such projection
exists by linear algebra. Then, define for every M ,

φ(x) =
1

|G|
∑
g∈G

gξ(g−1x)

We claim that φ is as desired. Indeed, if x ∈ N , then
g−1x ∈ N , and hence ξ(g−1x) = g−1x. So,

φ(x) =
1

|G|
∑
g∈G

gξ(g−1x) =
1

|G|
∑
g∈G

gg−1x =
1

|G|
|G|x = x.
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Furthermore, φ is k[G] linear, since it is k-linear, so only
the compatibility with g ∈ G has to be shown, which is
done by the next computation (here h ∈ G arbitrary):

φ(hx) =
1

|G|
∑
g∈G

gξ(g−1hx) =
1

|G|
∑
f∈G

hfξ(f−1x) = hφ(x)

(c) Since k[G] is finite dimensional over k. Let N ⊂ k[G] be a
submodule. By the above there exists a submodule L such
that N ⊕ L = k[G]. We repeat the argument for N and L
until k[G] = ⊕Mi where every submodule is simple.

�
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Exercise 1. Make the following computations.

(1) Compute a presentation of the Z-module

M := Z(2, 9) + Z(4, 3) + Z(6, 8) ⊆ Z⊕ Z.

(2) Let R = Mat2×2(Z) be the ring of 2× 2-matrices over Z. Compute a presen-
tation of the left R-module

M := R

(
2 0
0 0

)
+R

(
0 3
2 0

)
⊆ R.

Proof. (1) We define the presentation Z3 → M by e1 7→ (2, 9), e2 7→ (4, 3),
e3 7→ (6, 8). We calculate a presentation of the kernel:

(a1, a2, a3) is mapped to zero if and only if the following two equations are
satisfied:

2a1 + 4a2 + 6a3 = 0
9a1 + 3a2 + 8a3 = 0

From the first equation we find a1 = −2a2 − 3a3. Substituing for a1 in
the second equation gives us 15a2 = −19a3. This implies that a2 = −19t,
a3 = 15t for t ∈ Z. This gives that a1 = −2(−19t) − 3(15t) = −7t. We
conclude that a presentation is given by

Z→ Z3 →M

where the first map is t 7→ (−7t,−19t, 15t)
(2) We define a presentation R2 →M by

e1 7→
(
2 0
0 0

)
, e2 7→

(
0 3
2 0

)
and we are interested in calculating a presentation of the kernel. I.e., we
calculate the solution set of the matrix equation(

a b
c d

)(
2 0
0 0

)
+

(
α β
γ δ

)(
0 3
2 0

)
=

(
2a+ 2β 3α
2c+ 2δ 3γ

)
= 0

Hence the kernel consits of the elements (

(
a b
c d

)
,

(
α β
γ δ

)
) such that a =

−β, c = −δ, α = γ = 0. I.e., the elements of the form

(

(
a b
c d

)
,

(
0 −a
0 −c

)
).

A presentation of the kernel is hence given by R→ R2(
a b
c d

)
7→ (

(
a b
c d

)(
1 0
0 1

)
,

(
a b
c d

)(
0 −1
0 0

)
)

�

Exercise 2. Do the following:
1
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(1) Calculate the Smith normal form of the following matrix over Z.
1 9 1
−2 −6 0
2 −8 2
−1 1 5


(2) Write down the invariant factor decomposition of the Z-module with gener-

ators e1, e2, e3, e4 and relations

e1 − 2e2 + 2e3 − e4 = 0
9e1 − 6e2 − 8e3 + e4 = 0

e1 + 2e3 + 5e4 = 0

Proof. (1) We follow the algorithm for using row and column operations to pro-
duce the Smith normal form of a matrix.

Step 1a: Ensure that the (1, 1)th entry is the principal generator for the
ideal generated by the entries of the first row and column. In this case it is
already true, so we move on.

Step 1b: Use that property to remove all other entries in the first column
by adding a multiple of the first row to subsequent rows. Then remove all
other entries in the first row by adding a multiple of the first column to later
columns:


1 9 1
−2 −6 0
2 −8 2
−1 1 5

→


1 9 1
0 12 2
0 −26 0
0 10 6

→


1 0 0
0 12 2
0 −26 0
0 10 6


Step 2a: Ensure the (2, 2)th entry is the principal generator for the ideal

generated by the second row and column. In this case we must swap the
second and third columns.

1 0 0
0 12 2
0 −26 0
0 10 6

→


1 0 0
0 2 12
0 0 −26
0 6 10


Step 2b: Remove other non-zero entries in the second row and column.


1 0 0
0 2 12
0 0 −26
0 6 10

→


1 0 0
0 2 12
0 0 −26
0 0 −26

→


1 0 0
0 2 0
0 0 −26
0 0 −26


Step 3: Tidy up the resulting matrix to obtain Smith normal form:

1 0 0
0 2 0
0 0 −26
0 0 −26

→


1 0 0
0 2 0
0 0 −26
0 0 0

→


1 0 0
0 2 0
0 0 26
0 0 0


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(2) In terms of the generators e1, . . . , e4 ofM given in the exercise the surjection
Z4 →M defined by these generators has kernel K spanned by

1
−2
2
−1

 ,


9
−6
−8
1

 and


1
0
2
5

 .

So K is the image of the linear map Z3 → Z4 given by the matrix
1 9 1
−2 −6 0
2 −8 2
−1 1 5


To give the invariant factor decomposition, we want to change the presen-

tation of M , that is change the given set of generators and relations to new
ones of the required simpler form. This is done by changing the bases of Z3

and Z4 so that the matrix of K is in Smith normal form with respect to the
new basis. As we saw, the Smith normal form is

1 0 0
0 2 0
0 0 26
0 0 0


This produces a new set of generators f1, f2, f3 and f4 for M which satisfy

relations f1 = 0, 2f2 = 0 and 26f3 = 0. Thus

M ∼= Z⊕ Z/2Z⊕ Z/26Z.

�

Exercise 3. ** Let R = Q[x]. Determine the invariant factor decomposition of the
R-module M with generators e1, e2 and relations

x2e1 + (x+ 1)e2
(x3 + 2x+ 1)e1 + (x2 − 1)e2

. In particular prove that M is isomorphic to a quotient of R.

Proof. As before, we get a homomorphism R2 → M with kernel K, where the
inclusion K →M is given by the matrix

(
x2 x3 + 2x+ 1

x+ 1 x2 − 1

)
We put this into Smith normal form. We have that the ideal (x2, x + 1) = 1 and
1 × x2 + (1 − x)(1 + x) = 1. The first step in the algorithm therefore tells us to
multiply from the left by the matrix

(
1 1− x

−(x+ 1) x2

)
.

We get(
1 1− x

−(x+ 1) x2

)(
x2 x3 + 2x+ 1

x+ 1 x2 − 1

)
=

(
1 3x+ x2

0 −(3x2 + 3x+ x3 + 1)

)
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By an elementary column operation this gives:(
1 0
0 −(x+ 1)3

)
So this means that there is a different set of generators f1 and f2 ofM that satisfies
the relations: f1 = 0 and (x+ 1)3f2 = 0, hence:

M ∼= Q[x]/(x+ 1)3

�

Exercise 4. Give an example of an infinitely generated Z-module which is not an
(infinite) direct sum of copies of Z and Z/nZ for various choices of n.

Proof. We claim that the example is given by Q as a Z-module. Indeed, assume for
sake the of contradiction that Q ∼=

⊕
Z⊕

⊕
Z/ni for ni ≥ 2. Since Q is torsion-free

we see that the sum of Z/ni is empty. To prove that Q is not a free module, we
observe that every two cyclic (isomorphic to Z) submodules of Q intersect. Indeed,
let p1/q1 and p2/q2 be two rational number belonging to two different cyclic modules.
Then p1p2 = q1p2 · p1/q1 = p1q2 · p2/q2 is an element in the intersection.

�

Exercise 5. (1) Find a 2× 2 matrix with coefficients in Z[X] that is not equiv-
alent to a diagonal matrix. The equivalence that we consider here is the one
introduced in the lectures, that is, up to left or right multiplication by an
invertible matrix.

(2) Find also a finitely generated module over Z[X] that is not isomorphic to a
direct sum of cyclic modules.

Proof. (1) Let A =

(
2 x
0 0

)
, we will show that A is not equivalent to a diagonal

matrix. Suppose that A′ =
(
λ1 0
0 λ2

)
is equivalent to A, then det(A′) = 0

and therefore λi = 0 for i = 1 or i = 2. Assume that λ2 = 0 (the case λ1 = 0
can be treated in the same way). Then there exists invertable matrices

S =

(
s11 s12
s21 s22

)
and T =

(
t11 t12
t21 t22

)
such that SA = A′T . I.e.,(

2s11 xs11
2s21 xs21

)
=

(
λt11 λt12
0 0

)

Since Z[X] is a UFD the equality 2s11 = λt11 and xs11 = λt12 implies
that there exists some t′ ∈ Z[X] such that t11 = 2t′ and t12 = xt′. Since
det(T ) = t11t22 − t12t21 = 2t′t22 − xt′t21 = ±1 this implies that the ideal
(2, x) contains 1, a contradiction.

(2) Let M be the cokernel of A : Z[x]2 → Z[x]2. Suppose that there exists
fi ∈ Z[x] such that M ∼= Z[x]/f1

⊕
Z[x]/f2. Let ei ∈ M be the image of a

basis for Z[x]2 under the induced surjection:

Z[x]2 → Z[x]/f1
⊕

Z[x]/f2 ∼= M.

Then e1, e2 generates M and in terms of these generators

A =

(
f1 0
0 f2

)
,
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a contradiction to the first part of this exercise.

�

Exercise 6. Set M = Z⊕ Z/2Z, and let α : Z⊕ Z/2Z→M be an isomorphism.

(1) Show that α(0 × Z/2Z) = Z/2Z, show in general that if N is an R-module
then an automorphism φ of N takes Tors(N) to Tors(N) bijectively.

(2) show that α(Z× 0) is not necessarily equal to Z× 0

Proof. (1) Since Tors(Z ⊕ Z/2Z) = (0 × Z/2Z) it is sufficient to show the gen-
eral statement that an automorphism φ of N takes Tors(N) to Tors(N)
bijectively. To this end, suppose rn = 0, then 0 = rφ(n) and hence
φ(Tors(N)) ⊂ Tors(N), converserly, suppose rφ(n) = 0, then rn ∈ Ker(φ),
but φ is injective hence rn = 0.

(2) Let (1, 0)→ (1, 1)

�

Exercise 7. Show that an exact sequence:

0 M N L 0

of R-modules induces an exact sequence:

0 Tors(M) Tors(N) Tors(L) ,

but not necessarily an exact sequence:

0 Tors(M) Tors(N) Tors(L) 0 .

Proof. It is clear that any homeomorphism φ takes torsion to torsion, hence the
sequence is well define. Since restriction of an injection obviously is injective it is
sufficient to check exactness in the middle. Let f : M → N and g : N → L be the
morphisms in question since g ◦ f = 0 the same is true for the restriction to any
submodule. Let n ∈ Ker(Tors(g)), there exists an m ∈ M such that f(m) = n, we
need to show that m ∈ Tors(M). Since there exists r ∈ R not zero-divisor such
that 0 = rn = f(rm) we have rm ∈ Ker(f), but f is injective. Hence rm = 0 and
m ∈ Tors(M).

We have a surjection of Z-modules; Z → Z/2Z, it is not a surjection on torsion
submodules. �
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Exercise 1. LetM ∈ Mat(n, k) for a field k. Show that there is a basis
with respect to which M is block diagonal with blocks of the form

0 0 ... 0 a0

1 0
. . . 0 a1

0
. . . . . . . . . ...

0 0
. . . 0 ad−2

0 0 ... 1 ad−1


Hint: M acts naturally on some n-dimensional k-vector space V .

Consider V as a k[x]-module via f · v = f(M)(v).

Proof. As k is a field, k[x] is a PID. Also, V is finite dimensional over
k, so it is finitely generated (by a k-basis) over k[x]. Therefore the
structure theorem says that V ∼= k[x]⊕l⊕

∑m
i=0 k[x]/(fi) for some monic

polynomials fi of degree di. As V is finite dimensional over k ⊂ k[x],
and k[x] itself is not, we see that l = 0. Decompose V into ⊕mi=0Vi
where Vi ∼= k[x]/(fi), noting that Vi is di-dimensional as a k-vector
space. Note that M preserves each Vi as it is a sub-k[x]-module of V .
Thus if we choose a basis of V which is a union of bases of the Vi, the
matrix of φ is block diagonal with blocks corresponding to the Vi. We
now show that if we choose these bases in a particular way, we get the
required form.

The action of M on Vi corresponds under this isomorphism to the
linear map "multiplication by x" on k[x]/(fi). We choose the basis
of Vi to be the elements which correspond via the isomorphism to the
elements {1, x, ..., xdi−1} of k[x]/(fi). It is clear that these span, and
are linearly independent. If we define ai by fi(x) =

∑di
j=0 aix

i then
matrix of multiplication by x on k[x]/(fi) has the required form. �

Exercise 2. Let R be a commutative ring, and let M be a R-module.
(1) Show that HomR(M,−) is left exact. That is for any exact

sequence of R-modules:

0 N ′ N N ′′ 0 ,
1
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there is an induced exact sequence:

0 HomR(M,N ′) HomR(M,N) HomR(M,N ′′) .

(2) Give an example of a ring R and a R module M such that
HomR(M,−) is not right exact. That is give an example of a
surjection of R-modules N → N ′′ such that the induced mor-
phism HomR(M,N)→ HomR(M,N ′′) is not surjective.

Proof. (1) Suppose that

0 N ′ N N ′′ 0i s ,

is exact. We want to show that:

0 HomR(M,N ′) HomR(M,N) HomR(M,N ′′)i◦ s◦ ,

is exact. Let φ ∈ HomR(M,N ′) and suppose that i◦φ : M → N ′

is the zero morphism, since i is injective this implies that φ =
0. It is therefore sufficient to check exactness in the middle,
since s ◦ i = 0 we have the containment im(i◦) ⊂ ker(s◦).
Let φ ∈ HomR(M,N) be such that s ◦ φ : M → N ′′ is the
zero morphism. Then φ(M) ⊂ i(N ′), and therefore φ factors
through i : N ′ → N .

(2) Let R = Z. Consider the surjection Z → Z/2Z and let M =
Z/2Z. The induced morphism

HomZ(Z/2Z,Z)→ HomZ(Z/2Z,Z/2Z)

can not be surjective since the first group is zero, but the other
is not.

�

Exercise 3. ** Extend the complex below to a free resolution F• of the
module k := R�(x, y), where R = k[x, y]. Then compute ExtiF•(k,R)

for each i, and note that you get the same as for the resolutions in
Example 4.4.4. in the printed course notes.

R⊕R⊕R R k

The first morphism is defined by sending a basis to the following
elements:

(1, 0, 0)→ x, (0, 1, 0)→ y, (0, 0, 1)→ x+ y

and the second morphism is the natural surjection R→ k.
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Proof. The kernel of the first map has those (a, b, c) such that 0 =
ax + by + c(x + y) = (a + c)x + (b + c)y. As R is UFD this means
that a + c = yd and b + c = −xd for some d ∈ R. That is, we have
a = yd− c and b = −xd− c. Equivalently a = yd− e and b = −xd− e
and c = e (where e and d are arbitrary elements of R). From here one
can read off the following extension to a free resolution:

0 // R⊕R // R⊕R⊕R // R // k

(1, 0, 0) � // x

(0, 1, 0) � // y

(0, 0, 1) � // x+ y

(1, 0) � // (1, 1,−1)

(0, 1) � // (y,−x, 0)

Upon applying HomR(_, R) to the projective resolution determined by
the complex above we get:

0 R R⊕R⊕R R⊕R 0

where the first non-zero map is given by r → (rx, ry, r(x + y)) and
the second map is given by

(r1, r2, r3)→ (r1, r2, r3)

 1 y
1 −x
−1 0

 .

We calculate the cohomology of this complex, The first map is injec-
tive, hence H0 = 0, i.e., Ext0F•(k,R) = 0. The solution to the system:

r1 + r2 − r3 = 0

r1y − r2x = 0
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can easily seen to be r1 = rx, r2 = ry, r3 = r(x + y) for some r ∈ R.
Therefore the above complex is exact in degree one and Ext1F•(k,R) =
0. Finally; the co-kernel of the map

(r1, r2, r3)→ (r1, r2, r3)

 1 y
1 −x
−1 0

 ,

is R ⊕ R/R ⊕ R(x, y) ∼= R/(x, y) ∼= k. Therefore, Ext2F•(k,R) = k.
This agrees with the values for these groups given by the resolutions in
Example 4.4.4. in the printed course notes.

�

Exercise 4. Let 0 → M
i→ Z

p→ N → 0 be an exact sequence of
R-modules.
(a) A section of p is a morphism s : N → Z such that p◦s = idN . Show

that p admits a section if and only if there exists an isomorphism
Φ : Z ∼= M ⊕N and a commuting diagram with exact rows:

0 M Z N 0

0 M M ⊕N N 0

i p

Φ

e π

(b) A section of i is a morphism q : Z →M such that q◦i = idM . Show
that i admits a section if and only if there exists an isomorphism
Φ : Z ∼= M ⊕N and a commuting diagram with exact rows:

0 M Z N 0

0 M M ⊕N N 0

i p

Φ

e π

We say that a short exact sequence satisfying any of these conditions
is split exact.

Proof. Suppose that we have a commuting diagram as the one described

in the exercise. Define s : N → Z by N eN→ M ⊕ N
Φ−1

∼= Z where eN
is the canonical inclusion. We need to check that p ◦ s is equal to the
identity on N . By the commutativity of the diagram p = π ◦ Φ and
hence p ◦ s = π ◦ Φ ◦ Φ−1 ◦ eN = π ◦ eN = idN .

Converserly, suppose that s : N → Z is a section of p. Define
Φ : Z → M ⊕N by Φ(z) = (i−1(z − sp(z)), p(z)). This is welldefined,
because p(z−sp(z)) = p(z)−p(z) = 0 and hence (z−sp(z)) ∈ ker(p) =
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im(i). We prove that Φ is an isomorphism. Let (m,n) ∈ M ⊕ N ,
then Φ(i(m) + s(n)) = (i−1(i(m) + s(n) − sp(i(m) + s(n))), p(i(m) +
s(n))) = (m,n) since p ◦ i = 0 and p ◦ s = idN . This proves that Φ is
surjective. Suppose Φ(z) = 0, then p(z) = 0 and z − sp(z) = 0, hence
0 = z − sp(z) = z. Moreover, π ◦ φ = p by definition and φ ◦ i = e as
p ◦ i = 0. �

Exercise 5. Consider the ring Z[
√
−5].

(a) Is the ideal (2, 1 +
√
−5) a free Z[

√
−5]-module?

Hint: Consider the element 6 ∈ Z[
√
−5].

(b) Prove that (2, 1 +
√
−5) is a projective Z[

√
−5]-module.

Hint: Prove that (2, 1 +
√
−5) is projective by showing that it is

a direct summand of a free module. To do this define the obvious
surjection q : Z[

√
−5]2 → (2, 1+

√
−5) and examine the assignment

g : (2, 1 +
√
−5)→ Z[

√
−5]2 defined by g(x) = 2xe1 − 1−

√
−5

2
xe2.

Proof. (a) The Z[
√
−5]-module I = (2, 1 +

√
−5) is not free. It is not

free on one generator since it can not be generated by a single el-
ement (a proof of this is given below). By definition the elements
2 and 1 +

√
−5 generate I, however they satisfy the non-trivial

relation 3× 2− (1−
√
−5)(1 +

√
−5) = 0. Therefore I can not be

free on any number of generators.

Here we show that I = (2, 1 +
√
−5) is not generated by one

element.

We first show that 1 /∈ I by proving that for all elements a +
b
√
−5 ∈ I we have that a = bmod 2. We calculate (r1+r2

√
−5)(1+√

−5) = r1 − 5r2 + (r1 + r2)
√
−5. We have that r1 − 5r2 = r1 + r2

mod 2. Obviously a = b mod 2 for all elements a + b
√
−5 ∈ (2)

hence it is sufficient to note that if r1 + r2

√
−5 and s1 + s2

√
−5 are

such that r1 = r2 mod 2 and s1 = s2 mod 2 then (r1 + r2

√
−5) +

(s1+s2

√
−5) = r1+s1+(r2+s2)

√
−5 satisfies s1+r1 = s2+r2 mod 2.

Suppose that (a + b
√
−5) = I. For any α = α1 + α2

√
−5 ∈

Z[
√
−5] write N(α) = αᾱ ∈ Z where ᾱ = α1 − α2

√
−5. Then

N(a + b
√
−5) = a2 + 5b2 divides N(2) = 4 and N(1 +

√
−5) = 6.

This implies N(a + b
√
−5) is either one or two. The equation

a2 + 5b2 = 2 is easily seen to have no integer solutions. If N(a +
b
√
−5) = 1 then 1 ∈ I which we have already proven not to be the

case, hence the claim follows.
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(b) Following the suggestion in the exercise we define q : Z[
√
−5]2 →

(2, 1+
√
−5) by mapping a basis e1, e2 to e1 7→ 2 and e2 7→ 1+

√
−5.

If we can prove that q admits a section g we are done. Claim: for
all x ∈ I we have that 1−

√
−5x

2
∈ Z[

√
−5]. Proof of claim: write

x = r12 + r2(1 +
√
−5), then 1−

√
−5x

2
= (1−

√
−5)r1 + 3r2. Hence

the assignment g given in the hint is well-defined. Moreover, we
have that q(g(x)) = q(2xe1 − (1−

√
−5x

2
)e2) = 4x− 3x = x.

�
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There is one exercise in this problem sheet that will be part of the
fifth homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The third homework is due on Sunday
November 1 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. In this exercise we prove the the two 4-lemmas. To this
end, suppose that we have a commuting diagram with exact rows:

A B C D

A′ B′ C ′ D′

f1

a b

f2

c

f3

d

f ′
1 f ′

2 f ′
3

(a) Show that if a and c are epimorphisms and d is a monomorphism
then b is an epimorphism.

(b) Show that if b and d are monomorphisms and a is an epimor-
phism then c is a monomorphism.

Proof. (a) Let y ∈ B′, we want to show that there exists x ∈ B
such that b(x) = y. To this end, since c is surjective there
exists xC ∈ C such that c(xC) = f ′2(y). By commutativity of
the diagram df3(xC) = f ′3c(xC) = f ′3f

′
2(y). By exactness of the

rows f ′3f ′2(y) = 0 and hence f3(xC) ∈ ker(d). By assumption
ker(d) = 0 and hence (using exactness of the rows) xC ∈ im(f2).
Let xB ∈ B be such that f2(xB) = xC . We have f ′2(b(xB)−y) =
0, by commutativity and definition of xB. By exactness of the
lower row there therefore exists yA ∈ A′ such that f ′1(yA) =
b(xB)− y. By assumption a is surjective. Let xA ∈ A such that
a(xA) = yA. We have bf1(xA) = b(xB) − y by commutativity.
Let x = xB − f1(xA), then b(x) = b(xB) − b(xB) + y = y. We
conclude that b is an epimorphism.

(b) This is very similar.
�

Exercise 2. Prove the following.
(a) If

0 Mn . . . M0 0
fn f1

1
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is an exact sequence of finitely generated modules over an Ar-
tinian and Notherian ring R, then 0 = (−1)i lengthMi

(b) Let R = k[ε] denote (as usual) the quotient k[x]/(x2) where k
is a field. Let M be the R-module R/(x). Show that M has no
finite resolution by finitely generated free modules.

(c) In general if R is Artinian and Noetherian, and lengthR -
lengthM , prove that M has no finite resolution by finitely gen-
erated free modules.

(d) Prove that over a PID every finitely generated module has a
finite free resolution.

Proof. (a) This follows from the additivity of lengths proven in a
previous exercise (Exercise 2.4) after slicing the long exact se-
quence into short exact sequences. Since ker(fi) = im(fi+1) for
1 ≤ i ≤ n− 1 we get an exact commuting diagram as follow:

0 0

im(fn−1) = ker(fn−2)

Mn Mn−1 Mn−2 . . .

ker(fn−1) ker(fn−3)

0 0 0

0 0

ker(f2) im(f1)

. . . M2 M1 M0 0

ker(f1)

0 0

.

By the additivity of lengths on short exact sequences, we have
length(M0) = length(M1)−length(ker(f1)) and length(ker(fi) =
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length(Mi+1) − length(ker(fi+1)) for 1 ≤ i ≤ n − 2. Finally
length(ker(fn−1) = length(ker(Mn).

(b) Suppose that

0 Rnk . . . Rn1 k 0
fk f2 f1

is a finite length free resolution of k. Then by the previous
exercise we have 1 =

∑k
i=1(−1)i+12ni, but this is impossible

since the righthand side is an even number.
(c) Suppose that

0 Rnk . . . Rn1 M 0
fk f2 f1

is a finite length free resolution of M . Then by previous ex-
ercise we have length(M) =

∑k
i=1(−1)i+1 length(R)ni. Since

length(R) divides the right hand side the result follows.
(d) This follows from the structure theorem for finitely generated

modules over principal ideal domains. Upto iso morphismM =
Rn⊕k

i=1R/fi for some fi ∈ R. Therefore we have a presentation:

Rk → Rk+n →M

where the first morphism is defined on a basis by ei → fiei.
Since R is a domain this map is injective, hence this is a reso-
lution of finite length.

�

Exercise 3. Prove the following.
(a) Show that any finitely generated module over a semi-simple ring

is semi-simple
(b) Show that any finitely generated module over a semi-simple ring

is projective
(c) Deduce that any finitely generated module over k[G] is projec-

tive, if char k - |G|
(d) What are the Ext-groups then for finitely generated k[G]-modules?

Proof. (a) Let φ : Rk →M be a surjection. Since R is semi-simple
so is Rk. Write Rk = ⊕s

i=1Ii, where each of the Ii are simple.
Let φ(Ii) = Mi, by surjectivity,M =

∑
iMi. We will prove that

Mi is simple. To this end let 0 6= Ni *Mi. We have φ−1Ni ⊂ Ii.
Therefore φ−1Ni = Ii and so φ(Ii) = φ(φ−1Ni) ⊂ Ni.

(b) Let R be a semi-simple ring and P a finitely generated R-
module. Let g : N → M be a surjection of R modules and
let f : P → M be a R-module homomorphism. By the pre-
vious part, P = ⊕n

i Pi where Pi is simple, and therefore cyclic.
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Let Pi = Rai. Since g is surjective there exists yi ∈ N such
that g(yi) = f(ai). We define s : ⊕n

i R → N by ei → yi
and q : ⊕n

i R → P by ei → ai we have g ◦ s = f ◦ q. Now,
we use that R is semi-simple, in particular there is a splitting
R = Ann(ai) ⊕ I and therefore there exists an isomorphism
φi : Rai ∼= I where I is a submodule of R, we define P → N to
be the composition s ◦ ⊕iφi.

(c) We saw in Exercise 6.2 that k[G] is semi-simple if char k - |G|,
hence this follows from the previous point.

(d) In class (Corollary 4.4.24) we proved that Ext1R(P,N) = 0
whenever P is a projective R-module.

�

Exercise 4. **1

(a) Set k = Fp and G = Z/pZ. Find all the submodules (i.e. ideals)
of R = k[G]. Hint: Over a field of positive characteristic p we
have ap + bp = (a+ b)p.

(b) For p = 2, let x denote a generator of G, set M = (x + 1).
Compute all ExtiR(M,M).

Proof. (a) We define a ring homomorphism Φ from k[G] to Fp[x]/(xp−
1) by defining Φ(ψ) = x where ψ is a generator of the cyclic
group G. I.e., we have Φ(ψ + ψ) = x2 and then we extend Φ
by k-linearity, i.e., in general Φ(λ(mψ)) = λxm. This obviously
defines a ring homomorphism. In particular, since pψ = 0, Φ
defines a surjection Φ : k[G] → Fp[x]/(xp − 1). These have
the same dimension as vector spaces over k and hence there is
an isomorphism of rings k[G] ∼= Fp[x]/(xp − 1). The ideals of
Fp[x]/(xp−1) is in one to one correspondence with the ideals of
Fp[x] containing (xp − 1), but using the hint we easily see that
(xp − 1) = (x − 1)p. Since (x − 1) obviously is an irreducible
polynomial the ideals strictly containing (x− 1)p are the ideals
(x− 1)i where 1 ≤ i ≤ p− 1.

(b) We have an infinite projective resolution · · · → R→ R→ R→
R→ R→ R where every morphism is multiplication by (x+1).
When applying HomR(,M) this gives · · · ← M ← M ← M ←
M , and all maps are zero, so all Ext-groups are isomorphic to
M .

�

1as modules over k[G] correspond to representations of G over k, we see that
something is really wrong for Fp[Z/pZ] compared to the case of exercise 3.
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There is one exercise in this problem sheet that will be part of the
sixth homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The sixth homework is due on Sunday
November 8 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. In this exercise we define injective modules and prove
Baer’s criterion. We say that a left R-module Q is injective if it satis-
fies the following universal property:
Whenever we have a monomorphism X → Y and a homomorphism
g : X → Q of left R-modules, then there exists a left R-module homo-
morphism h : Y → Q making the following diagram commute:

0 X Y

Q

g

f

h

We will prove the following:

Theorem 1.1. (Baer’s Criterion) Suppose that the left R-module Q
has the property that if I is any ideal of R and f : I → Q is a R-module
homomorphism, there exists an R-module homomorphism F : R → Q
extending f . Then Q is an injective R-module.

We will prove Baer’s criterion in several steps. Assume that the
R-module Q satisfies Baer’s criterion.

(a) Show that if X = Ra and Y = Rb are both cyclic modules and
X → Y is a monomorphism and we are given a homomorphism
g : X → Q, then there exists a left R-module homomorphism
h : Y → Q making the appropriate diagram commute. Hint:
Consider the subset of R defined by I = {r ∈ R : rb ∈ X}

(b) Prove that ifX, Y are finitely generated and we have a monomor-
phism X → Y and a homomorphism g : X → Q of left
R-modules, then there exists a left R-module homomorphism
h : Y → Q making the appropriate diagram commute. Hint:
Prove the case when Y = X + Rb for some b /∈ X by defining
the ideal I of R by I = {r ∈ R : rb ∈ X}

(c) Use Zorn’s Lemma to conclude the proof.
1
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Axiom 1.2. (Zorn’s Lemma)If (P ,≤) is a partially ordered
set with the property that every totally ordered subset (often
called a chain) has an upper bound, then there exists a maximal
M ∈ P . (that is, for N ∈ P , we have M 6≤ N)

Exercise 2. Use Baer’s Criterion to show that Q is an injective Z-
module.

Exercise 3. ** Let R = k[x, y] be the polynomial ring in two variables
over an algebraically closed field k. Recall that an ideal m in a ring R
is maximal if it is not properly contained in any other proper ideal of
R. In this exercise you can use freely the Theorem below, which will
be proven later in the course.

Theorem 3.1 (The weak Nullstellensatz in two variables). Let k be
an algebraically closed field. Every maximal ideal m in the ring k[x, y]
is of the form m = (x− a, y − b) for some a, b ∈ k.

(a) if M is a finite length module over R, then the quotients of its
composition series are of the form R/(x− a, y − b).

(b) If M is a module such that Ann(M) ⊇ (x − a, y − b), then
AnnExti(M,N) ⊇ (x− a, y − b) for every R-module N .
Hint: consider the maps M 3 m 7→ (x − a)m ∈ M and M 3
m 7→ (y − b)m ∈M . Apply then ExtiR(_, N).

(c) Show that Exti(R/(x− a, y− b), N) is of finite length where N
is any finitely generated module over R.
Hint: use the previous point

(d) Show that for each finite length module M and for each finitely
generated module N over R, ExtiR(M,N) has finite length.
Hint: use the long exact sequence for a compostion series

Exercise 4. R = k[x, y] as in the previous exercise (k is algebaically
closed). We say that a finite length module is supported at (x−a, y−b)
if only R/(x − a, y − b) appears as factors in the composition series.
Show that if M is a finite length module supported at (x − a, y − b),
then ExtiR(M,R/(x− a′, y − b′)) = 0, where (a, b) 6= (a′, b′).

Exercise 5. For to short exact sequences:

0 M1 M2 M3 0

and
0 N1 N2 N3 0

we say that there is a map between them if there exists morphisms
fi : Mi → Ni, for 1 ≤ i ≤ 3 and a commuting diagram:



PROBLEM SHEET 6 RINGS AND MODULES 2020 3

0 M1 M2 M3 0

0 N1 N2 N3 0

f1 f2 f3 .

Show that whenever there is a map between two short exact se-
quences, then there is an induced map between long exact sequences
of Ext-modules, making the suitable diagram commute.

Exercise 6. Show using the long exact sequence of cohomology that if
Ext1R(M,N) = 0, then every extension 0 // N // K // M // 0
splits.
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There is one exercise in this problem sheet that will be part of the
seventh homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The seventh homework is due on Sunday
November 15 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. ** Let R = k[x, y] and consider the R-module M =
k[x, y]/(x, y). Consider the free resolution:

0 // P2 = R
f2 // R⊕R = P1

f1 // R = P0
f0 // M // 0

1 � //
(
y,−x

)
(1, 0) � // x

(0, 1) � // y

Set M = N . Consider
(a) φ1 : P1 → N given by φ1(a, b) = f0(a),
(b) φ2 : P1 → N given by φ1(a, b) = f0(b).
Determine the isomorphism classes of the middle module of the Yoneda
extension associated to [φi] ∈ Ext1R(M,N) in Theorem 4.6.5 in the
course notes.
Note: these modules are coker

(
P1

(φi,f1)−→ N ⊕ P0

)
for i = 1, 2 as in the

sequence 6.5.i in the above mentioned theorem, in the course notes.

Proof.
The cokernel in question is the cokernel of the map R⊕R→ k⊕R where
(a, b) goes to (ā, ax + by). Let’s investigate the elements in the image
of this map, we have (ā, ax + by) = a(1, x) + b(0, y). Therefore, the
image is the submodule ((1, x), (0, 1)). Below we present three different
solutions showing that this cokernel is isomorphic as a k[x, y]-module
to k[x, y]/(x2, y).
(a) Fast and slick. Consider the element (1, 1) ∈ k⊕k[x, y]/((1, x), (0, y)),

we have y(1, 1) = (y, y) = y(1, x) + (1 − x)(0, y) and hence y ∈
Ann((1, 1)) similarly x(1, 1) = (0, x) 6= 0 and x2(1, 1) = (0, x2) =

x(1, x), hence (x2, y) = Ann((1, 1)). We therefore have an iso-
morphism k[x, y]/(x2, y) → k[x, y](1, 1) defined by 1 → (1, 1). We

1
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claim that in fact k[x, y](1, 1) = k ⊕ k[x, y]/((1, x), (0, y)). Let f0
denote the constant term of f , an easy manipulation shows that
(η, f) = (f0, f) + (η − f0, 0), however (η − f0, 0) = (0, (f0 − η)x)

and hence we see that (η, f − (f0 − η)x) = (f0, f). From this it
follows that for a, a′ ∈ k b, c ∈ k[x, y] we have (a, a′ + bx + cy) =

(a, a′+(b+a′−a)x+cy−(a′−a)x) = (a′, a′ + (b+ a′ − a)x+ cy) =

(a′ + (b+ a′ − a)x+ cy)(1, 1).

(b) Explicit construction of the inverse of the isomorphism above. We
define a morphism k ⊕ k[x, y]/((1, x), (0, y)) → k[x, y]/(x2, y) by
showing that there is a well-defined morphism of R-modules k ⊕
k[x, y]→ k[x, y]/(x2, y) such that (1, x) and (0, y) is in the kernel.
To this end we show that the map which send (a, f)→ f−(a−f0)x
has this property, where f0 is the constant term of f .
Remark: also (a, f) → f − ax has this property, but this does not
give the same isomorphism as above, it corresponds instead to the
isomorphism defined by 1→ (0, 1) above.
This is well-defined since if a ∈ (x, y) then ax ∈ (x2, y). Simi-
larly it is R-linear since r(f − (a − f0)x) − rf − (ra − (rf)0)x =
(rf0 − (rf)0)x ∈ (x2, y). Moreover, f(1, x) = x − x = 0 and
f(0, y) = −y ∈ (x2, y). We have (1, 1) → 1 and (0, x) → x, hence
it is a surjective. By a dimension count over k this is an isomor-
phism of R-modules.

(c) Hands on approach. There is a natural isomorphism of R-modules
from k ⊕ k[x, y]/((1, x), (0, y)) to k ⊕ k[x]/ < (1, x) > defined by
mapping the variable y to zero. Over k, the module k ⊕ k[x]/ <
(1, x) > can easily be seen to have a basis given by (−1, 0), (1, 1).
Recall that multiplication by x on first coordinate is zero, hence
x(1, 1) = (0, x) = (−1, 0) and x2(1, 1) = (0, x2) = x(1, x) and
hence zero. Therefore, k ⊕ k[x]/ < (1, x) > has a natural struc-
ture of k[x]/x2 = k[ε]-module. Define a k[ε]- modules morphism
k[ε] → k[x]/ < (1, x) > by mapping 1 → (1, 1), we check that
ε→ x(1, 1) = (0, x). This is a surjective morphism of k[ε]-modules
by the previous remarks. Since the dimension over k is two for
both modules it is an isomorphism. Spelling this out, the compo-
sition k[x, y]/(x2, y) → k ⊕ k[x, y]/ < (1, x), (0, y) > is defined by
1→ (1, 1) i.e., for f(x, y) = a+ bx+ cy for a ∈ k and b, c ∈ k[x, y]
we have f → (f̄ , f) = (a, a + bx + cy), the argument given says
that this is a well-defined isomorphism of k[x, y]-modules.



RINGS AND MODULES EXERCISE SHEET 7, 2020 3

(d) Interchanging the variables x and y in the above argument, we find
the module associated to [φ2] is k[x, y]/(x, y2)

�

Remark: I.e., we have that the extension corresponding to [φ1] is
given by

0→ k → k[x, y]/(x2, y)→ k → 0,

where the first morphism sends 1 → −x and the second x → 0. Simi-
larly, the extension corresponding to [φ2] is given by

0→ k → k[x, y]/(x, y2)→ k → 0,

where the first morphism sends 1→ −y and the second y → 0. These
are not isomorphic as elements of Ext1R(k, k) since there is no R-linear
isomorphism from k[x, y]/(x, y2) to k[x, y]/(x2, y), i.e., for any such
f , f(y) = yf(1) = 0 (they are however the same as extensions of
k-algebras, by mapping x→ y).

Exercise 2. Let R = k[x, y].

(a) Show that Ext1
(

(x, y), R
/

(x, y)

)
6= 0.

(b) Construct a finitely generated module M such that Tors(M) ⊆M
is not a direct summand.

Note: Tors(M) ⊆ M is always a direct summand if R is a PID by
the fundamental theorem for finitely generatid modulues over PIDs.

Proof. (a) As seen on several occasions in this course, we have a pro-
jective resolution:

0→ R→ R⊕R→ (x, y)

where the morphisms are given by r → (−ry, rx) and (r1, r2)→
(r1x, r2y) respectively. To calculate Ext1

(
(x, y), R

/
(x, y)

)
we ap-

ply Hom(_, k) and calculate the cohomology in degree one of the
corresponding complex. I.e., the cokernel of k ⊕ k → k given by

(r1, r2) → (r1, r2)

(
x
y

)
= r1x + r2y = 0. Here we used that multi-

plication by x and y are zero. In particular:

Ext1
(

(x, y), R
/

(x, y)

)
= k.

(b) Let λ ∈ k be non-zero and let [λ] ∈ Ext1
(

(x, y), R
/

(x, y)

)
be the

corresponding extension. Then [λ] correspond to a non-split short
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exact sequence of R-modules:

0→ R/(x, y)→ N
φ→ (x, y)→ 0,

For any n ∈ N coming from R/(x, y) we have xn = 0, in par-
ticular ker(φ) ⊂ Tors(N). Similarly, suppose n ∈ Tors(N) and let
rn = 0, since (x, y) is a torsion free module we have rφ(n) = 0 if
and only if n ∈ ker(φ). This shows that ker(φ) = Tors(N). Since
the sequence does not split by assumption, we have that Tors(N)
is not a direct summand of N .

�

Exercise 3. Let R be a ring and letM,K,L and N be R-modules. As-
sume that ExtiR(M,N), ExtiR(K,N) and ExtiR(L,N) have finite length
and that there exists integers r, s such that they are all zero for all
i < r and all i > s. Show that if

0 // K // M // L // 0

is a short exact sequence, then

s∑
i=r

length(−1)i ExtiR(M,N) =

s∑
i=r

length(−1)i ExtiR(K,N) +
s∑
i=r

length(−1)i ExtiR(L,N).

Proof. There is an induced long exact sequence on Exti’s, since this
sequence eventually terminates with all terms equal to zero this follows
directly from Exercise 5.2. Note: Exercise 5.2 was stated for finitely
generated modules Mi over an Artinian and Noetherian ring, however
we only used that the M ′

is where of finite length in the solution.
�

Exercise 4. Set R = Z
[Z/2Z

] ∼= Z[x]
/

(x2 − 1). We show properties

exhibiting that R is different than both F2

[Z/2Z
]
and C

[Z/2Z
]
:

(a) Show that R contains no simple submodules and hence show that
it it is not semi-simple.

(b) Show that R(1 + x) ⊆ R is not projective by showing that

Ext1R(R(1 + x), R(1− x)) ∼= R
/

2R +R(1 + x) 6= 0.

Proof. (a) We have seen that every simple R-submodule of R is of the
form Rm for some m ∈ R such that Ann(m) is a maximal ideal of
R. Let m ∈ R, if m ∈ Z then Ann(m) = 0 which is not maximal. If
m = p(x) is a polynomial in Z[x] then either Ann(p(x)) = (x+ 1),
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if p(x) is divisible by (x − 1) or Ann(p(x)) = (x − 1), if p(x) is
divisible by (x + 1), or else Ann(p(x)) = 0. Therefore Ann(m) is
never maximal.

(b) A projecive resolution is given by:

. . .
m(1−x)−→ R

m(1+x)−→ R
m(1−x)−→ R.

This gives, after applying Hom(_, (1−x)) that the cohomology in
degree one is

R(1− x)/R(1− x)2.

Under the isomorphismR(1−x) ∼= R/(1+x)R, this gives R
/

2R +R(1 + x).
�

Exercise 5. Let R be an integral domain, and let K be its fraction
field.
(a) Prove that if f ∈ R is a non-zero element, then Ext1R(R/(f), K) =

0.
(b) More generally, prove that if f1, . . . , fn is a sequence of elements

such that for every 1 ≤ i ≤ n the multiplication by fi is injective
on R/(f1, . . . , fi−1) then

Ext1R(R/(f1, . . . , fn), K) = 0.

Proof. (a) Since f is a non-zero and R is an integral domain the se-
quence (not exact at the right spot):

P • : 0→ R
f ·−→ R→ 0

is the projective resolution of R/(f). Consequently, we compute
Ext1(R/(f), K) by taking Hom(−, K) functor of the P • and com-
puting cohomology at the first spot – note that the arrows get re-
versed. Identifying Hom(R,K) with K (by an isomorphism given
by evaluation at 1 ∈ R) we see that Ext1(R/(f), K) is isomorphic
to the cokernel of multiplication by f on K. This is clearly zero,
because f is invertible in K, that is, x = f · f−1x ∈ K. In terms
of homomorphisms every φ ∈ Hom(R,K) is f -divisible – consider
post multiplication by f−1 ∈ K.

(b) We reason by induction. The case n = 1 is (1). Since fn ∈
R/(f1, . . . , fn−1) is a non-zero divisor we obtain a short exact se-
quence:

0→ R/(f1, . . . , fn−1)
fn·−→ R/(f1, . . . , fn−1)→ R/(f1, . . . , fn−1, fn)→ 0.

By considering corresponding long exact sequence of Ext groups
(note that the arrows get reversed) we obtain:
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. . . → Hom(R/(f1, . . . , fn−1),K) → Ext1(R/(f1, . . . , fn),K) → Ext1(R/(f1, . . . , fn−1),K) → . . .

The right term in the sequence is zero by induction. The left one
is zero because R/(f1, . . . , fn−1) is f1-torsion and K is f1-divisible
(every element is divisible by f1). Consequently, we see that

Ext1(R/(f1, . . . , fn), K) = 0,

because it fits between to zeroes in a long exact sequence.
�
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There is one exercise in this problem sheet that will be part of the eight homework.
The solution has to be written in Latex and handed in as a pdf file on Moodle.
The eight homework is due on Sunday November 22 at 18:00. The exercise will be
denoted by the symbol ∗∗ next to the exercise number.

Exercise 1. ** Show that x3 + y7 ∈ k[x, y] is irreducible.
Hint: Use the consequence of Gauss’s theorem saying that for a unique factorisation
domain R and a primitive polynomial f ∈ R[t], we have that f is irreducible in
Frac(R)[t] iff it is irreducible in R[t]

Proof. We use the hint for R = k[y]. It is therefore sufficient to check that x3 + y7

is irreducible in k(y)[x]. Suppose it is not, since the degree is three it has to have
a linear term in any factorisation and hence there exists f, g coprime such that f

g

is a root of x3 + y7. We write: f3(y)
g3(y)

+ y7 = 0, and hence f 3(y) = −g3(y)y7, this is
impossible since three does not divide seven.

�

Exercise 2. Let R = k[x, y, z]. Show that (xz3 + yz3− y2z2 + xyz− xy) is a prime
ideal of R.
Hint: Use Eisenstein’s Criterion

Proof. View f(x, y, z) = xz3 + yz3− y2z2 +xyz−xy as an element of (k[x, y])[z], so
f(x, y, z) = (x+y)z3−y2z2 +xyz−xy. This satisfies the hypotheses of Eisenstein’s
criterion for p = y, and so f is irreducible in R. Thus (f) is a prime ideal.

�

Exercise 3. Solve the following exercises:

(a) Consider the polynomial f = X3Y +X2Y 2 + Y 3 − Y 2 −X − Y + 1 in C[X, Y ].
Write it as an element of (C[X])[Y ], that is collect together terms in powers of
Y, and then use Eisenstein’s criterion to show that f is prime in C[X, Y ].

(b) Let F be any field. Show that the polynomial f = X2 + Y 2− 1 is irreducible in
F[X, Y ], unless F has characteristic 2. What happens in that case?

Proof. (a) p = x − 1 is prime in C[x] and satisfies the conditions of Eisenstein’s
criterion.

(b) Eisenstein’s criterion gives that X2 +Y 2− 1 is irreducible if Y − 1 6= Y + 1, i.e.,
it is irreducible if 1 6= −1 i.e., unless the characteristic is 2. In characteristic 2
we have X2 +Y 2−1 = X2 + (Y + 1)2 = (X+Y + 1)2 and hence this polynomial
is not irreducible.

�

Exercise 4. Solve the following exercises:

(a) Prove that R := C[x, y, z]/(xy − z2) is a domain. Calculate the transcendent
degree over C of the fraction field of R.

(b) Calculate the dimension of the ring Z[x].
1
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(c) Prove that every Artinian ring has dimension 0.
(d) Compute the dimension of the ring Z[x]/(4, x2).

Proof. (a) To show that R is a domain it is sufficient to show that xy − z2 is irre-
ducible. This follow from Eisenstein’s criterion applied to xy − z2 ∈ k[x, y][z],
with p = x. Let x̄, ȳ ,z̄ denote the image of x, y and z in R = C[x, y, z]/(xy−z2)
under the quotient map C[x, y, z]→ R. We see that C[x, y] ∼= C[x̄, ȳ] ⊂ R since
the kernel of the quotient map consits of those polynomials that belongs to the
ideal (xy−z2) and there are no such polynomials in the variables x, y. Moreover,
z̄ is integral over S = C[x̄, ȳ] since x̄ȳ − z̄2 = 0. This implies that R is integral
over the subring S where S ∼= C[x, y]. We conclude by Noether Normalization
that Frac(R) has transcendence degree two over C.

(b) Let P ∈ Z[x] be a prime ideal. Then P ∩ Z is a prime ideal of Z, we will treat
the two cases P ∩ Z = 0 and P ∩ Z = p for a prime p separatly. We start with
the case P ∩ Z = 0. In this case P contains no integer and therefore P e ⊂ Q[x]
contains no element of Q, i.e., P e ⊂ Q[x] is a proper ideal. Since Q[x] is a PID
there exists a polynomial f ∈ Q[x] such that P e = (f). Let c(f) be the content
of f as in the proof of Gauss’ Lemma, then P ⊂ P ec = (c(f)f). This means
that every element of P is divisible by c(f)f , since P is prime this means that
P = (c(f)f) and that c(f)f is an irreducible polynomial in Z[x]. Hence the
primes P which intersects Z trivially are principal, generated by an irreducible
polynomial in Z[x].

We now suppose that P∩Z = p, where p is a prime. Since (p) ∈ P , this implies
that P corresponds to a unique prime ideal in the quotient Z[x]/(p) = Z/pZ[x].
This is a principal ideal domain and hence P corresponds to either 0 or to (f̄) for
an irreducible polynomial f̄ ∈ Zp[x], i.e., P = p or P = (p, f) for f a preimage
of f̄ .

Since principal prime ideals in an UFD necessarily is of height one, it is suffi-
cient to examine the height of the maximal ideals m = (p, f) where p is a prime
number and f ∈ Z[x] is irreducible mod p. We claim that the height of such a
prime is two. Since 0 ⊂ (p) ⊂ m is a chain of length two it is sufficient to prove
that there is no chain of strictly bigger length. Let P ⊂ (p, f) be a non-zero
prime ideal. If (p) ⊂ P we must have that P = (p) or P = (p, f) since Zp[x] has
dimension one. We conclude that the only chain of prime ideals inside m that
contains p is the chain 0 ⊂ (p) ⊂ m. Hence we suppose that P ⊂ m is a prime
ideal that does not contain p. Then P = (g) for some irreducible polynomial
g ∈ Z[x] by our previous disscussion. Any such prime is of height one and hence
every such chain has maximal length two, i.e., if 0 ⊂ P1 ⊂ P2 ⊂ m is a chain
of prime ideals such that p /∈ P2 then P1 = (g), P2 = (g′) for some irreducible
polynomial g, g′ ∈ Z[x]. The containment (g) ⊂ (g′) implies that P1 = P2 since
both g′ and g are irreducible polynomials in Z[x].

We conclude that the maximal height of a prime ideal in Z[x] is two, i.e., the
dimension of the ring Z[x] is two.

(c) We have seen in a previous exercise that every prime ideal in an Artinian ring
is maximal. Hence every prime ideal has height 0, i.e., an Artinian ring has
dimension 0.

(d) The prime ideals of Z[x]/(4, x2) correspond to the prime ideals of Z[x] that
contain (4, x2). If P is prime such that 4 ∈ P then 2 ∈ P , similarly if x2 ∈ P
then x ∈ P . Hence (4, x2) ⊂ P implies that (2, x) ⊂ P . Since (2, x) is maximal
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we must have P = (2, x). Converserly, (4, x2) ⊂ (2, x). Hence the unique prime
ideal of Z[x]/(4, x2) is (2, x)/(4, x2). In particular Z[x]/(4, x2) has dimension 0.

�

Exercise 5. Show the following:

(a) Prove that the only prime ideal of height zero in a domain is the ideal (0).
(b) Prove that a prime ideal of height 1 in a UFD is principal.
(c) Compute the prime ideals of height zero in R[x, y]/(xy).

Hint: Recall that there is a 1-1 correspondence between the prime ideals R con-
taining I and the prime ideals of R/I.

Proof. (a) In any ring R, 0 ⊂ P for every prime ideal P , hence 0 is prime if and
only if it is the only prime ideal of height zero.

(b) Let P be a prime ideal of height one. We will prove that P contains a prime
element p. If P contains a prime element p then (p) = P , since (p) ⊂ P and the
only prime ideal that is strictly contained in P is 0 by part a). Let f ∈ P be non
zero (this is possible since P 6= 0 because P has height one), let f = pα1

1 . . . pαr
r

be a unique (upto multiplication by units) prime decomposition of f . Since P is
prime, we must have pi ∈ P for some i ∈ {1, . . . r}. We conclude that P = (pi).

(c) The prime ideals of height zero in R[x, y]/(xy) correspond to the primes P ⊂
R[x, y] that contains xy and that do not contain any other prime ideal P ′ such
that xy ∈ P ′. Suppose xy ∈ P then either x ∈ P or y ∈ P , hence either (x) ⊂ P
or (y) ⊂ P , since (x) and (y) both are prime ideals that contain xy we conclude
that P = (x) or P = (y).

�

Exercise 6. Show the following:

(a) Let F ⊂ L be a field extension, and suppose a1, ..., an are elements of L which
are algebraically independent over F . Prove that F (a1, ..., an) is isomorphic to
the fraction field of the polynomial ring F [x1, ..., xn].

(b) Let F ⊂ L be a field extension. Show that a subset of L is a transcendence
basis for L/F if and only if it is a maximal algebraically independent set. As a
consequence show that a transcendence basis exists for any field extension L/F .

Proof. (a) Let F ⊂ L be a field extension, and suppose a1, ..., an are elements of L
which are algebraically independent over F . We will prove that F (a1, ..., an) is
isomorphic to the fraction field of the polynomial ring F [x1, ..., xn]. To this end,
define a ring homomorphism φ : F [x1, ..., xn]→ L by xi 7→ ai. We claim this is
injective. For suppose φ(f) = 0 for some f . This gives a polynomial with coef-
ficients in F satisfied by the ai, and so by definition of algebraic independence,
f = 0. This injectivity, along with the existence of inverses in L, means we can
extend φ to an injective homomorphism F (x1, ..., xn) → L. This is surjective
because F and each of the ai is in the image, and these generate L over F .

(b) Suppose the set {ai}I is a transcendence basis for L/F , with some (perhaps
infinite) indexing set I. It is algebraically independent by definition, so we need
to show it is maximal subject to this. Suppose not, so there is some element
a of L which is not algebraically dependent on {ai}I . But by definition of
transcendent basis, L/F ({ai}) is finite, so there is a polynomial p ∈ F ({ai})[X]
such that p(a) = 0. Multiply through to clear denominators, we can view p as a
non-zero multivariate polynomial with coefficients in F satisfied by some subset
of {ai} and a. This contradicts the choice of a.
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Conversely, suppose {ai}I is a maximal algebraically independent set. We
need to show that L/F ({ai}I) is algebraic. Suppose a ∈ L. As {ai}I ∪ {a} is
not algebraically independent there is some multivariate polynomial with coef-
ficients in F such that f(a, ai1 , ..., ain) = 0. This must have some non-zero a
term as otherwise it gives an algebraic dependence among the ai. This gives
the required polynomial satisfied by a with coefficients in F ({ai}) by dividing
through by the coefficient of the highest power of a.

To show that a transcendence basis exists, we use Zorn’s lemma on the par-
tially ordered set Σ of algebraically independent sets inside L. If Σ is empty
then L/F is algebraic and there is nothing to prove. Hence assume that Σ is
non-empty. To use Zorn’s Lemma we must show that any chain of algebraically
independent sets has an upper bound in Σ. Suppose (Aα) is such a chain, i.e.,
for all indexes α, β either Aα ⊂ Aβ or Aα ⊃ Aβ holds. Then ∪αAα defines an
algebraically independent set, since any polynomial relation in ∪αAα is a poly-
nomial relation in Aα for α sufficiently large. Therefore ∪αAα is an upperbound
for the chain (Aα). By Zorn’s Lemma there exists a maximal algebraically in-
dependent set of elements in L. By what has already been proven such a a
maximal algebraically independent set consitutes a transcendence basis for L
over F .

�

Exercise 7. Prove that if F ⊆ K ⊆ L are field extensions such that trdegF L <∞,
then trdegF L = trdegF K + trdegK L

Proof. By previous exercises trdegF L is the cardinality of any maximal algebraically
F -independent subset α1, . . . , αtrdegF L ∈ L. Let β1, . . . , βtrdegF K ∈ K be a maximal
algebraically F -independent subset of K and let γ1, . . . , γtrdegK L ∈ L be a maximal
algebraically K-independent subset of L. By construction:

β1, . . . , βtrdegF K , γ1, . . . , γtrdegK L ∈ L
is an algebraically F -independent subset of L. Suppose α ∈ L such that

β1, . . . , βtrdegF K , γ1, . . . , γtrdegK L, α ∈ L
is algebraically F -independent. Then γ1, . . . , γtrdegK L, α ∈ L is algebraically K-
independent, but this is impossible since γ1, . . . , γtrdegK L ∈ L is a maximal alge-
braically K-independent subset of L. �
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Exercise 1 (Nakayama’s Lemma). Let R be a ring and let M be a finitely generated
R-module. Show the following:

(a) Let I be an ideal of R such that IM = M . Then there exists x ∈ 1 + I such
that xM = 0.

(b) Suppose now that the ring R is local, i.e., that there is a unique maximal ideal
m of R. Suppose that mM = M , show that this implies that M = 0

(c) Show that (removing the previous assumption on R being local) that if there
is an ideal I ⊂ nil(R), where nil(R) is the nilradical of R, such that IM = M ,
then this implies that M = 0.

Hint: Prove that in b, c the element x, whose existence is assured by a, in fact is
invertible.

Proof. (a) Let m1, ...,mn be generators of M . As IM = M , there is a matrix A
with entries in I such that Am = m, where m is the column vector with ith

entry mi. Therefore (A− Id)m = 0. Multiplying by the adjugate of the matrix
A− Id implies that if D = det(A− Id) then Dmi = 0 for all i. Hence DM = 0,
since the mi generate M . If we can prove that D ∈ 1 + I then we are done. By
expanding the determinant, we can see that D = det(A−Id) cannot be in I, for
all the components of A are in I, and so there is only one term of the expansion
of det(A − Id) which is not, and this is the 1 which comes from the Π(aii − 1)
terms. In particular, D − 1 ∈ I.

(b) We have D /∈ m since 1 /∈ m. Suppose that D is not a unit. Then D is contained
in some proper maximal ideal by Zorn’s lemma, but this is a contradiction since
D /∈ m.

(c) You have seen that the nil-radical of R is the intersection of all prime ideals of
R. Let 1 − D = x for x ∈ nil(R). Suppose 1 − x is not a unit. It belongs to
some maximal ideal m, but x ∈ m and therefore 1 ∈ m, which is absurd.

�

Let M be a finitely generated A-module and let a be an ideal ofA such that aM =
M. Then there exists X == l(mod a) such that xM = O.

Exercise 2. Let R be a local ring which is an integral domain but not a field, and let
F be the fraction field of R. Show that F is not finitely generated as an R-module.
(After a few more lectures, you will be able to remove the assumption that R is
local.)

Proof. Suppose on the contrary that F is a finitely generated R-module. Notice that
mF = F , because every element of m is invertible in F . Therefore by Nakayama’s
lemma F = 0. This gives a contradiction, so F cannot be finitely generated. �

1
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Exercise 3. Let Fq be the finite field with q elements. Suppose that R is a quotient
of Fq[x1, ..., xn]. Prove that there is a subring S ⊂ R such that S ∼= Fq[t1, ..., tr] and
R is integral over S.

Proof. We follow the proof from the course notes, amending as suggested by the
hint.

We use induction on n. If n = 1 we are done exactly as in the notes. So assume
we know the statement for smaller values of n. Let xi be the residue class of xi

in R. After reordering we may assume that xn is algebraic over F (x1, ..., xn−1),
otherwise the xi are algebraically independent and we are done. Therefore there is
a polynomial g ∈ k[y1, ..., yn] such that g(x1, ..., xn) = 0, and g(x1, ..., xn−1, yn) is
non-zero as a polynomial in (k[x1, ..., xn−1])[yn].

Let d be the degree of g. Let yi = yi − yN
i

n for i < n for some N > d and yn = yn.
Then let h(y1, ..., yn) = g(y1 + yNn , y2 + yN

2

n , ..., yn). The highest power of yn in
the expansion of any monomial in the yi occurs from taking each yn term. The
exponent N is arranged so that this highest power is different for every monomial
of degree at most d. Thus the highest yn degree terms from each monomial do
not cancel in the expansion of g in terms of the yi, and so (after dividing by an
element of Fq), h(yn) is a monic polynomial in k[y1, ..., yn−1]. This implies that
xn is integral over k[x1 − xN

n , ..., xn−1 − xNn−1

n ] which is isomorphic to a quotient
of k[y1 − yNn , ..., yn−1 − yN

n−1

n ], which is isomorphic to a polynomial ring in n − 1
variables. Applying induction on n, we can conclude the result.

�

Exercise 4. Let R = Fq[[t]] be the ring of power-series in the variable t over the
field Fq. As a set, R is the set of power-series f =

∑
n∈N ant

n with coefficients
an ∈ Fq. For two such power series,

∑
n∈N ant

n and
∑

n∈N bnt
n, one defines the

addition to be the power-series
∑

n∈N(an + bn)tn and multiplication to be the power-
series

∑
n∈N(

∑n
k=0 akbn−k)tn Show the following:

(a) If f ∈ R − (t), then f is invertible (and hence R is a local ring with maximal
ideal (t)).

(b) A formal Laurent series over the field Fq is defined in a similar way to a formal
power series, except that we also allow finitely many terms of negative degree
That is series of the form f =

∑
n∈Z ant

n where an = 0 for all but finitely
many negative indices n. Define a natural ring structure on this set and show
that with this ring structure the ring of formal Laurent series over Fq (usually
denoted Fq((t))) is equal to the fraction field of R.

(c) Show that trdegFq
(Frac(R)) is infinite.

Hint: show that Fq(t1, . . . , tr) is countable, and R is not
(d) Show that dimR = 1 and hence show that Thm 5.1.11 does not work with not

finitely generated algebras

Proof. (a) Let f = a0+
∑

n>0 ant
n where a0 6= 0 define f−1 =

∑
n bnt

n where b0 = 1
a0

and bn = − 1
a0

∑n
i=1 aibn−i for n ≥ 1.

(b) Multiplication of such series can be defined similarly to the definition for formal
power series, the coefficient of tn of two series with respective sequences of co-
efficients {an} and {bn} is defined to be:

∑
i∈Z aibn−i, this sum has only finitely

many non-zero terms, since both bn−i and ai are zero in negative enough degrees.
Again

∑
n∈Z(

∑
i∈Z aibn−i)t

n is a Laurent series since if n is negative enough, then



RINGS AND MODULES 2020 SHEET 9 SOLUTIONS 3

either ai or bn−i is zero for all i. By the previous point Frac(R) = Rt, but it is
clear from the above definition that the ring of Laurent series is also equal to
the ring Rt.

(c) We first note that it is sufficient to prove the hint. We have that R ⊂ Frac(R)
hence if R is not countable neither is Frac(R). Suppose that Frac(R) have finite
transcendence degree over Fq, then there exists t1, . . . tr such that Frac(R) is
algebraic over Fq(t1, . . . , tr). If Fq(t1, . . . , tr) is countable then so is any algebraic
extension. We now show that Fq(t1, . . . , tr) is countable. This can be seen by
evaluating f ∈ Fq(t1, . . . , tr) at large enough primes p1, p2, . . . pr, and in this
way identifying a bijection between Fq(t1, . . . , tr) and a subset of the rational
numbers. However R is not countable, for example the set of infinite sequences
(an)n∈N where an ∈ {0, 1} is not countable. The latter is usually proven in
order to show that the real numbers are uncountable and we will not repeat
that argument here.

(d) We have that R is a domain and that 0 ∈ t for tmaximal and it is clear that 0 ⊂ t
is a maximal chain. Since t is the unique maximal ideal this shows dimR = 1.

�

Exercise 5. Show the following:

(a) If R is a domain with dimR = 0, then R is a field.
(b) We say that a ring R is reduced if there are no nilpotent elements in R. I.e., if

r ∈ R is such that rn = 0 then r = 0. Give an example of a reduced ring R of
dimension zero which is not a field.

Proof. (a) A ring R is a domain if and only if the zero ideal is prime. A ring R is a
field if and only if the zero ideal is maximal. Therefore, a domain is a field if it
is of dimension zero.

(b) Let F be a field and define a ring structure on F⊕F by cordinatevise multiplica-
tion. There are two non-trivial ideals 0⊕F and F⊕0 and 0 = 0⊕0 = 0⊕F∩F⊕0
and hence 0 is not an irreducible ideal and hence not prime. It is direct to see
that 0 is the only ideal strictly contained in 0 ⊕ F , which itself is maximal
(F ⊕F/0⊕F = F ). Any prime ideal p has to contain 0 and so 0⊕F ∩F ⊕0 ⊂ p
but then either F ⊕ 0 ⊂ p or 0⊕ F ⊂ p which implies p = 0⊕ F or F ⊕ 0 = p.
Therefore F⊕F has exactly two prime ideals, which are both maximal. Suppose
that (a, b)n = (an, bn) = (0, 0) then an = 0 and bn = 0, since F is reduced this
means that a = 0, b = 0.

�

Exercise 6. ** You should only hand in solutions to c, d and e. In proving points
points c, d and e below you may freely use the results in a, b.
Let R be an Artinian ring. Recall from Exercise 2.1 that every prime ideal of R is
maximal

(a) Show that dimR = 0.
(b) Show that R has finitely many maximal ideals.

Hint : for this you need the statement that if I1 ∩ · · · ∩ Ir ⊆ p for a prime ideal
p ⊆ R, then Ii ⊆ p for some i, which you should also show

(c) ** There is an integer j > 0 such that nil(R)j = 0.
Hint: Show that nil(R)j stabilizes for j � 0, which we denote by I. In order to
arrive at a contradiction assume that I = I2 6= 0. Consider a minimal element
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J in the set of ideals {J : JI 6= 0}, show that IJ = J , then show that J is
principal. Conclude by Nakayama point c.)

(d) **Show that if m1, . . . ,ms are the maximal ideals of R, then mj
1 · · · · ·mj

s = 0.
Hint: Use the statement learned in ’Anneaux et corps’ that the nilardical is the
intersection of all prime ideals.

(e) **Show that lengthR R <∞, and deduce that R is Noetherian.
Hint: construct an increasing sequence of ideals using the product of maximal
ideals. Thereafter, you have to use multiple times the earlier exercise that Ar-
tinianity is closed under passage to sub- and quotient- modules.

Remark: In point (5) of Example 2.1.2 in the notes you saw an example of an
Artinian module which is not Noetherian. However, the exercise above shows that
an Artinian ring is always a Noetherian ring.

Proof. (a) Let P ⊂ Q be an inclusion of prime ideals, since P is maximal we have
P = Q.

(b) We first show the hint: Suppose Ii 6⊂ p for all i. Then there exist xi ∈ Ii, such
that xi /∈ p and therefore for x = x1·· · ··xr we have x ∈ I1 . . . Ir ⊂ I1∩· · ·∩Ir ⊂ P ,
but this contradicts that P is prime. Now, for the exercise, we first remember
that every maximal ideal is prime by the previous point. Consider the set of all
finite intersections m1 ∩ · · · ∩mn where the mi are maximal ideals. This set has
a minimal element, say m1 ∩ · · · ∩mk. By minimality we have for any maximal
ideal m that m∩(m1∩· · ·∩mk) = m1∩· · ·∩mk and therefore m1∩· · ·∩mk ⊂ m.
By what we just showed mi ⊂ m for some i. By maximality this means that
m = mi.

(c) ** We have an ascending chain nil(R) ⊇ nil(R)2 ⊇ nil(R)3 ⊇ . . . . By the
Artinian property we have nil(R)j = nil(R)j+1 for some j. Let I = nil(R)j, if
I2 = 0 we are done, hence we assume that I = I2 6= 0. Since R is Artinian there
exists a minimal element J in the set of ideals {J : JI 6= 0}. By assumption
J 6= 0. We have JI ⊂ J and JII = JI 6= 0, hence minimality of J implies
that IJ = J . In order to apply Nakayama’s Lemma point c) to this equality,
we show that J is finitely generated. Since JI 6= 0 there exists a x ∈ J such
that xI 6= 0, by minimality of J , we have J = (x). We can therefore apply
Nakayama’s Lemma point c) to the finitely generated module J to conclude
J = 0, this is a contradiction. Therefore, nil(R)j = 0.

(d) **Every prime ideal in R is maximal. Hence nil(R) = m1 ∩ · · · ∩ms, where the
mi are distinct maximal ideals, i.e., m1 ∩ · · · ∩ms = m1 · · · · ·ms. It therefore
follows from the previous point that mj

1 · · · · ·mj
s = 0.

(e) ** Let 0 = m1 · · · · ·mn ⊂ m2 · · · · ·mn ⊂ · · · ⊂ mn ⊂ R, for some not necessary
distinct maximal ideals of R. We have a short exact sequence 0→ mn → R →
R/mn → 0, since R is Artinian so is mn. Therefore, we conclude that mn ·mn−1 ·
· · · ·mj is Artinian for all j as well as mn ·mn−1 · · · · ·mj/mn ·mn−1 · . . .mj ·mj−1.
The latter is a R/mj−1-vector-space, hence being Artinian is equivalent to being
Noetherian. Now we proceed to show that R is Noetherian. By the short exact
sequence above it is sufficient to show that mn is Noetherian. We prove this by
descending induction on the number of terms in the intersection, we have that
0 = m1 · · · · ·mn is Noetherian. Suppose that mn−k · · · · ·mn is Noetherian, since
mn−k+1 · · · · ·mn/mn−k · · · · ·mn is Noetherian so is mn−k−1 · · · · ·mn.

�
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Exercise 1. Let R be a ring, and M , N and P be R-modules. Show that there
exists a natural bijection

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P )).

Use this to prove that

· ⊗RM : {R-modules} → {R-modules}, A 7→ A⊗RM
is a right exact covariant functor.

Proof. We start by remarking on the functoriality, let f : N → N ′ be a morphism of
R-modules. Let ι : N ⊕M → N ⊗RM and ι′ : N ′ ⊕M → N ′ ⊗RM be the unique
R-bilinear map in the definition of the tensor product. Let f̃ : N ⊕M → N ′ ⊕M
be defined by f̃(n,m) = (f(n),m), then f̃ is obviously R-bilinear. The composition
ι′ ◦ f̃ defines a R-bilinear map N ⊕M → N ′ ⊗R M . By the universal property of
N ⊗R M there exists a unique morphism f ⊗ 1 : N ⊗R M → N ′ ⊗R M such that
ι′ ◦ f̃ = f ⊗ 1 ◦ ι. Defining f ⊗ 1 to be the image of f is easily seen to be functorial
and hence · ⊗RM defines a covariant functor as claimed.

To show that it is right exact we will make use of the corresponding statement for
the Hom-functors. Let us prove the existence of a natural bijection as described
in the exercise. Let f : M ⊕ N → P be an R-bilinear mapping. For each x ∈ M
the mapping y → f(x, y) of N into P is R-linear, hence f gives rise to a mapping
Φ : M → HomR(N,P ) which is R -linear because f is linear in the variable x.
Conversely any R-homomorphism Φ : M → HomR(N,P ) defines a bilinear map,
namely (x, y) → Φ(x)(y). Hence the set S of R-bilinear mappings M ⊕ N →
P is in natural one-to-one correspondence with HomR(M,HomR(N,P )). On the
other hand the set S is in one-to-one correspondence with HomR(M ⊗R N,P ),
by the defining property of the tensor product. Hence we have an isomorphism
(which easily can be seen to be an isomorphism of R-modules) HomR(M⊗RN,P ) ∼=
HomR(M,HomR(N,P )). In fact it is natural i.e., functorial in M , N and P . For
this exercise we only need functoriality in M .

We now proceed to show right exactness. Let

0→ A→ B → C → 0

be an exact sequence of R-modules. We want to show that the sequence

A⊗RM → B ⊗RM → C ⊗RM → 0

is exact. We let E denote the exact sequence, and let E ⊗M denote the second
sequence for which we want to prove exactness. We first claim that it is sufficient
to prove that the sequence Hom(E ⊗M,P ) defined as

0→ HomR(C ⊗RM,P )→ HomR(B ⊗RM,P )→ HomR(A⊗RM,P )

is exact for every R-module P .
1
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In fact, more generally:
The sequence

A
γ→ B

β→ C → 0

of R-modules is exact if and only if for all R-modules P the sequence

0→ HomR(C,P )
◦β→ HomR(B,P )

◦γ→ HomR(A,P )

is exact. Only the first implication needs a motivation. Taking P = C and
id ∈ HomR(C,P ) we find β ◦ γ = 0. Take P = Coker(β) and q : C → Coker(β) ∈
HomR(C,P ), injectivity of ◦β implies that q = 0, i.e., β is surjective. Lastly, take
P = Coker(γ) and let q : B → P be the projection. Then q ◦ γ = 0 and hence
there exists φ : C → P such that ker(φ◦β) = im(γ). Consequently, ker(β) ⊂ im(γ).

To conclude, we consider the following commutative diagram:

0 HomR(C ⊗RM,P ) HomR(B ⊗RM,P ) HomR(A⊗RM,P )

0 HomR(C,HomR(M,P )) HomR(B,HomR(M,P )) HomR(A,HomR(M,P ))

Where the vertical maps are the isomorphism discussed above and the horisontal
maps are the ones induced by the short exact sequence E. We leave to the reader to
check the commutativity of this diagram (i.e., the isomorphism HomR(N⊗RM,P ) ∼=
HomR(N,HomR(M,P )) is natural in N). Since E is exact, the bottom row in the
above diagram is exact by left exactness of the Hom-functors. Commutativity of the
diagram together with the vertical arrows being isomorphisms now imply exactness
of the sequence E ⊗M.

�

Exercise 2. ** Let R be a ring. Let M , N be R-modules and I and ideal of
R. Prove that there are isomorphisms of R-modules M ⊗R N ∼= N ⊗R M and
M ⊗R (R/I) ∼= M/(IM).

Proof. The solution consists of the following steps.

(1) We first prove that M ⊗R N ∼= N ⊗R M . For this purpose, we construct
mutually inverse maps from one side to the other. To construct, M ⊗R
N → N ⊗R N we just observe that the map M × N → N ⊗R M given by
(m,n) 7→ n⊗m is bilinear and hence induces a desired map. We construct
the inverse by the analogous procedure.

(2) We consider the exact sequence 0 → I → R → R/I → 0. Taking its tensor
product with a module M and using right exactness we obtain an exact
sequence

I ⊗RM → R⊗RM → (R/I)⊗RM → 0.

The middle group R⊗RM can be identified with M using the map r⊗m 7→
rm. Under this identification the image of the homomorphism I ⊗R M →
R ⊗R M is equal to IM . This implies that (R/I) ⊗R M is isomorphic to
M/IM .

�
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Exercise 3. Let A be a ring, with A-algebras B and C and an A-module M . Show
that:

(a) B ⊗AM naturally has the structure of a B-module,
(b) B ⊗A C naturally has the structure of an A-algebra,
(c) B ⊗A B naturally has a ring morphism to B.

Proof. The solution consists of the following steps.

(a) B ⊗A M is a B module via extending linearly from the definition b′(b ⊗m) =
(b′b)⊗m. First we must check that this is well defined. This follows from:
• b′((b1 + b2)⊗m) = (b′b1 + b′b2)⊗m = b′(b1 ⊗m+ b2 ⊗m)
• b′(b⊗ (m1 +m2)) = b′b⊗ (m1 +m2) = b′b⊗ b1 + b′b⊗m2

• b′ab⊗m = b′(ab⊗m) = b′(b⊗ am) = b′b⊗ am.
Now it is enough to check that it satisfies the distributivity properties of modules,
which is another easy check.

(b) B ⊗A C is an A-algebra via the multiplication (b⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′. First
check well defined. Then we need to check the associativity and distributivity
properties, and also note that the unit in B ⊗A C is 1B ⊗ 1C . These are similar
to the previous part.

(c) the ring homomorphism is induced by the A-bilinear map B × B → B given
by (b, b′) 7→ bb′. It is clealy compatible with the ring structure on the tensor
product B ⊗A B.v

�

Exercise 4. Prove the following assertions:

(a) Let k be a field, and let V1 and V2 be vector spaces over k with bases {e1, ..., em}
and {f1, ..., fn} respectively. Show that there is an isomorphism V1⊗k V2 ∼= V n

1 .
In particular, show that V1 ⊗k V2 has basis {ei ⊗ fj}.

(b) Hence show that the element e1 ⊗ f2 + e2 ⊗ f1 cannot be written as u ⊗ v for
any u ∈ V1 and v ∈ V2.

Proof. The solution consists of the following steps.

(a) Define a bilinear map F : V1×V2 → V n
1 by F (v,

∑
bifi) = (biv)i. This determines

a linear map φ : V1 ⊗ V2 → V n
1 which sends v ⊗ fj to (δjkv)k. Define a converse

ψ : V n
1 → V1 ⊗ V2 by ψ((vi)i) =

∑
i vi ⊗ fi. This respects addition and scalar

multiplication, so is a module homomorphism. We can compute that φ◦ψ = idV n
1

and ψ ◦ φ = idV1⊗V2 .
(b) Suppose we can write e1 ⊗ f2 + e2 ⊗ f1 = u ⊗ v. Then writing u =

∑
aiei

and v =
∑
bjfj we get e1 ⊗ f2 + e2 ⊗ f1 =

∑
aibjei ⊗ fj. But this is a linear

combination among basis vectors, so we have a1b2 = a2b1 = 1 and all other
aibj = 0. The first implies that all of a1, b2, a2, b1 are non-zero, which implies
that a1b1 is also non-zero. But this is a contradiction.

�

Exercise 5. Prove the following:

(a) Let R be a ring, and let I and J be two ideals such that I + J = (1). Prove
that R/I ⊗R R/J = 0.

(b) Show that if F ⊂ L is a field extension, L⊗F L is a field if and only if F = L.
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Proof. The solution consists of the following steps.

(a) Since I+J = (1), there are two element i ∈ I and j ∈ J such that i+j = 1. Let
m =

∑
rk ⊗ r′k be an element R/I ⊗R/J . Multiplying by 1 = i+ j and moving

element j to the other side of the tensor product (using one of the defining
relations) we see that

m =
∑

((i+ j)rk)⊗ r′k =
∑

irk ⊗ r′k +
∑

rk ⊗ jr′k = 0.

This implies that R/I ⊗R/J = 0.
(b) If F = L, then the ring in question is F ⊗F F , and it holds for any ring R that

R⊗R R ∼= R.
Conversely, assume that F 6= L, and we show that L⊗F L is not a field. To do

this it is enough to show that it has a non-zero proper ideal, for a field has no non-
zero proper ideals. By the previous exercise (3), there is a ring homomorphism
φ : L⊗F L→ L given by b⊗ b′ 7→ bb′. This is surjective, but it is not injective.
This is because we will find l ∈ L\F such that r = l⊗1−1⊗ l 6= 0 but φ(r) = 0.
Any such r satisfies that φ(r) = 0, hence it is sufficient to find l ∈ L\F such that
r = l ⊗ 1 − 1 ⊗ l 6= 0. To construct such an l, we apply the universal property
of tensor products. It is enough to exhibit a bilinear map θ : L × L → Z of
F -modules for some F -module Z which has different values at (l, 1) and (1, l),
for the bilinear map factors through L × L → L ⊗F L. As L 6= F , there is
a non-trivial (not equal to the identity) F -module homomorphism φ : L → L.
Define θ(a, b) = a · φ(b). Then θ is F -bilinear and since φ 6= id there exists an l
such that φ(l) 6= l. Therefore, θ(1, l) = 1φ(l) 6= l = φ(1)l = θ(l, 1). Thus we are
done.

�

Exercise 6. Let R be a ring and M an R-module. We say that M is flat if for
every short exact sequence of R-modules

0→ A→ B → C → 0

the sequence
0→ A⊗RM → B ⊗RM → C ⊗RM → 0

is exact.

Prove that the following are equivalent:

(a) M is flat;
(b) TorRi (A,M) = 0 for every R-module A and every i > 0;
(c) TorR1 (A,M) = 0 for every R-module A.

Hint: for (a)⇒(b) take a free resolution of A and tensor it with M to compute the
Tor functors. For (c)⇒(a) use the long exact sequence for left derived functors.

Proof. We follow the hint and consider a free resolution of A:

. . .→ RK → RI → RJ → A→ 0.

Since M is flat, we obtain an exact sequence

· · · → RK ⊗RM → RI ⊗RM → RJ ⊗RM → A⊗RM → 0.

Therefore, TorRi (A,M) = H i(· · · → RK ⊗R M → RI ⊗R M → RJ ⊗R M → 0) is
zero if i 6= 0.

The implication (b)⇒(c) is trivial.
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For (c)⇒(a) we follow the second hint. Let
0→ A→ B → C → 0

be an exact sequence of R-modules. By the theory of left derived functors there is
a long-exact sequence

· · · → Tor1(C,M)→ A⊗RM → B ⊗RM → C ⊗RM → 0

Therefore, Tor1(C,M) = 0 implies that M is flat. �

Exercise 7. Let R be a ring.

(a) Prove that free R-modules are flat.
(b) Prove that projective R-modules are flat.

Hint: use the characterization of projective modules as direct summands of
free modules

(c) Assume that R is an integral domain. Determine for which ideals I of R the
R-module R/I is flat.

Proof. The proof consists of the following steps.

(a) Let M = RI be a free R-module. We will prove that ⊗RM is exact. Note that
⊗RR is exact since for all R-modules A we have A⊗R R ∼= A as was described
in the lecture. Since ⊗RM is an additive functor (Exercise Sheet 7, Exercise 7)
it is the direct sum of the exact functors ⊗RR.

Let
0→ A→ B → C → 0

be an exact sequence of R-modules. We want to show that the sequence
0→ A⊗RM → B ⊗RM → C ⊗RM → 0

is exact.
Since right-exactness has already been proven it is sufficient to prove that if

0 → A
f→ B is exact then 0 → A ⊗R M

f⊗1M→ B ⊗R M is exact. But the latter
sequence is isomorphic to the sequence 0 → ⊕I(A ⊗R R)

⊕(f⊗1R)→ ⊕I(B ⊗R R)
by additivity of the tensor product. Under the isomorphism A⊗RR ∼= A this is
just the injection 0→ ⊕IA ⊕f→ ⊕IB which maps (ai)i to (f(ai))i.

(b) Suppose M is projective and let M ′ be an R-module such that M ⊕M ′ ∼= RI .
Let f : A→ B be injective, then f ⊗ 1M⊕M ′ : A⊗ (M ⊕M ′)→ B ⊗ (M ⊕M ′)
is injective by part a) of this exercise. By additivity of the tensor product
(f ⊗ 1M)⊕ (f ⊗ 1M ′) : (A⊗M)⊕ (A⊗M ′)→ (B⊗M)⊕ (B⊗M ′) is injective.
Suppose a ∈ ker(f ⊗ 1M) then (a, 0) ∈ ker(f ⊗ 1M ⊕ f ⊗ 1M ′), i.e., a = 0. This
proves that M is flat.

(c) If I = 0 then R/I = R is flat. If I = R then R/I = 0, the zero module is flat
over every ring since it sends every module and every morphism to zero. We will
show that R/I is only flat in these two cases. Let I ⊂ R be a non-zero proper
ideal and let a ∈ I be non-zero. Since R is a domain the R-module morphism
ma : R → R defined by ma(r) = ar is injective. However, if we tensor with
⊗RR/I we obtain ma ⊗ 1 : R/I → R/I which maps r to ar = 0, i.e., ma ⊗ 1 is
the zero map, which is not injective since I 6= R, hence R/I is not flat.

�
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Exercise 1. Let R be a ring containing a multiplicatively closed subset T , and let
M be an R-module. Show that there is an isomorphism of R-modules:

T−1M ∼= T−1R⊗R M.

Further show that this is an isomorphism of T−1R-modules.

Proof. Let f : T−1R ⊗M → T−1M be defined as being induced from the bilinear
map φ : T−1R⊕M → T−1M given by φ( r

t
,m) = rm

t
, that the latter is well-defined

and bilinear is direct. We define an inverse to f , and we show this is well defined.
So let g(m

t
) = 1

t
⊗m for m ∈M and t ∈ T . This will be the inverse if it gives a well

defined R-homomorphism. Suppose that m1

t1
= m2

t2
. Then there is t′ ∈ T such that

t′(t2m1−t1m2) = 0. Thus 1
t1
⊗m1 =

t′t2
t′t2t1
⊗m1 =

1
t′t2t1
⊗t′t2m1 =

1
t′t2t1
⊗t′t1m2, which

is equal to 1
t2
⊗m2 by a symmetrical argument. This shows that g is well defined.

To show that it is an R-homomorphism we must show that it respects addition
and scalar multiplication. Multiplication is clear. For addition, g(m1

t1
+ m2

t2
) =

g( t2m1+t1m2

t1t2
) = 1

t1t2
⊗ (t2m1 + t1m2) =

1
t1t2
⊗ t2m1 +

1
t1t2
⊗ t1m2 =

1
t1
⊗m1 +

1
t2
⊗m2

as required. Therefore this is an isomorphism of R-modules.

To show that it is an isomorphism of T−1R modules, it is enough to show that f
and g respect the T−1R-module structures. This is clear from the definitions. (The
T−1R-module structure on T−1R⊗RM is given by r

t
( r
′

t′
⊗m) = rr′

tt′
⊗m, as a special

case of Question 3 in Sheet 8.)

�

Exercise 2. Let R be a ring with multiplicative subset T , and suppose that L, M
and N are R-modules.

(a) Show that if there is an R-module homomorphism f : M → N then there is a
natural T−1R-module homomorphism fT : T−1M → T−1N .

(b) Show that there is an isomorphism of R-modules T−1(M ⊕ N) ∼= (T−1M) ⊕
(T−1N).

(c) Suppose there is an exact sequence

0→ L→M → N → 0

Prove that the sequence

0→ T−1L→ T−1M → T−1N → 0

is also exact. Deduce that if L ⊂ M is a sub R-module, then T−1(M/L) ∼=
(T−1M)/(T−1L) and that localization by T is an exact functor of R-modules
and that T−1R is a flat R-module.

(d) Let p be a prime ideal of R. Show that there is an isomorphism of rings
Frac(R/p) ∼= Rp/(pRp).

1
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Remark: For a local ring A with maximal ideal m we call A/m the residue field
of A

Proof. a) and b) follows from the isomorphism T−1M ∼= M⊗RT
−1R, since ⊗RT

−1R
is a right-exact additive covariant functor. To prove c) it is sufficient to prove that
if g : L→M is injective then gT : T−1L→ T−1M is injective. To this end, suppose
that gT ( lt) = 0. Then there is t′ ∈ T such that t′g(l) = 0. But this is equal to g(t′l)
and so t′l = 0 by injectivity of g. This implies that l

t
= 0.

For d) we see that by part c) Rp/(pRp) ∼= T−1(R/p) for T = R − p. By definition
Frac(R/p) = T−1(R/p). �

Exercise 3. Let R = F [x], where F is a field.

(a) If F is algebraically closed, then show that for every prime ideal p of R, either
Rp
∼= F (x) or Rp

∼= F [x](x), where these isomorphisms are isomorphisms of
F -algebras. Show that the above two cases are not isomorphic.

(b) If F = R, then show that up to ring isomorphism there are three possibilities
for Rp, where p is a prime ideal of F [x].
Hint: to tell the three cases apart, consider the residue field, to show that there
are only three cases, apply linear transformations to x

(c) Show that if F is algebraically closed, then F [x, y] has infinitely many prime
ideals p for which F [x, y]p are pairwise non-isomorphic F -algebras. For this, you
can use the following theorem of algebraic geometry:

Theorem 3.1. For each integer d ∈ N\{0, 2}, there exist irreducible polynomials
fd ∈ F [x, y] (of degree d) such that Frac(F [x, y]/(fd)) are non-isomorphic as F-
algebras for different d′s.

Proof. (a) Every non-zero prime ideal of F [x] is principal of the form (x−a) since F
is algebraically closed. We have F [x]0 = F (x), hence it is sufficient to prove that
there is a F -algebra isomorphism F [x](x) ∼= F [x](x−a) for all a ∈ F . We define a
ring-homomorphism f : F [x](x) → F [x](x−a) by a linear variable change sending
x to x−a. This is well-defined, i.e., if g(x) /∈ (x) then g(x−a) /∈ (x−a)moreover,
if there exists s, g, g′ /∈ (x) and polynomials f, f ′ such that s(x)(g(x)f(x) −
f ′(x)g′(x)) = 0, then s(x − a)(g(x − a)f(x − a) − f ′(x − a)g′(x − a)) = 0,
where s(x − a) /∈ (x − a), it is clearly a F -algebra homomorphism, i.e., it is
the identity on constants and for two fraction of polynomials f

g
and f ′

g′
we have

ff ′

gg′
(x−a) = f

g
(x−a)f ′

g′
(x−a). The inverse is given by the linear variable change

x → x + a, which is well-defined by a similar reasoning. There is an inclusion
F [x](x) → F (x), since the former is not a field but the latter is they can not be
isomorphic.

(b) There are three options for prime ideals in R[x] we have that p = 0 or p is
principal generated by (x− a) for a ∈ R or p is principal generated by a degree
two polynomial with no real roots. There is a linear change of coordinates that
take any linear polynomial (x− a) into the polynomial x (x → x + a) and any
degree two polynomial with no real roots ((x− (a+ ib))(x− (a− ib)) for b 6= 0)
into the polynomial b2(x2 + 1) where b ∈ R ( i.e., x→ bx+ a). As above, these
linear coordinate changes defines isomorphisms of R-algebras R[x](x−a) ∼= R[x](x),
R[x](x−2a+b2+a2)

∼= R[x]b2(x2+1) = R[x](x2+1). The residue fields are R(x), R and
C respectively, since any isomorphism between two of these rings would induce
an isomorphism on residue fields (here you need to check that any isomorphism
would map the generators of the maximal ideals to each other, this sort of
argument is given in c) below) they can not be isomorphic.
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(c) Let fd be as in the theorem, we will show that F [x, y]fd are non-isomorphic for
d ∈ N \ {0, 2}. Let φ : F [x, y]fd → F [x, y]fd′ be an isomorphism. It is sufficient
to prove φ(fd) = rfd′ , for a unit r since if this is a case φ induces an isomorphism
on residue fields, which is a contradiction to the theorem. First we note that
φ(fd) can not be a unit since othervise there exists f ∈ F [x, y]fd such that
φ(fd)φ(f) = 1, i.e., φ(fdf) = φ(1), which by injectivity means that fd is a unit.
Therefore, φ(fd) = rfd′

n for a unit r and some non-negative integer n. Applying,
φ−1 gives that fd = r′φ−1(fd′)

n for some unit r′, by the discussion above applied
to φ−1 there exists a non-negative integer m such that up-to multiplication of
units φ−1(fd′) = fm

d , this implies that n = m = 1.

�

Exercise 4. Let F be an algebraically closed field.

(a) List the prime ideals of R = F [x, y]/(xy)
Hint: Consider the implications of a containment xy ∈ P , for a prime ideal P .
Consider the projections R → R/x and R → R/y and use that you know the
prime ideals of F [y] and F [x].

(b) Show that for all prime ideals p of R,Rp falls into three cases up to F -algebra
isomorphism, one which is a field, one which is a domain but not a field and one
of which is not a domain.

Proof. (a) The prime ideals of R = F [x, y]/(xy) corresponds to prime ideals inside
F [x, y] containing xy, these are (x) and (y) ( note if xy ∈ P for P prime
then either (x) ⊂ P or (y) ⊂ P ) and all prime ideals containing (x) and (y)
respectively. The latter are, for all a ∈ F , the ideals (x, y−a) and (x−a, y). To
see that the latter are really all, we consider R→ R/x and R→ R/y respectively
and we use the correspondence between prime ideals P of R above (x) and the
prime ideals of R/x ∼= F [y]. In the principal ideal domain F [y] every prime
ideal is generated by an irreducible polynomial f , since every polynomial f has
a root in F (since F is algebraically closed) we have f = (x− a).

(b) We have (F [x, y]/(xy))(x) ∼= F [x, y](x)/(xy)F [x, y](x) ∼= F [x, y](x)/(x)F [x, y](x) =
F [y]0 = F (y). Suppose that a 6= 0 then we have (F [x, y]/(xy))(x, y − a) ∼=
F [x, y](x,y−a)/(xy)F [x, y](x,y−a) ∼= F [x, y](x,y−a)/(x)F [x, y](x,y−a) since y is a unit.
But F [x, y](x,y−a)/(x)F [x, y](x,y−a) ∼= F [y](y−a). Finally, (F [x, y]/(xy))(x,y) is not
a domain since neither y nor x is a unit and xy = 0. I.e., up-to a linear coordinate
change we have Rp = F (y) a field, Rp = F [y](y−a) which is a domain but not a
field and Rp = (F [x, y]/(xy))(x,y) which is not a domain.

�

Exercise 5. Let M be an A-module, and let a be an ideal in A. Show that the
following are equivalent:

(a) M = 0,
(b) Mm = 0, for every maximal ideal m,
(c) Mp = 0, for every prime ideal p.

Moreover, suppose that M is a finitely generated A-module, under this assumption
prove that M = aM if and only if Mm = 0 for maximal ideals satisfying a ⊂ m.

Proof. . The implications a =⇒ b =⇒ c is obvious. Assume that M 6= 0 but
that Mp = 0, for every prime ideal p. Then there exists x 6= 0 ∈ M , in partic-
ular Ann(x) 6= A. Consider the inclusion Ax ↪→ M . Let m be a maximal ideal
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containing Ann(x). By assumption Mm = 0 and hence Amx ↪→ Mm is the zero
map, by exactness of localization we therefore must have Amx = 0, i.e., there exists
s ∈ A−m such that sx = 0. This is a contradiction since Ann(x) ⊂ m.

We have M = aM if and only if M/aM = 0 which by the exercise is equiva-
lent to (M/aM)m = 0 for every maximal ideal m of A. By the previous exercise
(M/aM)m ∼= Mm/aMm and the latter is zero iff Mm = aMm. If a is not contained
in the maximal ideal m then a contains a unit of Am and Mm = aMm. There-
fore, M = aM if and only if Mm = aMm for maximal ideals satisfying a ⊂ m, if
Mm = 0 for such ideals then the equality holds. Conversely, suppose a ⊂ m and that
Mm = aMm then obviously Mm = mMm and therefore Nakayamas Lemma applied
to the finitely generated Am-module Mm implies that Mm = 0.

�

Exercise 6. Let R be a ring.

(a) Let T ⊆ R a multiplicatively closed subset of R. Let q be a prime ideal of T−1R.
Let qc be the contraction of q under R→ T−1R. Prove that ht(q) = ht(qc).

(b) Let p be a prime ideal of R. Prove that ht(p) = dimRp.

Proof. The proof consists of the following steps based on the observation that both
heights and dimensions are defined in terms of chains of ideals.

(a) Prime ideals of T−1R are in 1-1 correspondence with prime ideals of R that do
not intersect T .

(b) Prime ideals of Rp are in 1-1 correspondence with prime ideals of R contained
in p.

�
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Exercise 1. Let S → R be a morphism of rings. Show that a prime
ideal p of S is the contraction of a prime ideal of R if and only if pec = p.

Hint: for one direction use ideas from the proof of “going-up” theorem

Exercise 2. Let R be a ring and I ⊂ R be an ideal. Prove that
the radical

√
I of I is an ideal. Prove that if there is a containment

I ⊂ P ⊂
√
I for a prime ideal P then P =

√
I.

Exercise 3. Let F be an algebraically closed field.
Let I, J be ideals of R = F [x1, ..., xn]. Prove that

√
I ⊂
√
J if and

only if Z(J) ⊂ Z(I).

Exercise 4. Let F be an algebraically closed field. LetR = F [x1, ..., xn]
and let I and J be ideals of R. Show that

(a) Z(I) ∪ Z(J) = Z(I ∩ J) = Z(IJ)
(b) Z(I) ∩ Z(J) = Z(I + J)

Exercise 5. Prove that Z = {(u3, u2v, uv2, v3) : u, v ∈ C} ⊂ C4 is an
algebraic set. Find I(Z).

Hint: make sure you have everything!

Exercise 6. (a) Let F be an algebraically closed field, andX ⊆ F n

an algebraic set with ideal I = I(X). Define the coordinate
ring A(X) of X to be F [x1, . . . , xn]/I. If X = Z(I) ⊆ F n,
and Y = Z(J) ⊆ Fm are algebraic sets with I = I(X) and
J = I(Y ), then a morphism f : X → Y is defined to be a
vector (h1, . . . , hm) of polynomials hi ∈ F [x1, . . . , xn], such that
for every a ∈ X, (h1(a), h2(a), . . . , hm(a)) ∈ Y .

Show that whenever there is a morphism f : X → Y of
algebraic sets as defined above there is a unique homomorphism
of rings λf : A(Y ) → A(X), such that the following diagram
commutes.

F [y1, . . . , ym]
yi 7→hi //

��

F [x1, . . . , xn]

��
A(Y )

λ // A(X)
1
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Here the vertical arrows are the quotient maps stemming from
the definition of A(X) and A(Y ) and the top horizontal map is
given by sending yi to hi(x1, ..., xn).

(b) With setup as above, show that if there is a homomorphism
λ : A(Y )→ A(X), then there is a morphism f : X → Y . such
that λ = λf . Furthermore, all choices of f are the same as
functions from the points of X to the points of Y .

(c) Compute the integral closure R1 of S1 := F [x, y]/(y2 − x3 − x2)
in the fraction field of S1.

(d) Let R1 and S1 be as above. Let S2 := F [x, y, z]/(x2 − y2z)
and denote by R2 the integral closure of S2 inside its field of
fractions (R2 was computed in lectures).
For i = 1, 2, define the conductor ideal Ii to be the ideal in Si
which is the annihilator of the Si-module Ri/Si. Calculate Ii
for i = 1, 2.

(e) With the notation as above, let Yi → Xi be the morphisms
of algebraic sets induced by the inclusion Si → Ri for i = 1, 2.
Assuming that k = C, draw the real points of the Xi. Draw also
in Z(Ii + I(Xi))

1. What do you notice about Z(Ii + I(Xi)) ⊂
Xi?

Exercise 7. Let R be a ring which is the quotient of a polynomial ring
over an algebraically closed field F by a radical ideal. This naturally
determines an algebraic set X whose co-ordinate ring is R. Noether
normalisation says there is a subring S ⊂ R such that S ∼= F [t1, ..., tr]
and R is an integral extension of S. Give a geometric interpretation of
Noether normalisation. That is, the inclusion S → R corresponds to a
morphism φ of algebraic sets. Prove that the fibres of φ are finite, i.e.,
the preimage of any point in F r under φ consis of a finite set of points
in X.

Exercise 8. Let F be an algebraically closed field.
Let X be an algebraic set in F [x1, ..., xn] with I(X) = I. Prove that

points of F n contained in X are naturally in bijection with maximal
ideals of F [x1, ..., xn]/I.

Exercise 9. Let F be an algebraically closed field.
Calculate the Krull dimension of the ring

F [w, x, y, z]/(x2 − wy, y2 − xz, wz − xy).

1This is equal to the subset of Xi in kn which is the vanishing locus of the
functions in Ii
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Exercise 1. Let R = C[x, y, z] and I = (xy − z2, x2 − y2). Identify
V(I) ⊂ C3. You should see that this naturally breaks into smaller
algebraic sets. What are the ideals of each piece? How do they relate
to I?

Proof. A point (p, q, r) ∈ C3 is in V(I) if pq − r2 = 0 and p2 − q2 =
(p − q)(p + q) = 0. So either p = q or p = −q. In the first case,
the first equation becomes 0 = p2 − r2 = (p − r)(p + r) and so either
p = r or p = −r. In the second case, the first equation becomes
0 = −p2 − r2 = (p− ir)(p+ ir) and so r = ip or r = −ip. Therefore
V(I) = {(p, p, p) : p ∈ C} ∪ {(p, p,−p) : p ∈ C} ∪ {(p,−p, ip) : p ∈ C}

∪{(p,−p,−ip) : p ∈ C}
The ideals of these four pieces are (x − y, x − z), (x − y, x + z),

(x + y, x − iz) and (x + y, x + iz) respectively. Each is a prime ideal
which strictly contains the ideal I.

�

Exercise 2. Let F be an algebraically closed field. Let U and V be
algebraic sets in F n.
(a) Prove that I(U ∪ V ) = I(U) ∩ I(V )
(b) By considering U = V(x2−y) and V = V(y) for the ideals (x2−y)

and (y) in F [x, y], show that it need not be true that I(U ∩ V ) =
I(U) + I(V ).

(c) Prove that in general,
√
I(U) + I(V ) = I(U ∩ V ).

Proof. (a) Suppose f ∈ I(U ∪V ). Then f(P ) = 0 for all P ∈ U and all
p ∈ V . So f ∈ I(U) and f ∈ I(V ). Conversely, suppose f ∈ I(U)
and f ∈ I(V ). Then f(P ) = 0 for all P ∈ U and all P ∈ V .
Therefore f ∈ I(U ∪ V ).

(b) I(U) = (x2 − y), I(V ) = (y) and I(U ∩ V ) = I({(0, 0}) = (x, y).
But I(U) + I(V ) = (x2, y).

(c) This follows from a question on the previous exercise sheet and
the Nulstellensatz. In particular, let I = I(U) and J = I(V ), so
V(I) = U and V(J) = V . By the last exercise sheet I(U ∩ V ) =
I(V(I + J)). But by the Nulstellensatz, I(V(I + J)) =

√
I + J .

1
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�

Exercise 3. Let F be an algebraically closed field. Calculate a primary
decomposition for the ideals:
(a) (x4 − 2x3 − 4x2 + 2x+ 3) ⊂ F [x]
(b) (x2, xy2) ⊂ F [x.y]
(c) (x2, xy, xz, yz) ⊂ F [x, y, z]

Proof. (a) Factorising the polynomial, we get:

x4 − 2x3 − 4x2 + 2x+ 3 = (x− 3)(x− 1)(x+ 1)2

Therefore the ideal is the intersection of the primary factors (x −
3),(x − 1) and (x + 1)2. These are primary because their radicals
are maximal.

(b) A primary decomposition is:

(x2, xy2) = (x2, y2) ∩ (x)

The first factor is primary as it has a radical which is a maximal
ideal, while the second is prime.

(c) It may help to first calculate the irreducible components of V(I)
where I = (x2, xy, xz, yz).
If (a, b, c) is a point of F 3 where a2, ab, ac, bc all vanish, the first
thing we can deduce from a2 = 0 is that a = 0. Hence ab = ac = 0
gives us no new information, and bc = 0 implies that at least one
of b and c is zero. So two elements of the primary decomposition
will have associated primes (x, y) and (x, z). Geometrically these
components consist of the z-axis intersected with the y-axis. When
intersecting these two ideals we get:

(x, y) ∩ (x, z) = (x, yz)

Now take a look to see if we can make I by intersecting something
with this and spot that (x, y, z)2 does the job. Since the radical
of (x, y, z)2 is (x, y, z) which is maximal, we conclude that I =
(x, y) ∩ (x, z) ∩ (x, y, z)2 is a primary decomposition for I.

�

Exercise 4. Let S ⊆ R be a multiplicative subset and let Ii be finitely
many ideals in R. By extension and contraction of ideals we shall mean
extension and contraction via the natural morphism R→ S−1R. Prove
the following:
(a) (

⋂
i Ii)

ec =
⋂

Ieci
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(b) (
⋂

i Ii)
e =

⋂
Iei

(c) S−1(R/I) ∼= S−1R/Ie , where the localization on the left is local-
ization of an R-module

(d) If I is primary, and u 6∈
√
I, then (I : u) = I

(e) For an ideal I of a ring R admitting a finite primary decomposition
let I = ∩Ii be such a primary decomposition, show the following:
(a) Ie =

⋂
p⊇Ii I

e
i

(b) Iec =
⋂

p⊇Ii Ii
(f) From now, let R = F [x, y] for a field F , I1 = (x), I2 = ms where

m = (x, y) and s > 1 is some integer, I3 = (x, y − 1)2 and p ⊆ R
is a prime ideal for which we set S = R \ p.
(a) if p = (x), then S−1(R/(I1 ∩ I2 ∩ I3)) ∼= F (y) as an R-module
(b) if p = (x, y), then S−1(R/(I1 ∩ I2 ∩ I3)) ∼= S−1R/(Ie1 ∩ Ie2)
(c) if p = (x, y), compute the smallest integer n such that

(
x
1

)n ∈
S−1(R/(I1 ∩ I2 ∩ I3)) is zero.

Proof. (a) (
⋂

i Ii : u) =
⋂

i(Ii : u) by Prop 7.5.19.(1) , and then we
use Prop 6.3.9.(2), but there’s still to prove

⋃
u∈S
⋂

i(Ii : u) =⋂
i

⋃
u∈S(Ii : u), for which we have to show that if a ∈ (Ii, ui) for

diffferent ui ∈ S, then there is a common u, but for that we can
take u =

∏
i ui

(b) By Prop 6.3.9.(1) two ideals of S−1R are equal if their contrac-
tions are equal. This follows from the previous point using that
contraction commutes with intersection.

(c) It is not difficult to see that Ie is naturally isomorphic via a unique
isomorphism with S−1I, now the result follows from applying the
exact functor S−1(_) to the exact sequence:

0→ I → R→ R/I → 0

(d) t ∈ (I : u)⇒ tu ∈ I ⇒ t ∈ I, where in the last implication we used
that no power of u is in I

(e) Let I = ∩Ii be such a primary decomposition.
(a) From a previous exercise Ie =

⋂
Iei , but for Ii not contained in

p we have Iei = S−1R.
(b) Since S−1Rc = R it follows from above that Iec =

⋂
p⊇Ii Ii

(f) We begin by calculating a set of generators of I1∩ I2∩ I3. We have
I1 ∩ I2 = (xkys−k)k≥1. I3 = (x2, x(y − 1), (y − 1)2). Therefore,

I1 ∩ I2 ∩ I3 = ((xkys−k)k≥2, x(y − 1)ys−1).

With this at hand it is easy to solve the exercise:
(a) We have

S−1(R/(I1 ∩ I2 ∩ I3) = (S−1R)/(I1 ∩ I2 ∩ I3)
e = (S−1R)/(I1)

e,
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where the last equality comes from that y and y − 1 are both
units in S−1R and hence
(I1 ∩ I2 ∩ I3)

e = ((xkys−k)k≥2, x(y − 1)ys−1)e = (x)e.

Finally the last quotient is just the residue field of S−1R, so it
is F (y).

(b) We have that y − 1 is a unit in S−1R, hence (I1 ∩ I2 ∩ I3)
e =

((xkys−k)k≥2, x(y − 1)ys−1)e = ((xkys−k)k≥1)
e = (I1 ∩ I2)

e,
which is what we wanted to prove (here we use the previous
exercise b) ).

(c) S−1(R/(I1 ∩ I2 ∩ I3) = (S−1R)/(Ie1 ∩ Ie2), so
xs

1
is zero as xs ∈

I1∩I2. For j < s we have xj 6∈ I1∩I2, and Iec1 ∩Iec2 = I1∩I2 so
it follows that xj

1
6∈ Ie1 ∩ Ie2 . Therefore s is the smallest integer

n such that (x
1
)n = 0.
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