
RINGS AND MODULES 2020 - PROBLEM SHEET 1

There is one exercises in this problem sheet that will be part of the
first homework. The solution has to be written in Latex and handed in
as a pdf file on Moodle. The first homework is due on Sunday October
4 at 18:00. The exercise will be denoted by the symbol ∗∗ next to the
exercise number.

Exercise 1. Let R = k[x, y]. We make N = R ⊕ R into a two-sided
R-module via f · (p, q) = (fp, fq) (direct sum of R with itself).

(1) Let M be the submodule generated by the element (x, y) ∈
R ⊕ R. Is N/M ∼= R as R-modules? Hint: R is a free R-
module.

(2) Now let M be the submodule generated by the two elements
(x, 0) and (0, y) of R⊕R. Is N/M ∼= R? Hint: Torsion

Recall that a R-module M is simple if the only submodules N ⊂M
are N = 0 and N =M .

Exercise 2. **

(1) Show that any simple left R-moduleM is cyclic, i.e., isomorphic
to the R-module Rm defined in the lecture, for some m ∈M .

(2) Let M be a left R-module and let m ∈ M be an element of
M . Define Ann(m) ⊂ R to be the set of elements r ∈ R such
that rm = 0. Show that Ann(m) is a left ideal of R and that
the cyclic left R-module Rm is isomorphic to the left R-module
R/Ann(m).
Hint: Prove both statements by defining a morphism of R-
modules R→ Rm and investigate its kernel.

(3) Let M be a simple k[x]-module. Prove that M ∼= k[x]/(f)
where f is an irreducible polynomial in k[x] and (f) denotes
the ideal generated by f .

(4) Which of the following Z-modules are simple?
(a) Z
(b) Z/6Z
(c) Z/7Z

Exercise 3. Let R be a ring, M a left R-module and m ∈M .
1
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(a) In the previous exercise you proved that Ann(m) is a left ideal
of R. Give an example to show that Ann(m) might not be a
two sided ideal of R.

(b) Define Ann(M) to the set of elements r ∈ R such that rm = 0
for all m ∈M . Prove that Ann(M) is a two sided ideal of R.

Exercise 4. Let k be an algebraically closed field. In this exercise we
define a non-commutative ring D(k[x]/k) of differential operators on
k[x] over k. The non-commutative ring D(k[x]/k) is a sub k-algebra
(which we will abbreviate as D) of Homk(k[x], k[x]) generated by the
element ∂ and x where ∂ sends a polynomial p(x) to its algebraic de-
rivative with respect to x and the element x ∈ Homk(k[x], k[x]) is
multiplication by x.

(a) Show that the following relation hold in D: for any polynomial
P (x) ∈ k[x],

∂P (x) =
∂

∂x
P (x) + P (x)∂.

where ∂
∂x
P (x) denotes the formal derivative of P (x) with respect

to the variable x. [Hint: Prove it by induction on the degree of
P(x) and use linearity.]

(b) Show that a basis of D as a k-vector space is given by the
elements xi∂j, where (i, j) ∈ (Z≥0)

2 if the characteristic of k is
zero and i ∈ Z and j ∈ {0, 1, . . . , p− 1} if the characteristic of
k is p > 0.
[Hint: Use part (a) to show that an element of the form ∂kxs

can be written in terms of the proposed basis.]
(c) Now we consider a quotient of the free k-algebra on two gen-

erators. Dform = k〈u, v〉/(uv − vu − 1). Show that there is a
well defined ring homomorphism φ : Dform → Endk(k[x]) send-
ing u → ∂ and v → x. Show that φ is surjective onto D and
prove that φ defines an isomorphism between D and Dform if
and only if the characteristic of k is zero.

(d) Determine the submodules of k[x] as a left D-module (with left
D-module structure given by the inclusion D ⊂ Endk(k[x])) in
the case when k has characteristic zero

(e) Show that D has no two sided non-trivial ideals if k has char-
acteristic zero. I.e., show that D is simple.

(f) Now suppose the characteristic of k is 2. Determine the left
submodules of k[x] as a D-module in this case.
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Exercise 5. Let
0→M → N → N/M → 0

be a short exact sequence of modules over a ring R. For each of the
following assertions either prove that the assertion holds or provide a
counterexample.

(a) If M and N/M are finitely generated, then N is too.
(b) Conversely, assume that N is finitely generated. Then N/M is

finitely generated.
(c) Assume that N is finitely generated. Then M is finitely gener-

ated.

Exercise 6. (a) Let
0→M → N → N/M → 0

be a short exact sequence of modules over a ring R.
For each of the following assertions either prove that the asser-
tion holds or provide a counterexample.
• If N is free, then N/M is free.
• If N is free, then M is free.
• If M and N/M are free, then N is free.

(b) Let R = Z. Is Z[x]/(x2 + 1)Z[x] a free R-module? How about
Z[x]/(2x2)Z[x]?
Is Q a free R-module? Is it finitely generated?
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There is one exercise in this problem sheet that will be part of the
second homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The second homework is due on Sunday
October 11 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. Answer the following questions. Provide an explanation
by a proof or a counterexample.

(1) Suppose that R is a noetherian ring. Let S ⊂ R be a subring?
Is it true that S is noetherian?

(2) Let R be an Artinian ring. Is every prime ideal of R maximal?

Exercise 2. Let R be the ring of 2 × 2 matrices
(
a b
0 c

)
such that

a ∈ Z and b, c ∈ Q.

(1) For each n ∈ N define In =

{(
0 m

2n

0 0

)
|m ∈ Z

}
. Verify that

each In is a left ideal of R, and using the chain I1 ⊂ I2 ⊂ . . .
verify that R is not left Noetherian.

(2) Show that every right ideal of R is finitely generated, and de-
duce that R is right-Noetherian.

Exercise 3. Let R be a Noetherian ring. Are the following rings
Noetherian? Are they Artinian?

(1) R[x, 1
x
] := {

∑n
i=−m aix

i : ai ∈ R,m, n ∈ N}
(2) R[x1, x2, x3, ...]
(3) R[[x]], the ring of formal power series1 with coefficients in R

Hint: For each n ∈ N, let In := {an :
∑∞

i=n aix
i ∈ I}. Then

adapt the proof of the Hilbert basis theorem.
(4) C1(R), the ring of continuous functions R→ R with pointwise

operations.
(5) R[x]/(x− 1)2xR[x].

1R[[x]] = {
∑∞

i=0 aix
i : ai ∈ R}, where multiplication and addition are defined

formally, as what you think they should be. These are purely formal objects: there
is no requirement for any kind of convergence.

1
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Exercise 4. ** Show that the following holds for a R-modulue M of
finite length l(M) (i.e., an R-modulue M that admits a composition
series of finite length)

(1) If there is a short exact sequence:

0 M ′ M M ′′ 0

then l(M) = l(M ′) + l(M ′′).
(2) If N ⊂M is a proper submodule then l(N) < l(M).
(3) Use 2 to show that any strict chain of submodules in M (not

necessary a maximal chain, i.e., not necessary composition se-
ries) has length ≤ l(M). Conclude that a module M is of finite
length if and only if M is both Notherian and Artinian

Exercise 5. Let R be a ring. Let M be a finitely generated module
over R and let f :M →M be an R-module homomorphism.

(1) Suppose that R is a Noetherian ring.
(a) Does injectivity of f implies surjectivity?
(b) Does surjectivity of f implies injectivity?
(c) What happens if R is not necessarily Noetherian?

(2) Suppose that M is a module of finite length, show that f is
injective iff f is surjective.

Exercise 6. This exercise is about semi-simple modules.

Definition 6.1. A module M over a ring R is semi-simple, if it is
a finite sum of its simple submodules. That is, M =

∑d
i=1Mi, where

Mi ≤R M are simple. A ring R is semi-simple if it is semi-simple as
a left R-module.

(1) Prove that M is semi-simple if and only if M =
⊕

Mi for some
Mi ≤R M simple. I.e., prove that if M =

∑d
i=1Mi where d ∈ N

is minimal with this property, then Mi ∩Mj = 0 for all i 6= j.
(2) In this exercise we prove Maschke’s theorem. Let G be a finite

group, and k a field such that (|G|, char(k)) = 1. Then k[G] is
semi-simple.
(a) For any ring R and any R-module M and any submodule

N show that M = N ⊕ L for some submodule L if and
only if there exists an element φ ∈ HomR(M,N) such that
φ(n) = n for all n ∈ N . Hint: Use the universal property
of direct sums

(b) LetM be any k[G]-module which has finite dimension over
k. Show that for any submodule N there exists an element
φ ∈ Homk[G](M,N) such that φ(n) = n. Hint: Take
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ξ ∈ Homk(M,N) such that ξ(n) = n for all n ∈ N . Show
that φ defined by φ(x) = 1

|G|
∑

g∈G gξ(g
−1x) is k[G]-linear.

(c) Conclude the proof.
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There is one exercise in this problem sheet that will be part of the third homework.
The solution has to be written in Latex and handed in as a pdf file on Moodle. The
third homework is due on Sunday October 18 at 18:00. The exercise will be denoted
by the symbol ∗∗ next to the exercise number.

Exercise 1. Make the following computations.

(1) Compute a presentation of the Z-module

M := Z(2, 9) + Z(4, 3) + Z(6, 8) ⊆ Z⊕ Z.

(2) Let R = Mat2×2(Z) be the ring of 2× 2-matrices over Z. Compute a presen-
tation of the left R-module

M := R

(
2 0
0 0

)
+R

(
0 3
2 0

)
⊆ R.

Exercise 2. Do the following:

(1) Calculate the Smith normal form of the following matrix over Z.
1 9 1
−2 −6 0
2 −8 2
−1 1 5


(2) Write down the invariant factor decomposition of the Z-module with gener-

ators e1, e2, e3, e4 and relations

e1 − 2e2 + 2e3 − e4 = 0
9e1 − 6e2 − 8e3 + e4 = 0

e1 + 2e3 + 5e4 = 0

Exercise 3. ** Let R = Q[x]. Determine the invariant factor decomposition of the
R-module with generators e1, e2 and relations

x2e1 + (x+ 1)e2
(x3 + 2x+ 1)e1 + (x2 − 1)e2

.

Exercise 4. Give an example of an infinitely generated Z-module which is not an
(infinite) direct sum of copies of Z and Z/nZ for various choices of n. Hint: Revisit
the last exercise on the first exercise sheet.

Exercise 5. (1) Find a 2× 2 matrix with coefficients in Z[X] that is not equiv-
alent to a diagonal matrix. The equivalence that we consider here is the one
introduced in the lectures, that is, up to left or right multiplication by an
invertible matrix.

(2) Find also a finitely generated module over Z[X] that is not isomorphic to a
direct sum of cyclic modules.

Exercise 6. Set M = Z⊕ Z/2Z, and let α : Z⊕ Z/2Z→M be an isomorphism.
1
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(1) Show that α(0 × Z/2Z) = Z/2Z, show in general that if N is an R-module
then an automorphism φ of N takes Tors(N) to Tors(N) bijectively.

(2) show that α(Z× 0) is not equal necessarily to Z× 0

Exercise 7. Show that an exact sequence:

0 M N L 0

of R-modules induces an exact sequence:

0 Tors(M) Tors(N) Tors(L) ,

but not necessarily an exact sequence:

0 Tors(M) Tors(N) Tors(L) 0 .
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There is one exercise in this problem sheet that will be part of the
third homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The third homework is due on Sunday
October 25 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. Let M ∈ Mat(n, k) for a field k. Show that there is a basis
with respect to which M is block diagonal with blocks of the form

0 0 ... 0 a0

1 0
. . . 0 a1

0
. . . . . . . . . ...

0 0
. . . 0 ad−2

0 0 ... 1 ad−1


Hint: M acts naturally on some n-dimensional k-vector space V .

Consider V as a k[x]-module via f · v = f(M)(v).

Exercise 2. Let R be a commutative ring, and let M be a R-module.
(1) Show that HomR(M,−) is left exact. That is for any exact

sequence of R-modules:

0 N ′ N N ′′ 0 ,

there is an induced exact sequence:

0 HomR(M,N ′) HomR(M,N) HomR(M,N ′′) .

(2) Give an example of a ring R and a R module M such that
HomR(M,−) is not right exact. That is give an example of a
surjection of R-modules N → N ′′ such that the induced mor-
phism HomR(M,N)→ HomR(M,N ′′) is not surjective.

Exercise 3. ** Extend the complex below to a free resolution F• of the
module k := R�(x, y), where R = k[x, y]. Then compute ExtiF•(k,R)

for each i, and note that you get the same as for the resolutions in
Example 4.4.4. in the printed course notes.

R⊕R⊕R R k
1
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The first morphism is defined by sending a basis to the following
elements:

(1, 0, 0)→ x, (0, 1, 0)→ y, (0, 0, 1)→ x + y

and the second morphism is the natural surjection R→ k.

Exercise 4. Let 0 → M
i→ Z

p→ N → 0 be an exact sequence of
R-modules.
(a) A section of p is a morphism s : N → Z such that p◦s = idN . Show

that p admits a section if and only if there exists an isomorphism
Φ : Z ∼= M ⊕N and a commuting diagram with exact rows:

0 M Z N 0

0 M M ⊕N N 0

i p

e

Φ

π

(b) A section of i is a morphism q : Z →M such that q◦i = idM . Show
that i admits a section if and only if there exists an isomorphism
Φ : Z ∼= M ⊕N and a commuting diagram with exact rows:

0 M Z N 0

0 M M ⊕N N 0

i p

e

Φ

π

We say that a short exact sequence satisfying any of these conditions
is split exact.

Exercise 5. Consider the ring Z[
√
−5].

(a) Is the ideal (2, 1 +
√
−5) a free Z[

√
−5]-module?

Hint: Consider the element 6 ∈ Z[
√
−5].

(b) Prove that (2, 1 +
√
−5) is a projective Z[

√
−5]-module.

Hint: Prove that (2, 1 +
√
−5) is projective by showing that it is

a direct summand of a free module. To do this define the obvious
surjection q : Z[

√
−5]2 → (2, 1+

√
−5) and examine the assignment

g : (2, 1 +
√
−5)→ Z[

√
−5]2 defined by g(x) = 2xe1 − 1−

√
−5

2
xe2.
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There is one exercise in this problem sheet that will be part of the
fifth homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The fifth homework is due on Sunday
November 1 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. In this exercise we prove the the two 4-lemmas. To this
end, suppose that we have a commuting diagram with exact rows:

A B C D

A′ B′ C ′ D′

f1

a b

f2

c

f3

d

f ′
1 f ′

2 f ′
3

(a) Show that if a and c are epimorphisms and d is a monomorphism
then b is an epimorphism.

(b) Show that if b and d are monomorphisms and a is an epimor-
phism then c is a monomorphism.

Exercise 2. Prove the following.
(a) If

0 Mn . . . M0 0

is an exact sequence of finitely generated modules over an Ar-
tinian and Notherian ring R, then 0 = (−1)i lengthMi

(b) Let R = k[ε] denote (as usual) the quotient k[x]/(x2) where k
is a field. Let M be the R-module R/(x). Show that M has no
finite resolution by finitely generated free modules.

(c) In general if R is Artinian and Noetherian, and lengthR -
lengthM , prove that M has no finite resolution by finitely gen-
erated free modules.

(d) Prove that over a PID every finitely generated module has a
finite free resolution.

Exercise 3. Prove the following.
(a) Show that any finitely generated module over a semi-simple ring

is semi-simple
(b) Show that any finitely generated module over a semi-simple ring

is projective
1
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(c) Deduce that any finitely generated module over k[G] is projec-
tive, if char k - |G|

(d) What are the Ext-groups then for finitely generated k[G]-modules?

Exercise 4. **1

(a) Set k = Fp and G = Z/pZ. Find all the submodules (i.e. ideals)
of R = k[G]. Hint: Over a field of positive characteristic p we
have ap + bp = (a+ b)p.

(b) For p = 2, let x denote a generator of G, set M = (x + 1).
Compute all ExtiR(M,M).

1as modules over k[G] correspond to representations of G over k, we see that
something is really wrong for Fp[Z/pZ] compared to the case of exercise 3.
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There is one exercise in this problem sheet that will be part of the
sixth homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The sixth homework is due on Sunday
November 8 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. In this exercise we define injective modules and prove
Baer’s criterion. We say that a left R-module Q is injective if it satis-
fies the following universal property:
Whenever we have a monomorphism X → Y and a homomorphism
g : X → Q of left R-modules, then there exists a left R-module homo-
morphism h : Y → Q making the following diagram commute:

0 X Y

Q

g

f

h

We will prove the following:

Theorem 1.1. (Baer’s Criterion) Suppose that the left R-module Q
has the property that if I is any ideal of R and f : I → Q is a R-module
homomorphism, there exists an R-module homomorphism F : R → Q
extending f . Then Q is an injective R-module.

We will prove Baer’s criterion in several steps. Assume that the
R-module Q satisfies Baer’s criterion.

(a) Show that if X = Ra and Y = Rb are both cyclic modules and
X → Y is a monomorphism and we are given a homomorphism
g : X → Q, then there exists a left R-module homomorphism
h : Y → Q making the appropriate diagram commute. Hint:
Consider the subset of R defined by I = {r ∈ R : rb ∈ X}

(b) Prove that ifX, Y are finitely generated and we have a monomor-
phism X → Y and a homomorphism g : X → Q of left
R-modules, then there exists a left R-module homomorphism
h : Y → Q making the appropriate diagram commute. Hint:
Prove the case when Y = X + Rb for some b /∈ X by defining
the ideal I of R by I = {r ∈ R : rb ∈ X}

(c) Use Zorn’s Lemma to conclude the proof.
1
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Axiom 1.2. (Zorn’s Lemma)If (P ,≤) is a partially ordered
set with the property that every totally ordered subset (often
called a chain) has an upper bound, then there exists a maximal
M ∈ P . (that is, for N ∈ P , we have M 6≤ N)

Exercise 2. Use Baer’s Criterion to show that Q is an injective Z-
module.

Exercise 3. ** Let R = k[x, y] be the polynomial ring in two variables
over an algebraically closed field k. Recall that an ideal m in a ring R
is maximal if it is not properly contained in any other proper ideal of
R. In this exercise you can use freely the Theorem below, which will
be proven later in the course.

Theorem 3.1 (The weak Nullstellensatz in two variables). Let k be
an algebraically closed field. Every maximal ideal m in the ring k[x, y]
is of the form m = (x− a, y − b) for some a, b ∈ k.

(a) if M is a finite length module over R, then the quotients of its
composition series are of the form R/(x− a, y − b).

(b) If M is a module such that Ann(M) ⊇ (x − a, y − b), then
AnnExti(M,N) ⊇ (x− a, y − b) for every R-module N .
Hint: consider the maps M 3 m 7→ (x − a)m ∈ M and M 3
m 7→ (y − b)m ∈M . Apply then ExtiR(_, N).

(c) Show that Exti(R/(x− a, y− b), N) is of finite length where N
is any finitely generated module over R.
Hint: use the previous point

(d) Show that for each finite length module M and for each finitely
generated module N over R, ExtiR(M,N) has finite length.
Hint: use the long exact sequence for a compostion series

Exercise 4. R = k[x, y] as in the previous exercise (k is algebaically
closed). We say that a finite length module is supported at (x−a, y−b)
if only R/(x − a, y − b) appears as factors in the composition series.
Show that if M is a finite length module supported at (x − a, y − b),
then ExtiR(M,R/(x− a′, y − b′)) = 0, where (a, b) 6= (a′, b′).

Exercise 5. For to short exact sequences:

0 M1 M2 M3 0

and
0 N1 N2 N3 0

we say that there is a map between them if there exists morphisms
fi : Mi → Ni, for 1 ≤ i ≤ 3 and a commuting diagram:
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0 M1 M2 M3 0

0 N1 N2 N3 0

f1 f2 f3 .

Show that whenever there is a map between two short exact se-
quences, then there is an induced map between long exact sequences
of Ext-modules, making the suitable diagram commute.

Exercise 6. Show using the long exact sequence of cohomology that if
Ext1R(M,N) = 0, then every extension 0 // N // K // M // 0
splits.
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There is one exercise in this problem sheet that will be part of the
seventh homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle. The seventh homework is due on Sunday
November 15 at 18:00. The exercise will be denoted by the symbol ∗∗

next to the exercise number.

Exercise 1. ** Let R = k[x, y] and consider the R-module M =
k[x, y]/(x, y). Consider the free resolution:

0 // P2 = R
f2 // R⊕R = P1

f1 // R = P0
f0 // M // 0

1 � //
(
y,−x

)
(1, 0) � // x

(0, 1) � // y

Set M = N . Consider
(a) φ1 : P1 → N given by φ1(a, b) = f0(a),
(b) φ2 : P1 → N given by φ1(a, b) = f0(b).
Determine the isomorphism classes of the middle module of the Yoneda
extension associated to [φi] ∈ Ext1R(M,N) in Theorem 4.6.5 in the
course notes.
Note: these modules are coker

(
P1

(φi,f1)−→ N ⊕ P0

)
for i = 1, 2 as in the

sequence 6.5.i in the above mentioned theorem, in the course notes.

Exercise 2. Let R = k[x, y].

(a) Show that Ext1
(
(x, y), R

/
(x, y)

)
6= 0.

(b) Construct a finitely generated module M such that Tors(M) ⊆M
is not a direct summand.

Note: Tors(M) ⊆ M is always a direct summand if R is a PID by
the fundamental theorem for finitely generatid modulues over PIDs.

Exercise 3. Let R be a ring and letM,K,L and N be R-modules. As-
sume that ExtiR(M,N), ExtiR(K,N) and ExtiR(L,N) have finite length
and that there exists integers r, s such that they are all zero for all
i < r and all i > s. Show that if

0 // K // M // L // 0
1
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is a short exact sequence, then

s∑
i=r

length(−1)i ExtiR(M,N) =

s∑
i=r

length(−1)i ExtiR(K,N) +
s∑
i=r

length(−1)i ExtiR(L,N).

Exercise 4. Set R = Z
[Z/2Z] ∼= Z[x]

/
(x2 − 1). We show properties

exhibiting that R is different than both F2

[Z/2Z] and C
[Z/2Z]:

(a) Show that R contains no simple submodules and hence show that
it it is not semi-simple.

(b) Show that R(1 + x) ⊆ R is not projective by showing that

Ext1R(R(1 + x), R(1− x)) ∼= R
/
2R +R(1 + x) 6= 0.

Exercise 5. Let R be an integral domain, and let K be its fraction
field.
(a) Prove that if f ∈ R is a non-zero element, then Ext1R(R/(f), K) =

0.
(b) More generally, prove that if f1, . . . , fn is a sequence of elements

such that for every 1 ≤ i ≤ n the multiplication by fi is injective
on R/(f1, . . . , fi−1) then

Ext1R(R/(f1, . . . , fn), K) = 0.
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There is one exercise in this problem sheet that will be part of the eight homework.
The solution has to be written in Latex and handed in as a pdf file on Moodle.
The eight homework is due on Sunday November 22 at 18:00. The exercise will be
denoted by the symbol ∗∗ next to the exercise number.

Exercise 1. ** Show that x3 + y7 ∈ k[x, y] is irreducible.
Hint: Use the consequence of Gauss’s theorem saying that for a unique factorisation
domain R and a primitive polynomial f ∈ R[t], we have that f is irreducible in
Frac(R)[t] iff it is irreducible in R[t]

Exercise 2. Let R = k[x, y, z]. Show that (xz3 + yz3− y2z2 + xyz− xy) is a prime
ideal of R.
Hint: Use Eisenstein’s Criterion

Exercise 3. Solve the following exercises:

(a) Consider the polynomial f = X3Y +X2Y 2 + Y 3 − Y 2 −X − Y + 1 in C[X, Y ].
Write it as an element of (C[X])[Y ], that is collect together terms in powers of
Y, and then use Eisenstein’s criterion to show that f is prime in C[X, Y ].

(b) Let F be any field. Show that the polynomial f = X2 + Y 2− 1 is irreducible in
F[X, Y ], unless F has characteristic 2. What happens in that case?

Exercise 4. Solve the following exercises:

(a) Prove that R := C[x, y, z]/(xy − z2) is a domain. Calculate the transcendent
degree over C of the fraction field of R.

(b) Calculate the dimension of the ring Z[x].
(c) Prove that every Artinian ring has dimension 0.
(d) Compute the dimension of the ring Z[x]/(4, x2).

Exercise 5. Show the following:

(a) Prove that the only prime ideal of height zero in a domain is the ideal (0).
(b) Prove that a prime ideal of height 1 in a UFD is principal.
(c) Compute the prime ideals of height zero in R[x, y]/(xy).

Hint: Recall that there is a 1-1 correspondence between the prime ideals R con-
taining I and the prime ideals of R/I.

Exercise 6. Show the following:

(a) Let F ⊂ L be a field extension, and suppose a1, ..., an are elements of L which
are algebraically independent over F . Prove that F (a1, ..., an) is isomorphic to
the fraction field of the polynomial ring F [x1, ..., xn].

(b) Let F ⊂ L be a field extension. Show that a subset of L is a transcendence
basis for L/F if and only if it is a maximal algebraically independent set. As a
consequence show that a transcendence basis exists for any field extension L/F .

Exercise 7. Prove that if F ⊆ K ⊆ L are field extensions such that trdegF L <∞,
then trdegF L = trdegF K + trdegK L
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There is one (sub)-exercise in this problem sheet that will be part of the ninth
homework. The solution has to be written in Latex and handed in as a pdf file on
Moodle. The ninht homework is due on Sunday November 29 at 18:00. The exercise
will be denoted by the symbol ∗∗ next to the exercise number.

Exercise 1 (Nakayama’s Lemma). Let R be a ring and let M be a finitely generated
R-module. Show the following:

(a) Let I be an ideal of R such that IM = M . Then there exists x ∈ 1 + I such
that xM = 0.

(b) Suppose now that the ring R is local, i.e., that there is a unique maximal ideal
m of R. Suppose that mM = M , show that this implies that M = 0

(c) Show that (removing the previous assumption on R being local) that if there
is an ideal I ⊂ nil(R), where nil(R) is the nilradical of R, such that IM = M ,
then this implies that M = 0.

Hint: Prove that in b, c the element x, whose existence is assured by a, in fact is
invertible.

Exercise 2. Let R be a local ring which is an integral domain but not a field, and let
F be the fraction field of R. Show that F is not finitely generated as an R-module.
(After a few more lectures, you will be able to remove the assumption that R is
local.)

Exercise 3. Let Fq be the finite field with q elements. Suppose that R is a quotient
of Fq[x1, ..., xn]. Prove that there is a subring S ⊂ R such that S ∼= Fq[t1, ..., tr] and
R is integral over S.

Exercise 4. Let R = Fq[[t]] be the ring of power-series in the variable t over the
field Fq. As a set, R is the set of power-series f =

∑
n∈N ant

n with coefficients
an ∈ Fq. For two such power series,

∑
n∈N ant

n and
∑

n∈N bnt
n, one defines the

addition to be the power-series
∑

n∈N(an+ bn)t
n and multiplication to be the power-

series
∑

n∈N(
∑n

k=0 akbn−k)t
n Show the following:

(a) If f ∈ R − (t), then f is invertible (and hence R is a local ring with maximal
ideal (t)).

(b) A formal Laurent series over the field Fq is defined in a similar way to a formal
power series, except that we also allow finitely many terms of negative degree
That is series of the form f =

∑
n∈Z ant

n where an = 0 for all but finitely
many negative indices n. Define a natural ring structure on this set and show
that with this ring structure the ring of formal Laurent series over Fq (usually
denoted Fq((t))) is equal to the fraction field of R.

(c) Show that trdegFq
(Frac(R)) is infinite.

Hint: show that Fq(t1, . . . , tr) is countable, and R is not
(d) Show that dimR = 1 and hence show that Thm 5.1.11 in the course notes does

not work with not finitely generated algebras
1
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Exercise 5. Show the following:

(a) If R is a domain with dimR = 0, then R is a field.
(b) We say that a ring R is reduced if there are no nilpotent elements in R. I.e., if

r ∈ R is such that rn = 0 then r = 0. Give an example of a reduced ring R of
dimension zero which is not a field.

Exercise 6. ** You should only hand in solutions to c, d and e. In proving points
points c, d and e below you may freely use the results in a, b.
Let R be an Artinian ring. Recall from Exercise 2.1 that every prime ideal of R is
maximal

(a) Show that dimR = 0.
(b) Show that R has finitely many maximal ideals.

Hint : for this you need the statement that if I1 ∩ · · · ∩ Ir ⊆ p for a prime ideal
p ⊆ R, then Ii ⊆ p for some i, which you should also show

(c) ** There is an integer j > 0 such that nil(R)j = 0.
Hint: Show that nil(R)j stabilizes for j � 0, which we denote by I. In order to
arrive at a contradiction assume that I = I2 6= 0. Consider a minimal element
J in the set of ideals {J : JI 6= 0}, show that IJ = J , then show that J is
principal. Conclude by Nakayama point c.)

(d) **Show that if m1, . . . ,ms are the maximal ideals of R, then mj
1 · · · · ·mj

s = 0.
Hint: Use the statement learned in ’Anneaux et corps’ that the nilardical is the
intersection of all prime ideals.

(e) **Show that lengthR R <∞, and deduce that R is Noetherian.
Hint: construct an increasing sequence of ideals using the product of maximal
ideals. Thereafter, you have to use multiple times the earlier exercise that Ar-
tinianity is closed under passage to sub- and quotient- modules.

Remark: In point (5) of Example 2.1.2 in the notes you saw an example of an
Artinian module which is not Noetherian. However, the exercise above shows that
an Artinian ring is always a Noetherian ring.
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There is one exercise in this problem sheet that will be part of the tenth homework.
The solution has to be written in Latex and handed in as a pdf file on Moodle.
The tenth homework is due on Sunday December 6 at 18:00. The exercise will be
denoted by the symbol ∗∗ next to the exercise number.

Exercise 1. Let R be a ring, and M , N and P be R-modules. Show that there
exists a natural bijection

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P )).

Use this to prove that
· ⊗R M : {R-modules} → {R-modules}, A 7→ A⊗R M

is a right exact covariant functor.

Exercise 2. ** Let R be a ring. Let M , N be R-modules and I and ideal of
R. Prove that there are isomorphisms of R-modules M ⊗R N ∼= N ⊗R M and
M ⊗R (R/I) ∼= M/(IM).

Exercise 3. Let A be a ring, with A-algebras B and C and an A-module M . Show
that:

(a) B ⊗A M naturally has the structure of a B-module,
(b) B ⊗A C naturally has the structure of an A-algebra,
(c) B ⊗A B naturally has a ring morphism to B.

Exercise 4. Prove the following assertions:

(a) Let k be a field, and let V1 and V2 be vector spaces over k with bases {e1, ..., em}
and {f1, ..., fn} respectively. Show that there is an isomorphism V1⊗k V2

∼= V n
1 .

In particular, show that V1 ⊗k V2 has basis {ei ⊗ fj}.
(b) Hence show that the element e1 ⊗ f2 + e2 ⊗ f1 cannot be written as u ⊗ v for

any u ∈ V1 and v ∈ V2.

Exercise 5. Prove the following:

(a) Let R be a ring, and let I and J be two ideals such that I + J = (1). Prove
that R/I ⊗R R/J = 0.

(b) Show that if F ⊂ L is a field extension, L⊗F L is a field if and only if F = L.

Exercise 6. Let R be a ring and M an R-module. We say that M is flat if for
every short exact sequence of R-modules

0→ A→ B → C → 0

the sequence
0→ A⊗R M → B ⊗R M → C ⊗R M → 0

is exact.

Prove that the following are equivalent:

(a) M is flat;
(b) TorRi (A,M) = 0 for every R-module A and every i > 0;

1
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(c) TorR1 (A,M) = 0 for every R-module A.

Hint: for (a)⇒(b) take a free resolution of A and tensor it with M to compute the
Tor functors. For (c)⇒(a) use the long exact sequence for left derived functors.

Exercise 7. Let R be a ring.

(a) Prove that free R-modules are flat.
(b) Prove that projective R-modules are flat.

Hint: use the characterization of projective modules as direct summands of
free modules

(c) Assume that R is an integral domain. Determine for which ideals I of R the
R-module R/I is flat.
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There is two sub-exercises of one exercise in this problem sheet that will be part
of the eleventh homework. The solution has to be written in Latex and handed in
as a pdf file on Moodle. The eleventh homework is due on Sunday December 13 at
18:00. The exercise will be denoted by the symbol ∗∗ next to the exercise number.

Exercise 1. Let R be a ring containing a multiplicatively closed subset T , and let
M be an R-module. Show that there is an isomorphism of R-modules:

T−1M ∼= T−1R⊗R M.

Further show that this is an isomorphism of T−1R-modules.

Exercise 2. Let R be a ring with multiplicative subset T , and suppose that L, M
and N R-modules.

(a) Show that if there is an R-module homomorphism f : M → N then there is a
natural T−1R-module homomorphism fT : T−1M → T−1N .

(b) Show that there is an isomorphism of R-modules T−1(M ⊕ N) ∼= (T−1M) ⊕
(T−1N).

(c) Suppose there is an exact sequence
0→ L→M → N → 0

Prove that the sequence
0→ T−1L→ T−1M → T−1N → 0

is also exact. Deduce that if L ⊂ M is a sub R-module, then T−1(M/L) ∼=
(T−1M)/(T−1L) and that localization by T is an exact functor of R-modules
and that T−1R is a flat R-module.

(d) Let p be a prime ideal of R. Show that there is an isomorphism of rings
Frac(R/p) ∼= Rp/(pRp).
Remark: For a local ring A with maximal ideal m we call A/m the residue field
of A

Exercise 3. **You should only hand in solutions to sub-exercises a) and b) Let
R = F [x], where F is a field.

(a) ** If F is algebraically closed, then show that for every prime ideal p of R,
either Rp

∼= F (x) or Rp
∼= F [x](x), where these isomorphisms are isomorphisms

of F -algebras. Show that the above two cases are not isomorphic.
(b) **If F = R, then show that up to ring isomorphism there are three possibilities

for Rp, where p is a prime ideal of F [x].
Hint: to tell the three cases apart, consider the residue field, to show that there
are only three cases, apply linear transformations to x

(c) Show that if F is algebraically closed, then F [x, y] has infinitely many prime
ideals p for which F [x, y]p are pairwise non-isomorphic F -algebras. For this, you
can use the following theorem of algebraic geometry:

Theorem 3.1. For each integer d ∈ N\{0, 2}, there exist irreducible polynomials
fd ∈ F [x, y] (of degree d) such that Frac(F [x, y]/(fd)) are non-isomorphic as F-
algebras for different d′s.

1
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Exercise 4. Let F be an algebraically closed field.

(a) List the prime ideals of R = F [x, y]/(xy)
Hint: Consider the implications of a containment xy ∈ P , for a prime ideal P .
Consider the projections R → R/x and R → R/y and use that you know the
prime ideals of F [y] and F [x].

(b) Show that for all prime ideals p of R,Rp falls into three cases up to F -algebra
isomorphism, one which is a field, one which is a domain but not a field and one
of which is not a domain.

Exercise 5. Let M be an A-module, and let a be an ideal in A. Show that the
following are equivalent:

(a) M = 0,
(b) Mm = 0, for every maximal ideal m,
(c) Mp = 0, for every prime ideal p.

Moreover, suppose that M is a finitely generated A-module, under this assumption
prove that M = aM if and only if Mm = 0 for maximal ideals satisfying a ⊂ m.

Exercise 6. Let R be a ring.

(a) Let T ⊆ R a multiplicatively closed subset of R. Let q be a prime ideal of T−1R.
Let qc be the contraction of q under R→ T−1R. Prove that ht(q) = ht(qc).

(b) Let p be a prime ideal of R. Prove that ht(p) = dimRp.
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There is one exercise in this problem sheet that will be part of the
twelfth homework. The solution has to be written in Latex and handed
in as a pdf file on Moodle.The twelfth homework is due on Sunday
December 20 at 18:00. The exercise will be denoted by the symbol ∗∗
next to the exercise number.

Exercise 1. Let S → R be a morphism of rings. Show that a prime
ideal p of S is the contraction of a prime ideal of R if and only if pec = p.

Hint: for one direction use ideas from the proof of “going-up” theorem

Exercise 2. Let R be a ring and I ⊂ R be an ideal. Prove that
the radical

√
I of I is an ideal. Prove that if there is a containment

I ⊂ P ⊂
√
I for a prime ideal P then P =

√
I.

Exercise 3. Let F be an algebraically closed field.
Let I, J be ideals of R = F [x1, ..., xn]. Prove that

√
I ⊂
√
J if and

only if V(J) ⊂ V(I).

Exercise 4. **Let F be an algebraically closed field. LetR = F [x1, ..., xn]
and let I and J be ideals of R. Show that

(a) V(I) ∪ V(J) = V(I ∩ J) = V(IJ)
(b) V(I) ∩ V(J) = V(I + J)

Exercise 5. Prove that Z = {(u3, u2v, uv2, v3) : u, v ∈ C} ⊂ C4 is an
algebraic set. Find I(Z).

Hint: make sure you have everything!

Exercise 6. (a) Let F be an algebraically closed field, andX ⊆ F n

an algebraic set with ideal I = I(X). Define the coordinate
ring A(X) of X to be F [x1, . . . , xn]/I. If X = V(I) ⊆ F n,
and Y = V(J) ⊆ Fm are algebraic sets with I = I(X) and
J = I(Y ), then a morphism f : X → Y is defined to be a
vector (h1, . . . , hm) of polynomials hi ∈ F [x1, . . . , xn], such that
for every a ∈ X, (h1(a), h2(a), . . . , hm(a)) ∈ Y .

Show that whenever there is a morphism f : X → Y of
algebraic sets as defined above there is a unique homomorphism
of rings λf : A(Y ) → A(X), such that the following diagram

1
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commutes.

F [y1, . . . , ym]
yi 7→hi //

��

F [x1, . . . , xn]

��
A(Y )

λ // A(X)

Here the vertical arrows are the quotient maps stemming from
the definition of A(X) and A(Y ) and the top horizontal map is
given by sending yi to hi(x1, ..., xn).

(b) With setup as above, show that if there is a homomorphism
λ : A(Y )→ A(X), then there is a morphism f : X → Y . such
that λ = λf . Furthermore, all choices of f are the same as
functions from the points of X to the points of Y .

(c) Compute the integral closure R1 of S1 := F [x, y]/(y2 − x3 − x2)
in the fraction field of S1.

(d) Let R1 and S1 be as above. Let S2 := F [x, y, z]/(x2 − y2z)
and denote by R2 the integral closure of S2 inside its field of
fractions (R2 was computed in lectures).
For i = 1, 2, define the conductor ideal Ii to be the ideal in Si
which is the annihilator of the Si-module Ri/Si. Calculate Ii
for i = 1, 2.

(e) With the notation as above, let Yi → Xi be the morphisms
of algebraic sets induced by the inclusion Si → Ri for i = 1, 2.
Assuming that k = C, draw the real points of the Xi. Draw also
in V(Ii + I(Xi))

1. What do you notice about V(Ii + I(Xi)) ⊂
Xi?

Exercise 7. Let R be a ring which is the quotient of a polynomial ring
over an algebraically closed field F by a radical ideal. This naturally
determines an algebraic set X whose co-ordinate ring is R. Noether
normalisation says there is a subring S ⊂ R such that S ∼= F [t1, ..., tr]
and R is an integral extension of S. Give a geometric interpretation of
Noether normalisation. That is, the inclusion S → R corresponds to a
morphism φ of algebraic sets. Prove that the fibres of φ are finite, i.e.,
the preimage of any point in F r under φ consis of a finite set of points
in X.

Exercise 8. Let F be an algebraically closed field.

1This is equal to the subset of Xi in Fn which is the vanishing locus of the
functions in Ii
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Let X be an algebraic set in F [x1, ..., xn] with I(X) = I. Prove that
points of F n contained in X are naturally in bijection with maximal
ideals of F [x1, ..., xn]/I.

Exercise 9. Let F be an algebraically closed field.
Calculate the Krull dimension of the ring

F [w, x, y, z]/(x2 − wy, y2 − xz, wz − xy).
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Exercise 1. Let R = C[x, y, z] and I = (xy − z2, x2 − y2). Identify
V(I) ⊂ C3. You should see that this naturally breaks into smaller
algebraic sets. What are the ideals of each piece? How do they relate
to I?

Exercise 2. Let F be an algebraically closed field. Let U and V be
algebraic sets in F n.
(a) Prove that I(U ∪ V ) = I(U) ∩ I(V )
(b) By considering U = V(x2−y) and V = V(y) for the ideals (x2−y)

and (y) in F [x, y], show that it need not be true that I(U ∩ V ) =
I(U) + I(V ).

(c) Prove that in general,
√

I(U) + I(V ) = I(U ∩ V ).

Exercise 3. Let F be an algebraically closed field. Calculate a primary
decomposition for the ideals:
(a) (x4 − 2x3 − 4x2 + 2x+ 3) ⊂ F [x]
(b) (x2, xy2) ⊂ F [x.y]
(c) (x2, xy, xz, yz) ⊂ F [x, y, z]

Exercise 4. Let S ⊆ R be a multiplicative subset and let Ii be finitely
many ideals in R. By extension and contraction of ideals we shall mean
extension and contraction via the natural morphism R→ S−1R. Prove
the following:
(a) (

⋂
i Ii)

ec =
⋂

Ieci
(b) (

⋂
i Ii)

e =
⋂

Iei
(c) S−1(R/I) ∼= S−1R/Ie , where the localization on the left is local-

ization of an R-module
(d) If I is primary, and u 6∈

√
I, then (I : u) = I

(e) For an ideal I of a ring R admitting a finite primary decomposition
let I = ∩Ii be such a primary decomposition, show the following:
(a) Ie =

⋂
p⊇Ii

Iei
(b) Iec =

⋂
p⊇Ii

Ii
(f) From now, let R = F [x, y] for a field F , I1 = (x), I2 = ms where

m = (x, y) and s > 1 is some integer, I3 = (x, y − 1)2 and p ⊆ R
is a prime ideal for which we set S = R \ p.
(a) if p = (x), then S−1(R/(I1 ∩ I2 ∩ I3)) ∼= F (y) as an R-module

1
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(b) if p = (x, y), then S−1(R/(I1 ∩ I2 ∩ I3)) ∼= S−1R/(Ie1 ∩ Ie2)
(c) if p = (x, y), compute the smallest integer n such that

(
x
1

)n ∈
S−1(R/(I1 ∩ I2 ∩ I3)) is zero.


