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Chapter 1

General remarks of the course

This course is based on Hartshorne’s book “Algebraic geometry”. We complement this book
with examples, explanation on intuition and some commutative algebra background. These
notes are here for the complement, otherwise we use Hartshorne’s book.

Disclaimer: as these notes are written this year as the course progresses, probably they
will be neither perfect, nor complete. Nevertheless, we hope that it will be better to have them
than not to have them.

1.1 COLOR CODES

We use color codes to distinguish certain parts. These colors serve simply to distinguish,
NOT to highlight.

Review of material that was covered in “Algebraic curves”

These are parts that have been already covered in the ”Algebraic curves” class.

Material very similar to what we learned in “Rings and modules”

Material that is not exactly the same, but it is very similar to something covered in
the ”Rings and modules” class.

1.2 LANGUAGE

These notes are written in American English, so for example we say “color” instead of
“colour”. Also, Hartshorne, despite of being written in American English in general, uses some
French spelling of words, such as “fibre” that we do not adopt. We will just write “fiber”.
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Chapter 2

Review of classical algebraic
geometry

This course aims to lay foundation for scheme theory, including the necessary algebra back-
ground. This is a very abstract and very general theory. For most mathematicians, it helps
to understand such abstract theories and to build intuition, if there are many well understood
examples to think about. For scheme theory this basic set of examples is provided by classical
algebraic geometry, which is taught here at EPFL in the course “Algebraic curves”. It is essen-
tial to review the material of that course, otherwise it is really hard to understand the present
course. Here we recall some of what we have learned there. We recall only statements, exam-
ples and definitions. We refer for the proofs to the “Moodle archive” page of the “Algebraic
curves” course.

We also put many of the statements and definitions of “Algebraic curves” in a mildly more
general setting , which is important to be able to make the connection to scheme theory. We
box only those parts of the review material that is literally taken from “Algebraic curves”.
The unboxed part is material that is very similar, but mildly modified, compared to what was
covered in “Algebraic curves”.

In this chapter, k denotes an algebraically closed field.

2.1 AFFINE ALGEBRAIC SETS

Review of material that was covered in “Algebraic curves”

Definition 2.1.1. Denote by kn the n-dimensional vector space over k.
An affine algebraic set is a subset of kn of the following form, for some integer

n > 0 and some ideal I ⊆ k[x1, . . . , xn]:

V (I) := { (c1, . . . , cn) ∈ kn | ∀f ∈ I : f(c1, . . . , cn) = 0 }.

Remark 2.1.2. Algebraic sets are the basic objects of algebraic geometry. It is not an exager-
ation to say that algebraic geometry is the study of algebraic sets (there will be other types
defined soon too, not only affine ones). In particular algebraic geometry is heavily connected
to all the other fields where these come up. For example:

(1) Complex differential geometry: meaning the version of differential geometry built
using domains of Cn and multivariable holomorphic functions as opposed to open sets of
Rn and smooth functions (the latter is usually called real differential geometry). We note

9
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that multivariable holomorphic funcions are defined as follows (not part of the material
of this course, just for the sake of completeness):

f = (f1, . . . , fm) : Cn ⊇
open

D → Cm

is holomorphic if and only if so are the single variable functions

fi(c1, . . . , cj−1, , cj+1, . . . , cn) : {x ∈ C|{c1, . . . , cj−1, x, cj+1, . . . , cn} ∈ D} → C

for each choices of integers 1 ≤ i ≤ m, 1 ≤ j ≤ n and complex numbers cl ∈ C. In
the theory of multivariable complex analysis one eventually shows that f : D → Cm is
holomorphic if and only if locally around each point c ∈ D, it is the value of a convergent
power series around c. This maybe already hints why complex differential geometry is
so close to algebraic geometry. The main difference is that algebraic geometry replaces
convergent power series by polynomials. The benefit is that many of the “ugly” local
behavior goes away (i.e., no essential singularities), and the theory works also over fields
other than C.
The basic object of complex differential geometry are holomorphic, or equivalently com-
plex, manifolds. The nicest examples of these are smooth algebraic sets (we will define
smoothness later). For example,{

(x, y, z) ∈ C3
∣∣ x2 + y2 + z2 + 1 = 0

}
= V

( (
x2 + y2 + z2 + 1

) )
⊆ C3

is a smooth affine algebraic set and hence it is also a holomorphic manifold.

We will also define later in the course a notion called projective algebraic set. By a highly
non-trivial theorem of Chow, over C projective algebraic sets in fact are the same as
projective holomorphic manifolds, that is, holomorphic manifolds embedded in a projec-
tive space. This, particularly highlights how close the two theories, complex differential
geometry and algebraic geometry, are. Many times these two theories consider the above
same objects, however sometimes very different questions on them (e.g., questions about
metrics are central to complex differential geometry, see Yau’s Fields medal, but cannot
be phrased in terms of algebraic geometry).

In any case, it is a good idea to compare whatever happens in this course to real differential
geometry. We would like to build a similar theory, but using polynomials instead of smooth
functions. Hence, the local theory will be commutative algebra. Still, to understand the
global picture the differential geometry analogy is the best.

(2) Number theory: In number theory, one considers algebraic sets that are defined over
a non-algebraically closed field k0. The typical examples are Q or Fp. Being defined over
k0 means that the generators of I of Definition 2.1.1 have coefficients in k0. Then, in
arithmetic one is mostly interested only in the k0-rational points, that is, those points
that have all their coordinates in k0. For example, the probably most famous theorem
of number theory, Wiles’ theorem also called the big Fermat theorem, states that if one

considers the algebraic set V ((xn + yn − zn)) ⊆ Q3
for n ≥ 3, then it has no Q-rational

points with (all) non-zero coordinates (here k = Q denotes the algebraic closure of k0 =
Q).

In many instances algebraic geometry can “help” the above fields. That is, by having a some-
what different perspective it can sometimes solve questions important for these fields that are
much harder if not impossible to solve using their own tools.

Remark 2.1.3. Following the analogy to differential geometry explained in Remark 2.1.2, affine
algebraic sets are for algebraic geometry what local charts are for differential geometry. One
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main difference compared to differential geometry is that in algebraic geometry local charts,
that is, affine algebraic sets, can have singularities (to be precisely defined later). For example,
V ((x2+y2+ z2)) is an affine algebraic set that cannot appear as a local chart of a holomorphic
manifold. In fact, if one works over C, one can define a notion called the local fundamental
group, which is Z/2Z for V

(
x2 + y2 + z2

)
at (0, 0, 0), but it is the group with one element for

any point of any domain in Cn. For intuition, note that the Z/2Z comes from

π1
(
V
(
x2 + y2 + z2

)
\ {0, 0, 0}

)
= Z/2Z.

Review of material that was covered in “Algebraic curves”

Definition 2.1.4. A Zariski closed set of an affine algebraic set X ⊆ kn is a subset
Y ⊆ X which is also an affine algebraic set in kn.

Proposition 2.1.5. Let X ⊆ kn be an affine algebraic set. Then, the Zariski closed
subsets of X form the closed sets of a topology, called the Zariski topology of X.

Remark 2.1.6. The Zariski topology on A1 is the co-finite topology, that is, the open
sets are exactly the complements of finite subsets. Indeed, if Z ⊆ A1 is a closed
subset, then Z = V (I) for some ideal I ⊆ k[x]. However, k[x] is a principal ideal
domain (as it is a Euclidean domain). Hence, I = (f) for some f ∈ k[x]. Furthermore,
as k is algebraically closed, so the irreducible elements of k[x] are only the ones of
the form x− c for some c ∈ k. Hence, f =

∏r
i=1(x− ci) for some r ∈ Z>0 and ci ∈ k.

Then:

Z = V (I) = V

((
r∏

i=1

(x− ci)

))
= {ci|1 ≤ i ≤ r}.

The set of all sets Z of the above form is simply the set of all the finite sets.
In particular, warning: the Zariski topology is not Hausdorff, as any two non-

trivial open sets on A1 intersect non-trivially (details worked out in Remark 2.1.7).
In general, an intuitive advice: the Zariski topology is probably quite different from
all the topologies that you are used to.

Remark 2.1.7. warning 2: the Zariski topology on A2 is not the product topology of A1 × A1.

Indeed, suppose, that A2 ∼= A1 × A1 as topological spaces. Then {(x, y) ∈ A2|x ̸= y} is
open in A1 × A1. A basis of A1 × A1 is

{(U × V ) ⊆ A2|U and V are open in A1}

So, there are non-empty open sets U and V of A1, such that

U × V ⊆ {(x, y) ∈ A2|x ̸= y}

That is, U ∩ V = ∅. However A1 is an infinite set (as all algebraically closed fields are infinite
just by the virtue of finite fields being not algebraically closed), and every open subset of A1 is
cofinite. So, there can not be two disjoint open subsets of A1, which is a contradiction.

Review of material that was covered in “Algebraic curves”
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Definition 2.1.8. If X ⊆ kn is an affine algebraic set, then the ideal of X is

I(X) := { f ∈ k[x1, . . . , xn] | ∀(c1, . . . , cn) ∈ X : f(c1, . . . , cn) = 0 }.

Definition 2.1.9. If X ⊆ An is an affine algebraic set, then we define the coordinate
ring by

A(X) := k[x1, . . . , xn]
/
I(X).

Definition 2.1.10. Let X = V (I) ⊆ kn, and Y = V (J) ⊆ km be two affine algebraic
sets. Amorphism f : X → Y is defined to be a function of sets such that there exists a
vector (h1, . . . , hm) of polynomials hi ∈ k[x1, . . . , xn] satisfying that for every a ∈ X,
(h1(a), h2(a), . . . , hm(a)) ∈ Y .

Two morphisms f : X → Y are the same if they are the same as functions of
sets. In particular, the vector (h1, . . . , hm) is not part of the data of f .

An isomorphism f : X → Y is a morphism that has an inverse morphism. That
is, there exists a morphism g : Y → X such that g ◦ f = idX and f ◦ g = idY .

Remark 2.1.11. Consider a morphism f : X → Y and fix also a vector (h1, . . . , hm) as

in Definition 2.1.10. Consider the k-algebra homomorphism ϕ : k[y1, . . . , ym]
yi 7→hi−−−−→

k[x1, . . . , xn]. The homomoprhism ϕ can be identified with the pullback of polynomial
functions by (h1, . . . , hm). That is, if

ν(y1, . . . , ym) ∈ k[y1, . . . , ym]⇒ ν ◦ (h1, . . . , hm) = ϕ(ν). (2.1.a)

In particular,

ν ∈ I(Y )⇒ ν|Y ≡ 0︸ ︷︷ ︸
as a function

⇒ (ν|Y ) ◦ f ≡ 0⇒

f = (h1, . . . , hm)|X
by Definition 2.1.10

ν ◦ (h1, . . . , hm)|X ≡ 0⇒

(2.1.a)

ϕ(ν) ∈ I(X).

This implies that ϕ descends to a homomorphism λf : A(Y )→ A(X) as pictured in
the following diagram:

k[y1, . . . , ym]
yi 7→hi //

��

k[x1, . . . , xn]

��
A(Y )

λf // A(X)

It is a (not too hard) exercise that (h1, . . . , hm) determines the same morphism if and
only if the induced λf is the same (in particular, the subindex by f is reasonable),
and also that any k-algebra homomorphism A(Y ) → A(X) arises from a morphism
f : X → Y as above. That is, we obtain a bijection

morphisms f : X → Y ←→ k-algebra homomorphisms λf : A(Y )→ A(X)

To sum up, we have the following statement.

Theorem 2.1.12. There is an equivalence of categories

affine algebraic sets oo // reduced finitely generated k-algebras

X � //

∈

A(X)

∈
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Remark 2.1.13. According to Remark 2.1.11, the coordinate ring is an invariant of isomorphism
equivalence classes of affine varieties. In particular, we may use the coordinate ring to define an
affine variety without fixing a particular closed embedding into An. Furthermore, Remark 2.1.11
also tells us that the evaluation of the elements of A(X) at the points of X is also intrinsic.
That is, if h : X → X is an isomorphism and f ∈ A(X), then f evaluated at h(x) agrees
with λh(f) = f ◦ h evaluated at x (obviously). This then allows us to define intrinsically the
following open and closed sets.

Definition 2.1.14. If X is an affine algebraic set and f ∈ A(X), then we define

VX(f) := { x ∈ X | f(x) = 0 }, and DX(f) := { x ∈ X | f(x) ̸= 0 }

(Note: if one fixes a particular representation of X as a closed subset of An, and considers the
induced homomorphism ϕ : k[x1, . . . , xn]→ A(X), then VX(f) = V (ϕ−1((f))) ).

If I ⊆ A(X) is an ideal, we define

VX(I) := { x ∈ X | ∀f ∈ I : f(x) = 0 }.

If Y ⊆ X is a closed subset, then we define

IX(Y ) := { f ∈ A(X) | f |Y ≡ 0 }.

Sometimes, if it is obvious what variety we work on, we omit the subindex X from the above
notations.

Review of material that was covered in “Algebraic curves”

Proposition 2.1.15. [Nullstellensatz for coordinate rings] Let X be an
affine algebraic set. Then V (I) and IX(Y ) of Definition 2.1.14 yield bijections as
follows

prime ideals I ⊆ A(X) ←→ Z ⊆ X irreducible closed subsets

radical ideals I ⊆ A(X) ←→ Z ⊆ X closed subsets

and
maximal ideals m ⊆ A(X) ←→ x ∈ X .

In particular, I(V (I)) = rad(I) for any ideal I ⊆ A(X).

Definition 2.1.16. A quasi-affine algebraic set is a an open subset U ⊆ X in an
affine algebraic set. The (Zariski) topology on it is the subspace topology induced
from the topology on X, or equivalently from the topology on An.

2.2 NOETHERIAN TOPOLOGICAL SPACE - IRREDUCIBILITY

Definition 2.2.1. A topological space is Noetherian, if all descending chains of closed subsets

Z1 ⊇ Z2 ⊇ Z3 ⊇ . . .

stabilize eventually.

Remark 2.2.2. The usual euclidean topology is almost never Noetherian. For example, in R
the closed sets

[
0, 1

2n

]
(for n ∈ Z>0) form an infinite decreasing chain.



14 CHAPTER 2. REVIEW OF CLASSICAL ALGEBRAIC GEOMETRY

Review of material that was covered in “Algebraic curves”

Definition 2.2.3. A topological space Z is irreducible, if whenever Z1 ∪Z2 = Z for
some closed subsets Zi ⊊ Z, then Zi = Z holds for some i.

Lemma 2.2.4. If X is a Noetherian topological space, and Y is a closed subset, then the
subspace topology on Y is also Noetherian.

Proposition 2.2.5. Every closed subset Z ⊆ X of a Noetherian topological space can be written
as Z =

⋃
i Zi for finitely many irreducible closed subsets, which decomposition is unique if we

assume that it is minimal (i.e., non of the Zi can be dropped).

Definition 2.2.6. An affine variety is an irreducible affine algebraic set.

2.3 REGULAR FUNCTIONS AND MORPHISMS OF QUASI-AFFINE VARIETIES

Review of material that was covered in “Algebraic curves”

Notation 2.3.1. If X is an affine variety, the field of rational functions is defined
by K(X) := Frac(A(X)).

Remark 2.3.2. Recall that according to Remark 2.1.13, the coordinate ring A(X)
is associated intrinsically to every affine variety X (which means precisely that it
is invariant under isomorphism). Furthermore, elements of A(X) can be evaluated,
again intrinsically, at points of X.

Using the previous paragraph, elements of K(X) can be though of as functions
on some open set of X. To explain this, fix f ∈ K(X). Choose also a particular
representation f = a

b . Then f can be regarded as a usual function D(b) → k,
where D(b) = DX(b) is the open set defined in Definition 2.1.14. Indeed, at every

x ∈ D(b), a(x)
b(x) yields a unique element of k, and furthermore if we have a different

representation, say f = c
d of f , then by the identity ad = bc, the evaluation gives

the same element of k: a(x)d(x) = b(x)c(x) ⇒ c(X)
d(X) = a(x)

b(x) . This way we may even

associate a domain to each f ∈ K(X), which is phrased in the next definition.

Definition 2.3.3. If X is an affine variety and f ∈ K(X), then the domain Dom(f)
of f is the largest open set U ⊆ X on which f can be regarded as a function U → k.
By the discussion of Remark 2.3.2:

Dom(f) =
⋃
f=a

b

D(b).

Remark 2.3.4. However, before going there, we note that not only a rational function
f yields an actual functions U → k on some open set U , but different rational
functions yield different actual functions on an non-empty open set U ⊆ X. In fact
we have the following:



2.3. REGULAR FUNCTIONS AND MORPHISMS OF QUASI-AFFINE VARIETIES 15

Claim. If f, g ∈ K(X) and ∅ ̸= U ⊆ X is an open set such that U ⊆
Dom(f), U ⊆ Dom(g), and the functions U → k associated to f and g are
equal, then f = g.

Proof. Choose a point x ∈ U . By Definition 2.3.3, f = a
b and g = c

d
for some a, b, c, d ∈ A(X), with b(x) ̸= 0 and d(x) ̸= 0. By shrinking
U around x, we may also assume that U ⊆ D(b) and U ⊆ D(d). For the
statement of the claim, we need to prove that ad = bc as elements of A(X),
or equivalently that ad−bc = 0. By our assumptions, as a function over U ,
ad− bc|U ≡ 0. Hence, U ⊆ V (ad− bc). As U is dense by the irreducibility
of X, this implies that V (ad − bc) = X. Then, by Proposition 2.1.15 we
obtain that ad− bc = 0.

Definition 2.3.5. Let X be an affine variety, and let ∅ ≠ U ⊆ X be an open set.
Then the ring of regular functions OX(U) ⊆ K(X) on U is the following subring
((easy) homework to verify closedness under multiplication and addition):

{ f ∈ K(X) | U ⊆ Dom(f) }

We define OX(∅) = {0}. We treat OX(U) as an algebra over k.

Remark 2.3.6. For non-irreducible affine algebraic sets, the definition of OX(U) is
very similar. Let X be sitting inside An. Then we define OX(U) to be the ring of
functions s : U → k which satisfy the following: for each (x1, . . . , xn) ∈ U , there are
f, g ∈ k[x1, . . . , xn) such that f(x1, . . . , xn)/g(x1, . . . , xn) = s(x1, . . . , xn).

One reason why this is harder than the above definition for the case of varieties
is that one has to verify that it is independent of the embedding in An. Also, this
does not give a subring of something (in our case this something was K(X)), and
hence the restriction morphisms are more intricate than in the irreducible case (where
restriction of functions agrees with inclusions given by the subring structures).

Example 2.3.7. The above notions are easily computable if A(X) is a UFD. Indeed,
then we may choose a unique representative f = a

b (up to multiplication by a unit)

such that gcd(a, b) = 1. We claim that for every f = a′

b′ there is a c ∈ A(X) such
that a′ = ca and b′ = cb. Indeed, ab′ = ba′ can hold by the relative prime assumption
only if b|b′ and a|a′. Then it follows that b′/b = a′/a, which we then call c. This
finishes the proof of our claim.

The above claim implies that, if A(X) is a UFD, D(b′) ⊆ D(b) for every repre-
sentative f = a′

b′ , and hence by Definition 2.3.3, D(f) = D(b). In particular,

OX(U) =
{ a

b
∈ K(X)

∣∣∣ U ⊆ D(b)
}
= S−1A(X),

for S = {b ∈ A(X)|U ⊆ D(b)} (note that this is indeed a multiplicatively closed set).
Some more explicit examples are the following.

(1) If X = A1, U = A1 \ {0}, then

OX(U) ∼= k[x]x ∼= k
[
x, x−1

]
.
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(2) If X = A1, U = A1 \ {0, 1}, then

OX(U) ∼= k
[
x, x−1, (x− 1)−1

] ∼= k[x]x(x−1).

(3) If X = A2, U = A2 \ V (x1), then

OX(U) ∼= k[x1, x2]x1
∼= k

[
x1, x2, x

−1
1

]
.

However, if A(X) is not a UFD, then whether f ∈ K(X) is contained OX(U)
cannot be determined by looking at a single representative. For example, if we take
y(y−x)−x(x−1)(x+1) (which is irreducible because of Eisenstein’s criterion applied

in k[x][y] with p = x), then for f = (x+1)x
y = y−x

(x−1) the first representation shows

that (1, 1) ∈ Dom(f) (and the second does not do it), while the second representation
shows that (−1, 0) and (0, 0) are in Dom(f) (and the first representation does not do
it). Then, using a Riemann-Roch computation (something we will learn at the very
end of this course) one can show that there is no representative a

b = f such that both
of the above representatives can be obtained by multiplying both the numerator and
the denominator of a

b by c ∈ A(X).

Proposition 2.3.8. If X is an affine variety, then OX(X) = A(X), as subrings of K(X).

Proof. Trivially A(X) ⊆ OX(X), as for a
1 the denominator is non-zero at every point x ∈ X.

So, take f ∈ OX(X) ⊆ K(X). By definition, for each point x ∈ X, f = ax
bx
, such that

bx ∈ Ux := D(bx). As
⋃

x∈X Ux = X, we have ∅ =
⋂

x∈X V (bx) = V ((bx|x ∈ X)), which is
equivalent to saying that (bx|x ∈ X) = (1) according to Proposition 2.1.15. In particular, there
is x1, . . . , xs ∈ X, and r1, . . . , rs ∈ A(X), such that

∑s
i=1 ribxi = 1. Set Ui := Uxi , ai := axi

and bi := bxi . Then for any fixed 1 ≤ j ≤ s, we have the following stream of equalities in
K(X).

f =
aj
bj

=

∑s
i=1 ribi = 1

∑s
i=1 ribiaj

bj
=

biaj = aibj

∑s
i=1 riaibj

bj
=

s∑
i=1

riai ∈ A(X).

This concludes our proof.

So, indeed for an affine algebraic set X, the collection of all OX(U) contains the information
about A(X). Furthermore, it opens the door to define morphisms also for quasi-affine varieties.

Definition 2.3.9. If U ⊆ An is a quasi-affine variety, then by definition it is an open set in
the closure U , where U is an affine variety. Then, we define K(U) := K

(
U
)
, and similarly we

define OU the following way: for each open set V ⊆ U , OU (V ) := OU (V ).

Review of material that was covered in “Algebraic curves”

Definition 2.3.10. Let X and Y be two quasi-affine varieties. Then f : X → Y
is a morphism if it is a continuous map such that for each open set V ⊆ Y , and
s ∈ OY (V ), s ◦

(
f |f−1V

)
∈ OX

(
f−1V

)
(as a function). By abuse of notation, most

of the time we write s ◦ f instead of s ◦
(
f |f−1V

)
.

An isomorphism f : X → Y , as in the case of affine varieties, is a morphism that
has an inverse morphism. That is, there exists a morphism g : Y → X such that
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g ◦ f = idX and f ◦ g = idY .

Remark 2.3.11. As before for affine varieties, a consequence of the introduction of
morphisms for quasi-affine varieties is that from now we identify isomorphic ones,
and hence we forget the fixed embedding. Also, from now we should treat only those
notions for quasi-affine varieties that are invariant under isomorphisms.

Proposition 2.3.12. For affine varieties, the above definition coincides with the one
we gave earlier in Definition 2.1.10.

Proposition 2.3.13. If X is quasi-affine, then OX are invariant under isomor-
phism. That is, if f : X → Y is an isomorphism, and V ⊆ Y is an open set, then
OX(f−1V ) ∼= OY (V ) via precomposition by f .

Proposition 2.3.14. If X is quasi-affine, we have

K(X) =
⋃

U⊆X open

OX(U).

In particular, an isomorphism f : X → Y of quasi-affine varieties yields isomorphism f# :
K(Y )→ K(X) given by g 7→ g ◦ f for any g ∈ OX(U).

Remark 2.3.15. It is hard to overestimate the theoretical importance of Proposition 2.3.13. It
tells us that the data of OX(U) for all open set U ⊆ X describes uniquely the isomorphism
equivalence class of a variety, which is the point of view of modern algebraic geometry (scheme
theory).

Notation 2.3.16. From now affine variety (resp. quasi-affine variety) means a variety iso-
morphic to an affine variety (resp. a quasi-affine variety).

Proposition 2.3.17. If X is an affine variety and f ∈ A(X), then D(f) is also affine with
A(D(f)) ∼= A(X)f .

2.4 PROJECTIVE ALGEBRAIC SETS

Review of material that was covered in “Algebraic curves”

Definition 2.4.1. The projective space Pn
k of dimension n over k is defined as a set

as follows:
Pn := kn+1 \ (0, . . . , 0)

/
k×,

that is the set of non-zero n+1-tuples (a0, . . . , an) ∈ kn+1, where any (λa0, · · · , λan)
and (a0, . . . , an) are identified for any n + 1-tuple (a0, . . . , an) and any λ ∈ k× :=
k \ {0}. Usually we denote by [a0, . . . , an] the equivalence class via the above identi-
fication.

Remark 2.4.2. Pn can be thought of as the space of lines in kn+1 through the origin.

Remark 2.4.3. Pn can be also thought of as adding one point at infinity to An for
each line in An. This represents the “limit point” as one “approaches infinity” along
the given line. We will explain this more after defining the standard affine patches.
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Our next task is to define projective algebraic sets. Intuitively, these are the “compactifi-
cations” of affine algebraic sets by adding the infinity limit points. This approach can be made
completely precise over C by considering the usual Euclidean (non Zariski) topology. However,
over general algebraically closed fields one has to go around, define first projective algebraic
sets without referring to the above limiting property, and then it can be realized that projective
algebraic sets are in fact closures in Zariski topology of affine algebraic sets.

Definition 2.4.4. A graded ring is a ring R, for which the additive group (R,+) decomposes
as a diret sum

R =
∞⊕
i=0

Ri,

and for which the multiplicative ring operations respect this decomposition. That is:

(1) 1 ∈ R0, and

(2) Ri ·Rj ⊆ Ri+j .

The standard structure of a graded ring on k[x0, . . . , xn] (or the standard grading) is via
the degree. That is, k[x0, . . . , xn]i is the additive group of homogeneous polynomials of degree
i.

An ideal I ⊆ R in a graded ring is homogeneous if I =
⊕∞

i=0 Ii, where Ii ⊆ Ri are additive
subgroups.

Remark 2.4.5. Note that Ii in Definition 2.4.4 are unique, as one has to have Ii := I ∩Ri.

Remark 2.4.6. If f1, . . . , fr ∈ k[x0, . . . , xn] are homogeneous, then (f1, . . . , fr) is a homogeneous
ideal.

Conversely, if I ⊆ k[x0, . . . , xn] is a homogeneous ideal, then it can be generated by (finitely
many) homogeneous elements f1, . . . , fr ∈ k[x0, . . . , xn]. Indeed, to prove this, by the Noethe-
rianity of k[x1, . . . , xn], it is enough to show that if f1, . . . , fr ∈ I are homogeneous elements
and (f1, . . . , fr) ⊊ I, then there is a homogeneous fr+1 ∈ I \ (f1, . . . , fr). However, as both
(f1, . . . , fr) ⊊ I are homogeneous ideals, Remark 2.4.5 implies that there is a value of i for
which (f1, . . . , fr) ∩ k[x0, . . . , xn]i ⊊ I ∩ k[x0, . . . , xn]i.

Example 2.4.7. Following Remark 2.4.6, I = (x2, y) is a homogeneous ideal. However, one
has to be careful: not all generators of homogeneous ideals are homogeneous. For example,
I = (x2 + y, y) is a non-homogeneous generator set of the homogeneous ideal I.

Review of material that was covered in “Algebraic curves”

Definition 2.4.8. A projective algebraic set is a subset of Pn
k of the form

V (I) := { [c0, . . . , cn] ∈ Pn
k | ∀j ∈ N, ∀f ∈ Ij : f(c0, . . . , cn) = 0 }.

for some homogeneous ideal I ⊆ k[x0, . . . , xn].

Remark 2.4.9. Since elements of Pn
k are equivalence classes of n + 1-tuples, for the

above definition being sensible, it is essential to verify that f(c0, . . . , cn) being zero
is independent of the choice of element in the equivalence class [c0, . . . , cn]. That is,
we have to verify that for all λ ∈ k×:

f(c0, . . . , cn) = 0⇔ f(λc0, . . . , λcn) = 0.
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This follows from f being homogeneous of degree j, so:

f(λc0, . . . , λcn) =
∑

∑n
s=0 is=j

ai0,...,in(λc0)
i0 . . . (λcn)

in

=
∑

∑n
s=0 is=j

ai0,...,inλ
∑n

s=0 isci00 . . . cinn = λjf(c0, . . . , cn).

Definition 2.4.10. The subsets Y ⊆ X ⊆ Pn
k of a projective algebraic set X that

are themselves projective algebraic sets in Pn
k are called the Zariski closed subsets

of X. It is an easy exercise that this defines indeed a topology, and that this is the
subspace topology induced from the topology on Pn.

Definition 2.4.11. A quasi-projective algebraic set is a Zariski open subset U ⊆ X
of a projective algebraic set X ⊆ Pn, endowed with the subspace topology inherited
from Pn, or equivalently from X.

Definition 2.4.12. For any integer i ∈ {0, 1, . . . , n}, the i-th standard open chart of
Pn is defined to be the open subset Pn \ V (xi) =

{
[x0, . . . , xn] ∈ Pn

∣∣ xi ̸= 0
}
. We

identify this open set with An via the bijective assignment, see Proposition 2.4.13,
which in one direction is

ϕi : Pn \ V (xi) ∋ [x0, . . . , xn] 7→
(
x0
xi

, . . . ,
xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
and in the other direction is

ξi : (x0, . . . , xi−1, xi+1, . . . , xn) 7→ [x0, . . . , xi−1, 1, xi+1, . . . , xn].

Proposition 2.4.13. In the situation of Definition 2.4.12, ϕi and ξi are inverses of
each other.

Remark 2.4.14. The above identification of Pn \ V (xi) with An corresponds geomet-
rically to putting a hyperplane at xi = 1, and sending each line (thinking about Pn

as the space of lines in kn+1 through the origin) to the intersection point with this
hyperplane.

Definition 2.4.15. In the situation of Definition 2.4.12 we define the following.

(1) For any element f ∈ k[x0, . . . , xn] the dehomogenization fd of f is defined as follows
(which is an abuse of notation as f is not assumed to be homogeneous here):

fd := f(x0, . . . , xi−1, 1, xi+1, . . . , xn) ∈ k[x0, . . . , xi−1, xi+1, . . . , xn].

For any homogeneous ideal I ⊆ k[x0, . . . , xn], we define the dehomogenization Id of I to
be the following ideal of k[x1, . . . , xn]:

Id :=
{

fd
∣∣ f ∈ I

}
.

(2) For any g ∈ k[x0, . . . , xi−1, xi+1, . . . , xn] we define its homogenization gh to be the following
element of k[x0, . . . , xn]:

gh := xdeg gi · g
(
x1
x0

, . . . ,
xn
xi

)
,
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where the equality takes place in k(x0, . . . , xn), which by definition is the fraction field of

k[x0, . . . , xn]. Equivalently, if g =
∑deg g

j=0 gj is the decomposition into homogeneous parts,
then

gh =

deg g∑
j=0

xdeg g−j
i gj .

For an ideal J ⊆ k[x0, . . . , xi−1, xi+1, . . . , xn], we define the homogenization of I be

Jh :=
(

gh
∣∣∣ g ∈ J

)
,

where parentheses mean the ideal generated by the given elements.

Remark 2.4.16. In Definition 2.4.15, we defined dehomogenization also for non-homogeneous
elements of k[x0, . . . , xn] as a homogeneous ideal I contains also non-homogeneous elements,
and we wanted to be able to make the definition Id =

{
fd|f ∈ I

}
.

Remark 2.4.17. Dehomogenization behaves better than homogenization. That is, dehomoge-
nization yields an algebra homomorphism. On the other hand, homogenization does not even
depend on the monomials of a polynomial g(x), but also on deg g. Hence, the same monomial
m(x) in two polynomials g1(x) and g2(x) of different degrees contribute with differently to the
homogenizations gh1 and gh2.

Lemma 2.4.18. In the situation of Definition 2.4.15, and of Definition 2.4.12,

(1) ϕi(V (I) ∩ Ui) = V
(
Id
)

(2) ξi(V (J)) = V
(
Jh
)
∩ Ui

Proposition 2.4.19. If X ⊆ Pn is a projective algebraic set, then X \ V (xi) is homeomorphic
to an affine algebraic set if regarded as a subset of An via the correspondence Pn \ V (xi)↔ An

of Definition 2.4.12.

Remark 2.4.20. Let us explain the necessity of Proposition 2.4.19. Recall that the topology
on X was defined by using the Zariski topology on Pn that is, by homogeneous polynomials in
variables x0, . . . , xn. In the meanwhile the topology on An is defined by using non-homogeneous
polynomials in almost the same variables, that is, we throw away xi. So, if one identifies
X \V (x0) with a closed algebraic subset of An via the correspondence of Definition 2.4.12, one
needs to also match up these two topologies.

Now, we would like to define morphisms also for quasi-projective varieties. We use verbatim
the definition given for quasi-affine varieties (Definition 2.3.10), but we need to define then
OX(U) also for X quasi-projective. The idea is based on the observations of Remark 2.4.24.

Definition 2.4.21. If X ⊆ Pn is a projective algebraic set, then the homogeneous coordinate

ring is defined to be S(X) := k[x0, . . . , xn]
/
I(X). As I is homogeneous, S(X) is automatically

a graded ring, with setting S(X)d = k[x0, . . . , xn]d
/
Id.

Remark 2.4.22. As we have seen in Remark 2.4.9, the values of an f ∈ k[x0, . . . , xn+1] are not
well defined at the points of Pn, however its vanishing locus is well defined. This yields the
same for the elements of S(X). Hence, we may perform the following definitions, mirroring the
affine case done in Definition 2.1.14.

Definition 2.4.23. If X ⊆ Pn is a projective algebraic set and f ∈ S(X) homogeneous, then
we define

DX(f) = { x ∈ X | f(x) ̸= 0 } and VX(f) = { x ∈ X | f(x) = 0 }.
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Remark 2.4.24. Similarly to the affine case, if X ⊆ Pn is a projective variety, then, as I(X) is
a prime ideal, S(X) is a domain. Hence, we may consider its function field Frac(S(X)). Let
Frac(S(X))hom be the subset of Frac(S(X)), consisting of elements f ∈ Frac(S(X)) which can
be written as a fraction a

b of homogeneous elements of the same degree d.
Note that elements f ∈ Frac(S(X))hom can be regarded as usual functions on adequate

open sets. Indeed, if we write f = a
b as above, then although neither a(x) and b(x) are well

defined at any point x ∈ D(b) (a significant difference to the affine case), multiplication by a

scalar λ multiplies both a(x) and b(x) by λd. This cancels when taking fraction, and then a(x)
b(x)

becomes well defined on the representatives of x ∈ Pn.
Furthermore, consider different representation of the same f ∈ Frac(S(X))hom. So, let

f = a
b and f = c

d , where a, b, c, d ∈ S(X) are homogeneous, and deg a = deg b and deg c = deg d.
In this case, by the identity ad = bc the evaluation gives the same element of k. Hence we may
regard f also as a function f : U → k for any open set U contained in

⋃
f=a

b
D(b).

Additionally, the argument of Remark 2.3.4 can be moved to the projective case literally,
yielding that if f ̸= g ∈ Frac(S(X))hom, such that both f and g yield functions on some non-
empty open set U , then these functions are different. So, we may indeed think about elements
of Frac(S(X)) as functions on adequate open sets.

Remark 2.4.25. Let X ⊆ Pn be a projective variety, and choose f ∈ K(X) that yields a function
f̃ : U → k on some non-empty open set of X, as explained in Remark 2.4.24. Consider now
Yi ⊆ An, the affine variety homeomorphic to D(xi)∩X via the affine charts of Definition 2.4.12.
Let η : X∩D(xi)→ Yi be this homeomorphism. Then, we may hope that considering f̃ |D(xi)∩U
as a function on η(D(xi) ∩ U), is a regular function on η(D(xi) ∩ U). This is in fact true, and
this also yields a description of K(X) in terms of homogeneous polynomials. All of this is
phrased below in Proposition 2.4.26.

Proposition 2.4.26. Let X ⊆ Pn be a projective variety, and for any integer 0 ≤ i ≤ n such
that X∩D(xi) ̸= ∅, let Yi be the affine variety homeomorphic to X∩D(xi) via Definition 2.4.12.
The restriction map of functions described in Remark 2.4.25 yields an isomorphism:

ξ : Frac(S(X))hom :=

{
f

g
∈ Frac(S(X))

∣∣∣∣ ∃d ≥ 0 : f, g ∈ S(X)d

}
→ K(X ∩D(xi))

Algebraically, this isomorphism is given by the following two homomorphisms:

(1)

Frac(S(X)) ∋ f

g
7→

[
f
d
]

[gd]
∈ Frac(A(Yi)),

where

◦ f and g are required to be homogeneous of the same degree,

◦ f and g are homogeneous lifts of f and g to k[x0, . . . , xn], respectively,

◦ f
d
and gd are the dehomogenization with respect to xi of f and g, respectively, see

Definition 2.4.15, and

◦
[
f
d
]
and

[
gd
]
are the residue classes of f

d
and gd in A(Yi), respectively.

(2)

Frac(A(Yi)) ∋
f

g
7→

[
f̃h

]
[g̃h]

∈ Frac(S(X)),

where

◦ f̃ and g̃ are lifts of f and g, respectively, to k[x0, . . . , xi−1, xi+1, . . . , xn],
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◦ f̃h and g̃h homogenizations of f̃ and g̃ of the same degree, that is, by setting m :=
max{deg f, deg g}, and using the notations of Definition 2.4.15,

f̃h := xm−deg f
i f̃h, and g̃h := xm−deg g

i f̃h.

◦
[
f̃h

]
and [g̃h] are residue classes of f̃h and g̃h in S(X).

Definition 2.4.27. If X ⊆ Pn is a quasi-projective variety, we define the field of rational
functions of X as

K(X) :=

{
f

g
∈ Frac

(
S
(
X
))∣∣∣∣∃d ≥ 0 : f, g ∈ S

(
X
)
d

}
,

where X is the closure of X in Pn.
If s ∈ K(X), then the domain D(s) of s is the largest open set U on which s can be

represented as a function U → k, that is, by Remark 2.4.24:

Dom(s) =
⋃

s= f
g
,f,g∈S(X)d

X ∩DX(g).

Remark 2.4.28. Note that, in the situation of Definition 2.4.27, if U ⊆ X, thenOX(U) = OX(U)
and K(X) = K

(
X
)
. So, Definition 2.4.27 is compatible with the philosophy of Definition 2.3.9.

Review of material that was covered in “Algebraic curves”

Just as in the affine case:

Definition 2.4.29. If X ⊆ Pn is a quasi-projective variety, and U ⊆ X is an open
set, then the ring OX(U) of regular functions on U is the following subring of K(X):

{ s ∈ K(X) | U ⊆ Dom(s) } ⊆ K(X).

Then the definition for a morphism in the quasi-projective case is just as in the
quasi-affine case verbatim.

Definition 2.4.30. Let X and Y be two algebraic sets, where any of the two can
be either quasi-projective (in which case we still have fixed embeddings X ⊆ Pn or
Y ⊆ Pm), or quasi-affine. Then f : X → Y is a morphism if it is a continuous map
such that for each open set V ⊆ Y , and s ∈ OY (V ), s ◦

(
f |f−1V

)
∈ OX(f−1V ). Just

as in the quasi-affine case, by abuse of notation, we usually simply write s ◦ f for
s ◦
(
f |f−1V

)
.

A morphism is an isomorphism if it has an inverse.

Remark 2.4.31. Just as in the case of quasi-affine varieties (show in Proposition 2.3.13
and Proposition 2.3.14), OX and K(X) are invariant under isomorphisms also for
quasi-projective varieties.

Furthermore, just as in the affine case, Definition 2.4.30 removes the data of the
fixed embedding to Pn from the notion of quasi-projetive varieties.

Proposition 2.4.26 tells us that the homeomorphisms stated in Proposition 2.4.19
are in fact isomorphisms:

Proposition 2.4.32. Let X be a quasi-projective variety and let Y be the quasi-
affine variety homeomorphic to D(xi) ∩ X via the affine chart maps given by Def-
inition 2.4.12 (for some embedding X ⊆ Pn and for some choice of i). Then, the
homeomorphism between D(xi) ∩X and Y is in fact an isomorphism.
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Notation 2.4.33. From now on, a variety X being projective/affine/quasi-affine
means that X is isomorphic to a projective/affine/quasi-affine variety.

Corollary 2.4.34. Quasi-affine varieties are quasi-projective.

Corollary 2.4.35. Each quasi-projective variety can be covered by finitely many
affine open sets.

Remark 2.4.36. It is again hard to overestimate the importance of Corollary 2.4.35 in algebraic
geometry. It tells us that the local structure of varieties is given by affine varieties. So, affine
varieties play the role of what “smooth charts” play in differential geometry. And, indeed,
many arguments in algebraic geometry localize to the affine case via Corollary 2.4.35.

Example 2.4.37. As earlier in Example 2.3.7 it is easy to compute OX(U), if X is projective,
and S(X) is a UFD, taking into account that the divisors of a homogeneous polynomial are
also homogeneous. So, if f ∈ S(X) is a fraction of homogeneous polynomials of the same
degree, we may put it into a form a

b , where a and b are relatively prime and homogeneous of
the same degree (and they are then uniquely defined up to multiplication by a unit). As in
Example 2.3.7, we obtain that in this situation f ∈ OX(U) if and only if U ⊆ D(b).

So, for example OPn(Pn) = k, as b in this case can be only a constant function (since
otherwise V (b) ̸= ∅), and then a also has to be a constant function, as deg a = deg b must hold.

It follows then the following corollary.

Corollary 2.4.38. Pn is not affine for n > 0.

Proof. We have seen in the above example that OPn(Pn) = k, but if it was affine, then it would
be OPn(Pn) = A(Pn), which would be a ring of dimension n > 0. However, dim k = 0.

2.5 LOCAL RINGS

Definition 2.5.1. Let X be a variety. Let V ⊆ X be an irreducible closed subvariety. Then
the local ring of X at V is defined by

OX,V := { f ∈ K(X) | Dom(f) ∩ V ̸= ∅ }.

If V = {x} for a single point x ∈ X, then we use the notation OX,x for OX,{x}.

Remark 2.5.2. In the case V = {x}, the condition Dom(f)∩V ̸= ∅ is equivalent to the condition
x ∈ Dom(f). So, OX,x = { f ∈ K(X) | x ∈ Dom(f) }.

Remark 2.5.3. The definition ofOX,V given in Definition 2.5.1 is equivalent (by Definition 2.4.29)
to the other form given in some of the books:⋃

U⊆X open,U∩V ̸=∅

OX(U) ⊆ K(X)

Lemma 2.5.4. The local ring is indeed a ring.: If V ⊆ X is a closed subvariety of a
variety, then OX,V is a subring of K(X).

Example 2.5.5. Lemma 2.5.4 fails if V is not irreducible. Indeed, set X := A2
x,y and V :=

V (xy), f := 1
x and g := 1

y . Note that for s ∈ A(X), we have V (s) ∩ Dom
(
1
s

)
= ∅. Hence,

Dom(f) ∩ V ̸= ∅, Dom(g) ∩ V ̸= ∅, but Dom(f · g) ∩ V = ∅. In particular, if OX,V was defined
for the present X and V as in Definition 2.5.1, then it would not be a ring.
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On the other hand, if the condition Dom(f) ∩ V ̸= ∅ would be replaced by Dom(f) ∩ V is
dense in V , then the above hypothetical definition would become a ring. On the other hand, it
would not be local. Indeed, it would have two maximal ideals, generated by the residue classes
of x and y, respectively.

Lemma 2.5.6. The local ring is local in topology: If X is a variety, V ⊆ X is an
irreducible closed subvariety, and Y ⊆ X is an open subset such that Y ∩ V ̸= ∅, then the
natural restriction map OX,V → OY,Y ∩V is an isomorphism (to define this restriction map we
use that restriction of functions yield K(X) ∼= K(Y )).

Proposition 2.5.7. Localization is locally indeed a localization: If X is an affine
variety and V is an irreducible closed subvariety, then OX,V = A(X)I(V ) as subrings of K(X).

Corollary 2.5.8. The local ring is indeed a local ring: If X is a variety, and V an
irreducible subvariety, then OX,V is a local ring (in the algebraic sense, that is, it has a unique
maximal ideal), with its maximal ideal mX,V being:

mX,V =
{
f ∈ OX,V

∣∣ f |V ∩Dom(f) ≡ 0
}
.

Example 2.5.9. Putting together Lemma 2.5.6 and Proposition 2.5.7 as in the proof of Corol-
lary 2.5.8 we can give a lot of examples.

For example, let x ∈ Pn. Then x has an affine neighborhood isomorphic to An, where by
translation we may also assume that x is the origin. Hence,

OX,x
∼= k[x1, . . . , xn](x1,...,xn) =

{
f

g
∈ k(x1, . . . , xn)

∣∣∣∣ g(0, . . . , 0) ̸= 0

}
.

2.6 BÉZOUT’S THEOREM

Review of material that was covered in “Algebraic curves”

Theorem 2.6.1. If C and D are projective plane curves, then∑
x∈C∩D

I(x,C ∩D) = (degC)(degD).

End of 1.
class, on
22.09.2020.



Chapter 3

Why scheme theory?

Classical algebraic geometry does not give satisfactory answers to the following:

(1) What is a variety over a non-algebraically closed field?

(2) What is a variety over Z?

(3) What is the “limit” of variety? Say, one takes V (x(x+ ty)) as t → 0? Is it just V (x) or
is it V (x2) in some adequate sense?

(4) What is an infinitesimal deformation of a variety, that is, what is a variety and a defor-
mation in a tangent direction?

(5) What is the fiber of the morphism A2
x,y → A1

t given by (x2, y) 7→ t at t = 0. Is it V (xy)
or rather V (x2y) in an adequate setting?

(6) If varieties are locally just reduced finitely generated k-algebras, then is there a notion on
varieties that specializes locally to just finitely generated modules over these k-algebras.
Moreover, we would like this notion to form an abelian category, that is, we would want
to be able to take kernels, cokernels, and in general to make homological algebra with
them, including taking derived functors, such as Exti( , ) or Tori( , ).

(7) Is there an intrinsic definition of the main objects of algebraic geometry, so not as subsets
of Pn or An. It would make the construction of products much more easier for example.

In short, scheme and sheaf theory answers all the above questions.

Remark 3.0.1. Scheme theory is not the last answer. Depending on what we want to do,
there are even more abstract theories. For example derived algebraic geometry creates the
more general notion of derived schemes that work more functorially than schemes for many
operations. Or, over more intricate fields, i.e., over perfectoid fields, it turns out that one needs
more intricate objects such as perfectoid spaces. However, to understand these more intricate
notions it is highly suggested that one is a master of scheme theory. And, after all, for many
researchers, the abstraction of scheme theory is by far enough.

25
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Chapter 4

Sheaves

Read carefully Section II.1. of Hartshorne. It is important to know what a direct limit is.

Definition 4.0.1. A directed set is a pair (S,≤) of a set S, and a reflexive and transitive
relation ≤ on S, such that for each x, y ∈ S there exists a z ∈ S such that x ≤ z and y ≤ z.

Definition 4.0.2. A direct system (A∗, f∗∗) of abelian group over a directed set (I,≤) is the
data of

(1) an abelian group Ai for every i ∈ I, and

(2) a homomorphism of abelian groups fij for every i ≤ j in I, such that

(i) fii = idAi , and

(ii) fjl ◦ fij = fil for every i ≤ j ≤ l in I.

Remark 4.0.3. If (I,≤) is considered to be a category such that there is arrow i→ j whenever
i ≤ j, then a direct system of abelian group over a directed set (I,≤) is just a functor from
this category to the category of abelian groups.

Definition 4.0.4. Let (A∗, f∗∗) be a direct system of abelian group over a directed set (I,≤).
We say that (B, g∗) is the direct limit if

(1) B is an abelian group, and

(2) gi : Ai → B are group homomorphisms for every i ∈ I such that gj ◦ fij = gi for every
i ≤ j,

and additionally whenever we are given

(3) an abelian group C, and

(4) group homomorphisms hi : Ai → C for every i ∈ I such that hj ◦ fij = hi for every i ≤ j,

then there is a unique homomorphism α : B → C such that α ◦ gi = hi for every i ∈ I. To
summarize, we have the following diagram commutes for every i ≤ j:

Ai

fij

��

gi
''

hi

++B α // C

Aj

gj

77

hj

33

27
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The notation is

lim−→
i

Ai,

which is an abuse of notation, as the fij are also part of the data.

Proposition 4.0.5. In the situation of Definition 4.0.4 the direct limit exists and can be
described the following two ways:

(1) Take
⊕
i∈I

Ai and quotient out the subgroup generated by the elements x− fij(x) ∈
⊕
i∈I

Ai

for every x ∈ Ai and every i ≤ j. The homomorphisms gi : Ai → lim−→
i

Ai is induced by the

structure homomorphisms Ai →
⊕
i∈I

Ai of direct sums.

(2) Take the disjoint union
⊔
i∈I

Ai and quotient out the equivalence relation generated by letting

x and fij(x) ∈
⊔
i∈I

Ai be equivalent for every x ∈ Ai and every i ≤ j. The homomorphisms

gi : Ai → lim−→
i

Ai is induced by the structure maps Ai →
⊔
i∈I

Ai.‘

Proof. Homework

Here we also add some important examples to the material presented in Hartshorne.

First, two examples of pre-sheaves that are not sheaves.

Example 4.0.6. Consider the following functor F on the discrete topological space with two
elements, say on {x, y}.

F
(
{x, y}

)
= Z

idZ

vv idZ ((
0

��

F
(
{x}
)
= Z

0 ((

F
(
{y}
)
= Z

0

vv
F(∅) = 0

(4.0.a)

One can see that diagram (4.0.a) commutes, which is equivalent to say that F is a presheaf.
However, it is not a sheaf. Indeed, choose 0 ∈ Z = F

(
{x}
)
, and 1 ∈ Z = F

(
{y}
)
. As

{x} ∩ {y} = ∅, by the gluing part of the sheaf axioms there should be a global sections
s ∈ F

(
{x, y}

)
= Z restricting to 0 on {x} and to 1 on {y}. However, this is not possible by

(4.0.a).

Example 4.0.7. Consider the functor C0,∞ on the open sets of R that assigns to each open
set U ⊆ R the continuous bounded functions on U , with restriction homomorphisms being just
restrictions of functions. As restrictions of functions is the same if we do it through multiple
restrictions or just a single one, this is a presheaf. However, it is not a sheaf. Indeed, if we
take id(n,n+2) ∈ C0,∞

(
(n, n+ 2)

)
for every n ∈ Z, then this give a collection of elements on an

open cover that glue, but they do not give a global section in C0,∞
(
R
)
, as idR is not bounded.

End of 2.
class, on
24.09.2020.

Second, two examples of surjective sheaf-homomorphisms that are not surjective when
restricted to certain open sets.
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Example 4.0.8. Let x, y ∈ A1 be two points, where A1 is the affine line as introduced in
classical algebraic geometry. Set ι : Z = {x, y} ↪→ Z1. As ZA1 takes value Z on every non-
empty open set, for any open set ∅ ≠ U ⊆ {x, y} we have

ι−1,preZA1(U) = lim−→
ι(U)⊆V

ZA1(V ) = lim−→
ι(U)⊆V

Z =

all maps of this direct system are idZ, and hence all elements are equivalent
to an element of ZA1(A1) = Z

Z

Moreover, analyzing the above argument one can see that all maps of ι−1,preZA1 are identities.
Hence ι−1,preZA1 is in fact the pre-sheaf of Example 4.0.6. In particular this is an example of
when the sheafification is necessary to obtain ι−1ZA1 , or with other words ι−1ZA1 ̸= ι−1,preZA1 .

As ι−1,pre agrees with ZZ on a basis given by {x} and {y}, by the sheaf axioms ι−1 = ZZ .
Hence, the sheaf homomorphism ZA1 → ι∗ι

−1ZA1 is not surjective on global sections. Indeed
when evaluating the source and the target on A1 we obtain

ZA1(A1) = Z, and
(
ι∗ι

−1ZA1

)
(A1) =

by the definition of ι∗

ι−1ZA1(Z) =

by the above discussion

Z⊕2

As there is no surjective group homomorphism Z→ Z⊕2 we obtain our non-surjectivity claim.
On the other hand, ZA1 → ι∗ι

−1ZA1 is a surjective sheaf-homomorphism as can be checked for
example on stalks.

Example 4.0.9. Consider X = C with the usual topology, which is sometimes called ana-
lytic and sometimes Euclidean (so not with the Zariski topology). Let Ohol

C be the sheaf of

holomorphic functions of one variable, and let Ohol,×
C be the sheaf on non-zero holomorphic

functions. By adequately translating what we have learned in complex analysis we obtain that
the following sequence of sheaves is exact:

0 // ZC
n7→2πi·n // Ohol

C
f 7→exp(f) // Ohol,×

C
// 0

On the other hand, we also know from complex analysis that this sequence is not exact when
evaluated on C∗ = C \ {0}. Indeed, in that case if idC∗ ∈ Ohol,×

C (C∗) was in the image, then
there would be a global logarithm function over C∗.
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Chapter 5

Localization

Scheme theory can be thought about the generalizaton of classical algebraic geometry to a
setting where we replace “reduced finitely generated k-algebras” in Theorem 2.1.12 by “arbi-
trary rings”. In particular, it can be though as the marriage of classical algebraic geometry
and commutative algebra. For that reason, it is particularly important to not to just refresh
the background in classical algebraic geometry (Chapter 2), but to also recall the commutative
algebra background on a working level. That is, it should be recalled on a level on which we can
effectively compute examples, and do computations and proofs of smaller statement in general
quickly.

For understanding the nuances of the definition of schemes the most important is to recall
localization. We suggest that you recall what we have learned about localization in “Rings and
modules”. The most of it is contained in Sections 7.2 and 7.3 of the “Rings and modules”
course notes.

It is particularly important to recall the following:

(1) Localization by one element f ∈ R, which yields Rf , see Example 7.2.4.(3) in the “Rings
and modules” notes.

(2) Localization at a prime ideal p ⊆ R, which yields Rp, see Example 7.2.4.(4) in the “Rings
and modules” notes.

(3) Localization Rp of a ring that is an extension S ⊆ R of another ring S at the prime ideal
p ⊆ S, see Example 7.2.4.(6) in the “Rings and modules” notes. Here it is important to
note that this is the “same” as localizing R as a module over S, where “same” means that
both contains equivalence classes of fractions r

s where r ∈ R and s ∈ S \ p. Additionally

two such fractions r
s and r′

s′ are identified for both localizations if and only if there is a
u ∈ S \ p such that u(rs′− r′s) = 0 as an element of r. The only difference is whether we
remember the S-module structure of Rp or if we remember the ring structure on Rp.

Here it is also important to note that Rp is automatically a ring extension of Sp (the
natural map Sp to Rp is injective!), and hence it is also a module over Sp.

(4) Proposition 7.3.9 of “Rings and modules” tells us how ideals behave when they are ex-
tended and contracted via the localization map. For example, point (iv) of Proposition
7.3.9 tells us that if we localize at a prime ideal p ⊆ R, the prime ideals of Rp will be of
the form qe for prime ideals q ⊆ p ⊆ R. This is also denoted many times by qRp, which
is a minor abuse of notation, as the map R→ Rp is not always injective.

For example k[x](x) has only two prime ideals (x)e and (0)e = (0). With other words
localization restricts our attention to a subset of the spectrum of

SpecR =
{
p ⊆ R

∣∣ }
31
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(The spectrum will be endowed with a topology in Chapter 6, but for now let us think
about it simply as a set.)

The following picture is a visualization of SpecZ and of how SpecZ(3) and SpecZ3 should
be thought of as a subset

(0)

(2)

(3)

(5) (7) (11) . . .SpecZ

SpecZ3

SpecZ(3)

The above pictures shows the intuitive idea that Z(3) is much closed to Q, while Z3 is
much closer to Z.

Indeed, Z(3) is the best to understand by the fact that we invert in it anything BUT 3.
Formally:

Z(3)
∼=

{
a

b
∈ Q

∣∣∣∣∣ 3 ∤ b

}

On the other hand Z3 is the best to understand by the fact that we invert ONLY 3.
Formally:

Z3
∼= Z

[
1

3

]
.

(5) If R is a domain then every localization is contained in FracR.

(6) Localization of a localization is a localization. More precisely, iterated localizations fit
into a commutative diagram, by the universal property of localization. That is, let S ⊇ T
multiplicative subsets of R, and denote by ST−1 the multiplicative subset

{
s

t
∈ T−1R

∣∣∣∣∣ s ∈ S, t ∈ T

}
.

Then we have a commutative diagram where the non-isomorphic arrows are the corre-
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sponding structures homomorphisms of localizations:

R
α //

��

T−1R

γ
��

β

uu
S−1R oo

∼= //
(
ST−1

)−1(
T−1R

)
r
s

∈

� //
(
s
1

)−1 r
1

∈

rt
st′

(
s
t

)−1 r
t′

�oo

Here β is given by the universal property of the localization R → T−1R. Then, the iso-
morphism in one direction is given by the universal property of the localization R→ S−1R
applied to γ ◦ α, and in the other direction by the universal property of the localization
T−1R→

(
ST−1

)−1(
T−1R

)
applied to β.

Note that the above compatibility is evident when R is a domain, as in that case everything
happens in FracR, and hence the above two isomorphic rings are in fact the same subrings
of FracR. However, when R is not a domain (which is one of the main interesting case
for scheme theory), then one has to exhibit the above standalone isomorphism.

Additionally, it is extremely useful to look at Exercise 4 of the 13th exercise sheet of “Rings
and modules” this contains an algorithm of computing localization of rings of the types R

/
I.

From that we learn the following, where ξ : R→ R
/
I is the quotient homomorpishm.

(7) First, a remark about which multiplicative set one can use for such localizations, which is
in fact loosely phrased in Exercise 4 of the 13th exercise sheet. If we have a multiplicatively
closed set S ⊆ R, then ξ(S) will be multiplicatively closed in R

/
I. Then, localizing R

/
I

as an R-module at S is the “same” as localizing R
/
I as a ring at ξ(S). We mean this in

the sense of points (3) and (6) above. We let you make precise sense of it.

(8) Similarly to what we discussed in (4), Spec
(
R
/
I
)
is a subset of SpecR. For that reason,

by abuse notation the appearance of a prime ideal p ⊆ R in both of them is denoted by
p, despite of the fact that in Spec R

/
I we should really call it ξ(p) (note that these are

the prime ideals for which p ⊇ I).

Combining the previous paragraph and the previous point, for p as above, we denote the
localization of R

/
I at p (that is really at ξ(p)) by

(
R
/
I
)
p

(9) In Exercise 4 of the 13th exercise sheet of “Rings and modules” it is shown that if S ⊆ R

is a multiplicatively closed set, then S−1
(
R
/
I
) ∼= S−1R

/
Ie. Note that if I is given by

generators, then Ie is generated by the images of these generators in the localization.

In particular, for p ∈ SpecR, and for a primary decomposition I =
⋂s

i=1 Ii (recall what
primary decomposition is from Section 8.5 of the “Rings and modules” notes):

(i) if p ̸∈ Spec
(
R
/
I
)
, then (R \ p)−1

(
R
/
I
)
= 0, and

(ii) if p ∈ Spec
(
R
/
I
)
, then (

R
/
I
)
p
∼= Rp

/
Ie = Rp

/⋂
p⊇Ii

Iei

End of 3.
class, on
29.09.2020.

Let’s look at an example of the machinery explained in point (9) above
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Example 5.0.1. Consider I = (x2y, xy2) ⊆ k[x, y] for any field k. A minimal primary decom-
position of I is given by

I = (x) ∩ (y) ∩ (x3, x2y, xy2, y3)︸ ︷︷ ︸
= (x, y)3 = J

As J is (x, y)-primary, Spec
(
k[x, y]

/
I

)
contains of those prime ideals that either contain (x)

or they contain (y). If we localize outside of this set, then we obtain 0. Since x and y play
symmetric roles in this example, there are two types of prime ideals that contain (x) and (y):

(1) If a prime ideal p ⊆ k[x, y] contains both (x) and (y), then it has to contain (x, y). As
the latter is a maximal ideal, in this case p = (x, y). This unfortunately contains all the
ideals in the primary decomposition, so in this case we have(

k[x, y]
/
I

)
(p)

= A
/
(x)A ∩ (y)A ∩ (x3, x2y, xy2, y3)A︸ ︷︷ ︸

A = k[x, y]((x,y))

= A
/
(x2y, xy2)A

where subindex A means ideal generated in A.

(2) If a prime ideal p ⊆ k[x, y] contains (x) but not y, then in particular it also does not
contain J (as J is (x, y)-primary). Hence, we obtain that(

k[x, y]
/
I

)
(p)

= B
/
Bx︸ ︷︷ ︸

B = k[x, y]p

=

applying the rela-
tion

(
R
L

)
p
∼= Rp

/
Le

in the backwards di-
rection for L = (x)

(
k[x, y]

/
x

)
p
= k[y]p︸ ︷︷ ︸

p is regarded as an ideal
of k[y] via the identification

k[x, y]
/
(x) ∼= k[y]

So, for example if p = (x), then it corresponds to the prime ideal (0) ⊆ k[y], and hence

we obtain
(
k[x, y]

/
I

)
(p)

∼= k(y). If p = (x, y − 1), then it corresponds to the prime ideal

(y − 1) ⊆ k[y], and hence we obtain
(
k[x, y]

/
I

)
(p)

∼= k[y](y−1).

We summarize what we showed in the following picture:

(x, y) prime ideals containing (x), but not (y)

prime ideals containing (y), but not (x)

localization: k[y]p

localization: k[x]p

localization:
A
/
(x2y, xy2)A
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By a similar argument we also obtain that(
k[x, y]

/
I

)
y
= k[x, y]y

/
(x) =

(
k[x, y]

/
(x)

)
y
= k[y]y = k

[
y, y−1

]
(5.0.a)

where we similarly to the case of the localization by a prime ideal, in some expressions here y

is treated as the element of k[x, y], and in some as the image of this element in k[x, y]
/
I, and

in some as an element of k[y].

We note that the non-maximal components of the primary decomposition of I are called
the embedded components of R

/
I, which will have geometric meaning in scheme theory.



36 CHAPTER 5. LOCALIZATION



Chapter 6

Schemes and affine schemes

From now on in the entire course, k is an arbitrary field (so not necessary algebraically
closed as it was in Chapter 2). We will always indicate when k is algebraically closed.

In this section we cover the part of Section II.2 of Hartshorne until the top of page 76, that
is until the sentence “Next we will define and important..”, as well as Prop 2.6 of Section II.2.
of Hartshorne. With other words we cover everything from Section II.2. of Hartshorne, except
pages 76 and 77. Those we will cover in ??

We follow the book most of the time, and we only note a few important things :

Remark 6.0.1. In the definition of SpecA, it is worth mentioning that V (I) actually inherits
a subspace topology. Its closed subsets are intersection of closed subsets of SpecA with V (I),
that is, sets of the form V (I) ∩ V (J). However, then these are exactly the sets of the form
V (I + J), and hence by the correspondence theorem we obtain that V (I) with this subspace
topology is topologically isomorphic to Spec

(
A
/
I
)
.

We also note that the above method puts the same topological space structure of V (I) and
on V

(√
I
)
, which is then equivalently the topological space of Spec

(
A
/
I
)
and of Spec

(
A
/√

I
)

as well. However, the scheme structure of Spec
(
A
/
I
)
and of Spec

(
A
/√

I
)
is in general differ-

ent. This is an important point to which we will get back later.

Remark 6.0.2. The definition of OSpecA is secretely the sheafification of a much more intuitive
pre-sheaf, and knowing this helps to streamline some of the arguments. This pre-sheaf is

SpecA ⊇

open

U 7→ Opre
SpecA(U) = S(U)−1A

where

S(U) =
{
f ∈ A

∣∣ ∀p ∈ U : f ̸∈ p
}

The reason why we have
(
Opre

SpecA

)+
= OSpecA is that for any p ∈ A we have

lim−→
p∈U

(
S(U)−1A

)
ϕ−→∼= Ap

where ϕ is given by the universal property of direct limit applied to the ring homomorphisms

S(U)−1A→ Ap

given by iterated localization (see Chapter 5). We show that ϕ is surjective and injective:
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ϕ is surjective: take a
t ∈ Ap, then

a

t

∈ Ap

= ϕ
(a
t

∈ S
(
D(t)

)−1
A

)

ϕ is injective: Suppose ϕ
(
a
t

)
= 0 for a

t ∈ S(U)−1A. That is, there exists s ∈ A \ p such that

sa = 0. However, then a
t is already zero in U ∩D(s), and hence a

t yields the zero element of
the inverse limit.

End of 4.
class, on
01.10.2020.

Remark 6.0.3. Prop 2.2 of Hartshorne Section II.2 is not quite sufficiently stated for how it is
applied. It is important to add to point (a) that the isomorphism is via the isomorphism of
Remark 6.0.2 or equivalently by the evaluation isomorphism of the sections of OSpecA at p (the
values of the sections of OSpecA according to Hartshorne’s definition at p ∈ Spec are in Ap).

For point (b) it again it is important to remember that the isomorphism is given either by
the natural homomorphism (given by sheafification):

Af = Opre
SpecA

(
D(f)

)
→
(
Opre

SpecA

)+ (
D(f)

)
= OSpecA

(
D(f)

)
or equivalently by sending a

fn ∈ Af to the section that evaluates at p ∈ Ap to a
fn ∈ Ap.

It is also curcial to add the following examples to the discussion of Section II.2 of Hartshorne.

Example 6.0.4. Revisit Example 5.0.1 from a scheme theoretic point of view: generic points,
stalks, embedded components, etc.

Conclude from (5.0.a), that D(x) ∼= D(y) ∼= A1 \ {0}.
Beef up the example to the case of

I =
(
xy3, x2y2

)
= (x) ∩

(
y2
)
∩ (x, y)4.

In this case, D(x) is an infinitesimal fattening of A1 \ {0}.

Example 6.0.5. There will be two exercises on the exercise sheet (Exc 2.10 and 2.11) asking
you to show that points of schemes over non-closed fields correspond to Galois orbits of schemes
over algebraically closed fields.

Example 6.0.6. Spectrum of a field.

Example 6.0.7. Spectrum of a DVR, say Spec k[x](x).

End of 5.
class, on
06.10.2020.

Example 6.0.8. SpecZ.

Example 6.0.9. Let R be a ring and p ⊆ R a prime ideal. Then we have natural homomor-
phisms of rings

R −→ Rp −→ Rp
/
pRp
∼=

the natural homomorphism R → Rp induces this isomorphism by Additionally, S−1R is
a flat R-modules, exercise 2.(d) of Sheet 11 of “Rings and modules”, see Remark 6.0.10
for additional commutative algebra review essential around this topic

Frac
(
R
/
p
)

Hence, if X = SpecR, then we obtain morphisms of schemes

SpecFrac
(
R
/
p
)
= Spec k(p) −→ SpecRp = SpecOX,p −→ SpecR = X

These are particularly important and frequently used morphisms.
If R is a domain, and p = (0), then p is called the generic point and it is typically denoted by

η. In general the generic points of the schemes are the minimal primes of (0) (see Section 7.3)
for a discussion on minimal primes.
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Remark 6.0.10. We recall additional facts about localization around the isomorphism Rp
/
pRp
∼=

Frac
(
R
/
p
)
:

(1) It is very important to recall the localization of a module M over a ring R along a
multiplicatively closed set S−1 ⊆ R. This yields an S−1R-modules S−1M , see Def 7.2.5
of the “Rings and modules” notes.

(2) S−1M ∼= M ⊗R S−1R, by Exercise 1 of Sheet 11 of “Rings and modules”.

(3) S−1R is a flat R-modules, exercise 2.(c) of Sheet 11 of “Rings and modules”

(4) For every ideal I ⊆ R there is a natural evaluation map I ⊗R S−1R→ Ie ⊆ S−1R, which
is surjective by the definition of Ie. By the flatness of S−1R over R additionally this
evaluation map is injective (as ( ) ⊗R S−1R takes 0 → I → R → R

/
I → 0 to an exact

sequence). Hence, I ⊗R S−1R → Ie is an isomorphism, which is natural with respect to
inclusion of ideals.

(5) The above point is important to prove Rp
/
pRp

∼= Frac
(
R
/
p
)
. Indeed, here pRp is just

another notation for pe, and then one applies ( )⊗R Rp to the exact sequence

0 // p // R // R
/
p // 0

This yields that Rp
/
pRp
∼=
(
R
/
p
)
⊗R Rp. Then, one just has to identify the latter with

Frac
(
R
/
p
)
. This is done by using point (7) of Chapter 5.

(6) Back to the general situation (so not the specific situation of the previous point), if N is
another R-module, then M ⊗R

(
N ·Ann(M)

)
= 0. Indeed, for this, it is enough to show

that the simple tensors in this tensor product are zero (as they generate). However, if
m ∈M , n ∈ N and r ∈ Ann(M), then

m⊗ (n · r) = rm⊗ n = 0⊗ n = 0

(7) We have M ⊗R N ∼= M ⊗R

(
N
/
N ·Ann(M)

)
via the natural homomorphisms on the

two coordinates. Indeed, one applies ( )⊗R M to the exact sequence

0 // N ·Ann(M) // N // N
/
N ·Ann(M)

// 0

and uses the previous point.

(8) As Ann(M) acts trivially on both coordinates in M ⊗R

(
N
/
N ·Ann(M)

)
, we can even

replace R by R
/
Ann(M). That is, we have

M ⊗R N ∼= M ⊗(
R

/
Ann(M)

) (N/
N Ann(N)

)
(6.0.a)

.

Using the above statements, for example one can prove that(
I
/
I2
)
⊗R S−1R ∼= Ie

/(
Ie
)2 (6.0.b)

To prove (6.0.b), take the following exact sequence of R-modules

0 // I2 // I // I
/
I2

// 0
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We apply ( )⊗R S−1R, and we use that
(
Ie
)2

=
(
I2
)e

by definition. This yields the following
exact sequence, which concludes the proof of (6.0.b)

0 // I2 ⊗R S−1R =
(
I2
)e

=
(
Ie
)2 // I ⊗R S−1R = Ie //

(
I
/
I2
)
⊗R S−1R // 0

In the case when I = m is maximal ideal and S = R\m (or equivalently we consider localization
at m), then m is in the annihilator of the R-modules m/m2. Hence, we have

(m/m2)⊗R Rm
∼=

(6.0.a),

m/m2 ⊗(
R

/
m

) (Rm
/
mRm

)
∼=

R
/
m ∼= Rm

/
mRm

m/m2 (6.0.c)

That is, putting together (6.0.b) and (6.0.c), we obtain that (m/m2) ∼= me/(
me
)2. With other

words the Zariski tangent spaces of m ∈ SpecA can be computed two different ways if n ⊆ A
is a maximal ideal, see exercise II.2.8 of Harshorne. The arugment is as follows.

6.1 CLASSICAL VARIETIES AS SCHEMES

Finally we remark that Prop 2.6 of Section II.2. of Hartshorne moves our entire classical
theory of varieties into scheme theory. From now we identify the two point of views of classical
algebraic geometry. That is, when we talk about a classical variety over an algebraically closed
field, we think about the classical object and the corresponding scheme at the same time. So
in particular:

Remark 6.1.1. Some important take home messages from the proof of Prop 2.6 of Section II.2.
of Hartshorne:

(1) We identify a classical affine variety X with coordinate ring A(X) with the scheme
SpecA(X).

(2) In scheme theory classical varieties obtain extra points, that is, one point for each closed
irreducible subspace. For example for A1

k over an algebraically closed k (see Defini-
tion 6.1.2), there are the usual points that we are used to in the classical theory cor-
responding to (x − c) ⊆ k[x] (also called the closed points), and there is one extra point
η corresponding to (0) ⊆ k[x] called the generic point.

(3) By Example 6.0.9 we obtain many useful non-classical schemes associated to a classical
variety. These are frequently used.

SUGGESTION: for all statements about scheme theory, it is highly suggested that you
start understanding them by thinking through what they mean for classical varieties.

Definition 6.1.2. If R is a ring, then An
R = SpecR[x1, . . . , xn].

Note that the above definition is compatible with classical algebraic geometry. That is, the
scheme corresponding to An

k is indeed Spec k[x1, . . . , xn] as it was shown in Prop 2.6 of Section
II.2. of Hartshorne.

End of 6.
class, on
08.10.2020.



Chapter 7

Dimension theory of rings

We recall that until the end of the course, k is an arbitrary field (so not necessary alge-
braically closed as it was in Chapter 2). We will always indicate when k is algebraically
closed.

We stop for a little bit with the discussion of Section II.2 of Hartshorne, and we review and
complement our commutative algebra knowledge about dimension theory.

The dimension of a scheme is an invariant associated to its underlying topological space,
using notion of dimension associated to a topological space:

7.1 DIMENSION OF A TOPOLOGICAL SPACE

Let us consider a closed subspace V (I) of SpecA for some ring A. As V (I) = V
(√

I
)
, let

us assume that I is radical. We have that V (I) is irreducible if and only if I is prime. To see
this equivalence, in one direction take a, b ∈ R \ I such that ab ∈ I. As every radical ideal is
the intersection of the prime ideal containing it, V (I) \ V (a) ̸= ∅ and V (I) \ V (b) ̸= ∅. That
is, V (a) ∩ V (I) and V (b) ∩ V (I) are proper closed subsets of V (I). Additionally, their union
is V (I) by the assumption ab ∈ I. Hence V (I) is not irreducible. And, in the other direction
one basically just reverses this argument.

Definition 7.1.1. If X is a topological space, then its dimension hs values in N ∪ {∞} and it
is

dimX := sup{ n | ∃Z0 ⊊ Z1 · · · ⊊ Zn irreducible closed subsets of X }.

If X = SpecA, then dimX is the dimension as a topological space.

Remark 7.1.2. As chains of irreducible closed subsets of SpecA are in one to one correspondence
with chains of prime ideals of A (inclusion reverses!), we have that dim

(
SpecA) = dimA, where

dimA is the Krull-dimension as we have learned it in “Rings and modules”

Remark 7.1.3. By Definition 7.1.1, for SpecA to have finite dimension, one needs that ascending
and descending chains of prime ideals stabilize. This is related but not equivalent to A being
Noetherian. More precisely:

(1) It is true that most examples we know of Noetherian rings are of finite dimension. In
some sense this is what we show in the present chapter. For example, a precise statement
is that local Noetherian rings have finite dimension (Corollary 7.4.7).

(2) There are Noetherian rings of infinite dimension. The first example was due to Nagata,
and it is a localization of the polynomial ring in countably many infinite variables.
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(3) There are non-Noetherian rings of finite dimension. For example: k[x1, x2, . . . ]
/
(x21, x

2
2, . . . )

has a single prime ideal, which is also its nil-radical. Hence it has finite dimension, but it
is not Noetherian.

Definition 7.1.4. If p ⊆ R is a prime ideal in a ring, then its height ht p is defined to be the
supremum of all the integers n, for which there is a chain of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ pn−1 ⊊ pn = p.

In terms of a affine scheme X = SpecA, ht p is called the codimension of the closed set
V (p) ⊆ X.

Example 7.1.5. As Z and k[x] are PID’s, we have dimSpecZ = 1 and dim k[x] = 1. See
Example 6.1.2.(2) of the “Rings and modules” notes.

This is luckily compatible with what we learned in “Algebraic curves”, as the classical A1

is by this point identified with Spec k[x] for k algebraically closed.
However, it pertains to many non-classical schemes as well. For example dimA1

k = 1 also if
k is not algebraically closed.

Another non-classical example is using the fact that the dimension is a topological notion.

So, the nilpotent thickening Spec
(
k[x, y]

/
(y2)

)
of A1

k also has dimension 1. Indeed, for this

it is enough to see that the two topologies are isomorphic, for which in turn it is enough to
show that the natural quotient homomorphism given by the following composition yields an
isomorphism on topology

R = k[x, y]
/
(y2)→ k[x, y]

/
(y2) ∼= k[x].

Indeed, if one passes to Spec then the above quotient homomorphism expresses A1 as the
V
(
rad(R)

)
in SpecR. As rad(R) is the radical of (0), we see that V

(
rad(R)

)
= SpecR

topologically.

Example 7.1.6. As trdegk k(x1, . . . , xn) = n, and so dimSpec k[x1, . . . , xn] = n. See Thm
6.1.11 and Example 6.1.2.(3) of the “Rings and modules” notes.

This is luckily compatible with what we learned in “Algebraic curves’, as the classical An

is by this point identified with Spec k[x1, . . . , xn] for k algebraically closed.
We also note that as k[x1, . . . , xn] is a UFD, and xi are irreducible, it is easy to see that (xi)

are prime ideals of height 1. However, the same is true for any irreducible f ∈ k[x1, . . . , xn].
That is, (f) is a prime ideal of height 1.

The next question is what is the dimension of the spectra of rings such as k[x1, . . . , xn]
/
I

or of Z[x1, . . . , xn] and of its quotients. This is addressed in Section 7.2 and in Section 7.3,
together with the necessary commutative algebra background.

7.2 ADDITIVITY OF DIMENSION AND HEIGHT

In this section we are proving the following theorem.

Theorem 7.2.1. Consider the following situation:

◦ R is a finitely generated k-algebra and also a domain, and

◦ p ⊆ R is a prime ideal.

Then dimR = dim
(
R
/
p
)
+ht p [ or equivalently dimSpecR = dimV (p)+ codimV (p), which

is surprisingly not true for general schemes, see Example 7.2.2 ].
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Before proving Theorem 7.2.1, let us note in the following example that it does not hold if
R is not a finitely generated k-algebra. That is, Theorem 7.2.1 works in the classical setting
and in its generalizations over non-closed fields.

Example 7.2.2. Consider the situation:

◦ A = k[x](x),

◦ R = A[y], and

◦ p = (xy − 1).

Then:

◦ R
/
p ∼= k(x), and hence dim

(
R
/
p
)
= 0.

◦ ht p = 1 by Theorem 7.3.4.

◦ R is the localization of k[x, y] at S = k[x] \ (x). Hence, by the behavior of prime ideals
with respect to localization, we know that the prime ideals of R correspond to prime
ideals of k[x, y] avoiding S. In particular, dimR ≤ dim k[x, y] = 2, and we can exhibit a
chain of prime ideals of length 2 in R:

(0) ⊊ (y) ⊊ (x, y)

Hence, we have dimR = 2.

So, we obtained that
dimR = 2 ̸= 0 + 1 = dim

(
R
/
p
)
+ ht p

This shows that the finitely generated k-algebra assumption indeed is essential in Theorem 7.2.1.
Note that instead of the above choices we could have chosen also A = Z(q) for some prime

q ∈ Z and p = (py − 1). In that case we would have R
/
p ∼= Q.

Example 7.2.3. Let X = Spec
(
k[x1, . . . , xn]

/
p

)
for some prime ideal p ⊆ k[x1, . . . , xn]. If k

is algebraically closed, this means that X is the classical affine variety V (p) in An. However,
our setting works also over non-closed k, and we have dimX = n− ht p by Theorem 7.2.1.

Note, that a prime polynomial f in any ring R generates a prime ideal. If R is a UFD, as
when R = k[x1, . . . , xn], then one can show by hand that ht(f) = 1 (see Example 7.1.6). (If R
is in general Noetherian, then the statement that ht(f) = 1 will be shown in Theorem 7.3.4.)

So, by considering V (f), any prime element in f ∈ k[x1, x2] yields an example of an affine
curve in A2

k, and any prime element in f ∈ k[x1, x2, x3] yields an example of an affine surface
in A3

k. The question is how does one decide if f is a prime element. For this it is important to
know the Gauss lemmas and the Eisenstein criterion (Section 2.7 of the “Anneaux et coprs”
notes).

We can use for example the Eisentstein criterion for k[x1, . . . , xn] = (k[x1, . . . , xn−1])[xn].
That is, if f ∈ k[x1, . . . , xn], we may write it as

∑d
i=0 fi(x1, . . . , xn−1)x

i
n such that fd ̸= 0,

and then f is irreducible if there is an irreducible polynomial g ∈ k[x1, . . . , xn−1], such that
g ∤ fn, g|fi for i < d and g2 ∤ f0. For example, x22 − x1(x1 + 1) is irreducible, because x1 ∤ 1,
x1|x1(x1 + 1) and x21 ∤ x1(x1 + 1).

Similarly, x21 + x22 + x23 is irreducible if and only if char k ̸= 2. Indeed, if char k = 2, then
x21+x22+x23 = (x1+x2+x3)

2, so it is not irreducible. So, it is enough to show using the Eisenstein
criterion that in the other cases, x21+x22 ∈ k[x1, x2] is the product of two different irreducibles.
Indeed, if char k ̸= 2, then there are two differents 2nd roots of unity in k, 1 and −1, and there
is a 2-nd root of −1 too (because k is algebraically closed), which we denote by ε. In particular,
x21 + x22 = (x1 + εx2)(x1 − εx2), showing the factorization into two different irreducibles. We
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might also want to argue that the above linear polynomials are indeed irreducibles. This
follows directly from the additive property of the degree: deg(gh) = (deg f) + (deg g) for
any f, g ∈ k[x1, . . . , xn] (Rem 1.4.26 of the “Anneaux et corps” notes). That is, a degree 1
polynomial cannot be written as a product of two positive degree polynomials.

The above irreducibility of the linear polynomials x1 + εx2 and x1− εx2 can also be shown
by using one of the Gauss lemmas, saying that a primitive element of R[t] is irreducible if and
only if it is irreducible as an element of Frac(R)[t]. Here primitive means that the greatest
common divisor of the coefficients if 1. Here this means that we need to show that for example
x1 + εx2 is irreducible as an element of k(x1)[x2]. However, this is obvious because a linear
polynomial of one variable is always irreducible over a field.

Now, we turn to the proof of Theorem 7.2.1. First, in one direction the inequality is
straightforward:

Lemma 7.2.4. If p ⊆ R is a prime ideal, then dim
(
R
/
p
)
≤ dimR− ht p.

Proof. Set i = dim
(
R
/
p
)
and j = ht p. We have to prove that i + j ≤ dimR. By the

deinition of height there is a chain p0 ⊊ · · · ⊊ pj = p. By the definition of dimension,
(0) = q0 ⊊ · · · ⊊ qi is a chain of prime ideals of R

/
p. By the correspondence theorem, this

induces a chain p = pj ⊊ · · · ⊊ pi+j . If we put together these two chains, we obtain that
i+ j ≤ dimR.

So, to prove Theorem 7.2.1, we only have to prove the reverse equality (compared to
Lemma 7.2.4). The idea is basically linear algebra, that is, we find a basis “adapted” to
p, that is, the first ht p elements are in p, and the other elements give a basis of R

/
p. The

only trick is that basis here means transcendence basis, and hence as always the ideas with
transcendence bases are the same as in linear algebra, but it takes much more time to make
them precise.

To make the above idea precise one needs a Noether normalization type statement. This is
Theorem 7.2.5. The proof is rather similar to the one we learned in “Rings and modules” for the
Noether normalization, although the statement itself is fundamentally different. For example
Theorem 7.2.5 works only in the polynomial ring, unlike the actual Noether normalization. We
refer to Lemma 7.2.8 for an explanation how Theorem 7.2.5 induces a transcendence basis of
R
/
p.

Material very similar to what we learned in “Rings and modules”

Theorem 7.2.5. In the polynomial ring R = k[z1, . . . , zn] let p be a prime ideal of
height 1. Then there are algebraically independent elements y1, . . . , yn ∈ R such that

(1) (y1) = p,

(2) and R is integral over S = k[y1, . . . , yn].

[ Or equivalently, there is a finite dominant morphism Spec k[z1, . . . , zn]→ Spec k[y1, . . . , yn],
such that (the pullback of) y1 is a defining equation of V (p) ⊆ Spec k[z1, . . . , zn]. ]

Proof. Note that R is a UFD. As ht p = 1 we can find 0 ̸= r ∈ p. By the prime
property then there will be an irreducible factor y1 of r, such that y1 ∈ p. As (y1)
is a non-zero prime ideal, by the assumption ht p = 1, we obtain that p = (y1). We
can write then y1 = f(z1, . . . , zn) for some polynomial f in k and in n-variables.
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Up to reordering the variables, we may assume that f is a non-constant polyno-
mial in z1. Set d := deg f , and let

C =

{
(c1, . . . , cn) ∈ Nn

∣∣∣∣∣
n∑

i=1

ci ≤ d

}
Choose then an integer N > 1 such that:

(1) for every (a1, . . . , an) ∈ C \
{
(d, 0, . . . , 0)

}
we have

d <

n∑
i=1

aiN
i−1

As all such sums are at least as big as N , this is true for N ≥ d+ 1.

(2) for every (a1, . . . , an) ̸= (b1, . . . , bn) ∈ C we have

n∑
i=1

aiN
i−1 ̸=

n∑
i=1

biN
i−1 (7.2.a)

This is doable as for each (a1, . . . , an) ∈ C the expression
∑n

i=1 aiN
i−1 is a

polynomial in N , and additionally for different choices of elements of C this
polynomial is different. There is one special polynomial out of these that is the
one associated to (d, 0, . . . , 0), which is just the constant d polynomial. The
other polynomials are all monotone increasing for large values of N . Addition-
ally, as they are all different polynomials, no two of them have common values
for big enough N . As C is finite, this means that for setting N big enough we
can actually make (7.2.a) hold.

For i = 2, . . . , n, fix then yi := zi− zN
i−1

1 . We are left to show that R is integral over
S = k[y1, . . . , yn], for which it is enough to show that z1 is integral over S (using
that the integral elements over S form a subring of R).

Claim. The polynomial

f
(
z1, y2 + zN1 , . . . , yn + zN

n−1

h

)
− y1 ∈

(
k[y1, . . . , yn]

)
[z1] (7.2.b)

has leading term of the form czα1 with c ∈ k ∖ {0}.

Proof. If f = czd1 , then the leading term is czd1 . So suppose that f ̸= czd1 .
Then, by the choice of N , the leading term is of the form

n∏
i=1

zaiN
i−1

i

for some (a1, . . . , an) ∈ C by our choice of N .

So, the above claim shows that, z1 is indeed integral over S.
We are left to show that y1, . . . , yn are algebraically independent. As R is alge-

braic over these elements, there is a subset of them that form a transcendence basis
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of R (Def 6.1.3 of the “Rings and modules” notes). However, all transcendence bases
contain the same number of elements (Def 6.1.7 of the “Rings and modules” notes).
Hence, y1, . . . , yn is actually already algebraically independent.

Corollary 7.2.6. In the situation of Theorem 7.2.5, we also have p ∩ k[y2, . . . , yn] = {0}.

Proof. Take f ∈ p ∩ k[y2, . . . , yn]. Then f ∈ Ry1, and hence the element in f
y1
∈ Frac(S) ⊆

Frac(R) is integral over S. However S is integrally closed (as it is a UFD, see Example 6.2.6
of the “Rings and modules” notes). Hence, Frac fy1 ∈ S. This means that f = y1g(y1, . . . , yn)
for some polynomial g in n-variable over k. As f ∈ k[y2, . . . , yn] by assumption, we obtain that
g = 0, and hence f = 0. This concludes our proof.

Example 7.2.7. In the above proof we proved implicitly that if S ⊆ R is an integral extension
of domains with some 0 ̸= a ∈ S and with S being integrally closed, then Ra∩S = Sa. Indeed,
take f ∈ Ra ∩ S. Then f

a ∈ FracS is integral over S and hence f ∈ Sa.

This statement is false without assuming integral. Say if S = k[x2, x3] ⊆ k[x] = R and
a = x2, then Ra ∩ S ∋ x3 ̸∈ Sa.

Lemma 7.2.8. Consider the following situation:

◦ R is a finitely generated k-algebra and also a domain, and

◦ p ⊆ R is a prime ideal.

◦ y1, . . . , yn ∈ R are algebraically independent elements such that k[y1, . . . , yn] ∩ p = {0}.

Then dim
(
R
/
p
)
≥ n

Proof. Let ϕ : R → R
/
p be the quotient homomorphism. Let zi = ϕ(yi) for i = 1, . . . , n. We

show that z1, . . . , zn are algebraically independent elements of R
/
p. This will conclude our

proof as we learned in “Rings and modules” that dim
(
R
/
p
)
= trdegk Frac

(
R
/
p
)
(Thm 6.1.11

in the “Rings and modules” notes). So, it is enough to exhibit n− 1 elements in R
/
p that are

algebraically independent.

Suppose the opposite, that is, that f ∈ k[x1, . . . , xn] gives an algebraic relation on zi, that
is f(z1, . . . , zn) = 0 in R

/
p. Then, we have ϕ(f(y1, . . . , yn)) = f(z1, . . . , zn) = 0. Hence,

f(y1, . . . , yn) ∈ kerϕ = p. However, by our assumption the value of any polynomial evaluated
in y1, . . . , yn is in p if and only if this polynomial is 0. Hence, we have f = 0.

Proposition 7.2.9. Consider the following situation:

◦ R is a finitely generated k-algebra and also a domain, and

◦ p ⊆ R is a prime ideal of height 1.

Then dimR = dim
(
R
/
p
)
+ 1.

Proof. Set n = dimR. By Lemma 7.2.4, we only have to show that dim
(
R
/
p
)
≥ n − 1. By

Lemma 7.2.8, it is enough to find algebraically independent elements y2, . . . , yn ∈ R such that
k[y2, . . . yn] ∩ p = {0}.

For this, let us start with finding an arbitrary Noether normalization R′ = k[z1, . . . , zn] ⊆ R.
If k[z1, . . . , zn]∩p = {0}, then Lemma 7.2.8 shows that dim

(
R
/
p
)
≥ n. However, then dimR ≥

n + 1, which is a contradiction. So, for q = k[z1, . . . , zn] ∩ p we have q ̸= {0}. Corollary 7.2.6
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then yields a subring S = k[y1, . . . , yn] ⊆ R′ generated by algebraically independent elements
y1, . . . , yn, such that k[y2, . . . , yn] ∩ q = {0}. However, this concludes the proof, as we have

k[y2, . . . , yn] ∩ p =

k[y2, . . . , yn] ⊆ R′

k[y2, . . . , yn] ∩R′ ∩ p = k[y2, . . . , yn] ∩ q = {0}.

Proof of Theorem 7.2.1. Note that as R is a finitely generated k-algebra, all dimensions and
heights are finite.

We show the statement by induction on ht p. If ht p = 0, then there is nothing to prove. If
ht p = 1, then the statement is shown in Proposition 7.2.9.

For h = ht p, take a chain of prime ideals

p0 = (0) ⊊ . . . ⊊ ph = p (7.2.c)

Such a chain exists by the definition of a prime ideal. By our induction hypothesis we know
that

dimR =

induction hypothesis

dim
(
R
/
ph−1

)
+ht ph−1 =

ht ph−1 ≥ h − 1 by (7.2.c) and it cannot be
bigger, because then we would have ht ph > h

dim
(
R
/
ph−1

)
+h−1 =

Proposition 7.2.9 applied to R
/
ph−1

and to the image of p in R
/
ph−1

dim
(
R
/
p
)
+1+h−1 = dim

(
R
/
p
)
+ht p

Here we used that if q is the image of p in R
/
ph−1, then ht q = 1 (as ph−1 is a maximal prime

ideal contained in ph), and by the third isomorphism theorem we have

R
/
ph−1

/
q
∼= R

/
p

End of 7.
class, on
13.10.2020.7.3 KRULL’S HAUPTIDEALSATZ

7.3.1 Minimal primes

Section 7.2 reduces the computation of the dimension of finitely generated algebras to
heights of certain prime ideals. More precisely, if we know the dimension of a domain R that
is also a finitely generated k-algebra, where k is a field, then

dim
(
R
/
I
)
= dimV (I)︸ ︷︷ ︸

as a subspace of SpecR

=

dimension of a Noetherian topological space is the maximum of the dimension of its irreducible
components (easy exercise), which correspond to the minimal primes containing I

max
p ⊇ I prime ideal
minimal with
this propery

dimV (p) =

Theorem 7.2.1

max
p ⊇ I prime ideal
minimal with
this propery

dimR− ht p (7.3.a)

The irreducible components of V (I) are the above V (p), because the irreducible components
are the maximal irreducible closed subsets of V (I). This then on the ring level translates to
being a prime ideal containing I. In fact, prime ideals of the above type are called minimal
primes of I:
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Definition 7.3.1. If r is an element (resp. I is an ideal) of a Noetherian ring R, then a prime
ideal p ⊆ R is a minimal prime of r (resp. of I), if r ∈ p (resp. I ⊆ p), and p is minimal with
respect to this property.

In the next lemma a the notation (I : x) :=
{
r ∈ R

∣∣ xr ∈ I
}
is used where x ∈ R and

I ⊆ R is an ideal. Recall also that an ideal q ⊆ R is primary if xy ∈ q and q ̸∈ q implies that
there is an integer n > 0 such that yn ∈ q (Definition 8.5.1 from Rings and modules). Note
that the radical of a primary ideal is prime (Proposition 8.5.3 from Rings and Modules).

Proposition 7.3.2. Let I be a radical ideal in a Noetherian ring R. Let I =
⋂r

i=1 qi be a
minimal primary decomposition of I. Then, qi are primes and the set {qi} agrees with the set
of minimal primes of I.

Proof. If r = 1, then I is prime. In particular, then there is nothing to prove, as I is its only
minimal prime, and also its primary decomposition consists of I (by the unicity part of primary
decomposition).

So, we may suppose that r > 1.

Step 1: qi are prime ideals. First we note:

Claim. For any x ∈ R, (I : x) is a radical ideal.

Proof. Let n > 0 be an integer and y ∈ R. Then,

yn ∈ (I : x)⇔ ynx ∈ I ⇒ ynxn ∈ I ⇒

I is radical

xy ∈ I ⇔ y ∈ (I : x)

Note that for any x ∈ R, qi ⊆ (qi : x) by definition. Fix an i. As the decomposition is
minimal, we can find x ∈ (∩j ̸=iqj) \ qi.

Claim. We claim that in fact qi = (qi : x).

Proof. Suppose otherwise: there exists r ∈ R such that rx ∈ qi but r /∈ qi. Then
by definition of primary we have xn ∈ qi for some n, and so xn ∈ I by the choice
of x. But I is radical, so x ∈ I, and therefore x ∈ qi, because I ⊂ qi. This is a
contradiction.

Putting the above two claims one can obtain that qi is prime as follows: for the other choice
of x, we have

(I : x) =

⋂
j

qj : x

 =
⋂
j

(qj : x) =

(qi : x) = qi by the above claim, and (qj : x) = R for j ̸= i

qi

Hence, qi is a primary ideal which is radical. In particular, qi is prime.

Step 2: qi are minimal primes of I. By Thm 8.5.21 of the Rings and Modules notes,
the set of primes which occur as radicals of the ideals in a minimal primary decomposition is
unique. As we showed in Step 1 that qi are primes, we obtain that qi themselves are unique,
and also by the virtue of coming from a minimal primary composition, none of them contains



7.3. KRULL’S HAUPTIDEALSATZ 49

the other. Suppose now there is some prime ideal p such that I ⊂ p ⊂ qi. Then, we can replace
qi by p, contradicting the uniqueness of the qi.

Step 3: All minimal primes of I appear among the qi. If {pi} is a fintie set of distinct

minimal primes of I then we cannot have pj ⊇
⋂
i ̸=j

pi unless pj contains one of the pi. (Otherwise

we could take elements ai ∈ pi \ pj . Then
∏

i ̸=j ai ∈
⋂
i ̸=j

pi but cannot be in pj by the prime

property.) Now suppose p is a minimal prime of I =
⋂
i

qi. As we have already showed that qi

is a minimal prime of I, the claim in the fist sentence of Step 3 implies that p is one of the qi.

Corollary 7.3.3. If I is an ideal of a Noetherian ring R, then the mininal primes of I are
exactly the ideals in a minimal primary decomposition of

√
I. In particular, there are finitely

many of them.

Proof. The primes containing I are exactly the same as the primes containing
√
I. Hence, the

same holds for minimal primes. Then the statement was shown in Proposition 7.3.2.

7.3.2 Statement of Krull’s hauptidealsatz and examples

Theorem 7.3.4 (Krull’s Hauptidealsatz). If 0 ̸= r ∈ R is an element of a Noetherian ring
and p is minimal of r, then ht p ≤ 1 [ or equivalently if V (p) is an irreducible component of
V (r), then codimV (p) ≤ 1 ].

Corollary 7.3.5. If 0 ̸= r ∈ R is an element of a Noetherian domain and p is minimal of r,
then ht p = 1 [ or equivalently if V (p) is an irreducible component of V (r), then codimV (p) = 1
].

Proof. This follows from Theorem 7.3.4 directly, taking into account that a non-zero prime
ideal in a domain has height at least 1, as it contains as proper subset the prime ideal (0).

Corollary 7.3.6. If X = SpecR for a finitely generated k-algebra R that is also a domain,

and 0 ̸= f ∈ R, then dimV (f) = dimSpec
(
R
/
(f)

)
= dimX − 1.

Proof. This is just putting together (7.3.a) and Corollary 7.3.5.

Example 7.3.7. Let us assume that k is algebraically closed, and hence we can work both in
the scheme theory and in the classical algebraic geometry world. Consider the subset

X =
{
(t2, t3, t4) ∈ A3

k

∣∣ t ∈ k
}
.

We wrote the definition of X with the classical language, but using the functor t defined by
Hartshorne in Prop 2.6, we identify the above definition with t(X). That is, t(X) contains the
maximal ideals (x− t2, y − t3, z − t4) and all the other prime ideals in the closure of these.

We also note that certainly dimX ≥ 1, as it contains infinitely many points.

Let us find equations for X. Obviously X ⊆ V (y2−xz). As in Example 7.2.3, we can show

that f = y2 − xz ∈ k[x, y, z] is irreducible. So, R = k[x, y, z]
/
(f) is a domain and Y = SpecR

is the variety defined by the equation f in A3. By the choice of f we also have that X ⊆ Y .
However, as in Example 7.2.3, dimY = 2. As, X is defined by using a single parameter (the
variable t), we expect it to be of dimension 1, and hence we expect that Y ̸= X. With other
words, there should be more equations describing X. For example, there is g = x2− z. This is
also irreducible in k[x, y, z], and as it is not associated to f , we have g ̸∈ (f). Hence the coset
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g of g in R is a non-zero element. By Corollary 7.3.5 and Theorem 7.2.1, we obtain that every
minimal prime of g in R has height 1 and hence

dimV (f, g)︸ ︷︷ ︸
in A3

= dimV (g)︸ ︷︷ ︸
in SpecR considered as a topological subspace of A3

= 1.

So, we have a good chance that V (f, g) = X. In fact, if a closed point (a, b, c) ∈ A3 is in
V (f, g), then we have c = a2 and then also b = a3/2, where we have a choice of square-root.
As we work over k algebraically closed this means that if we go with t through the two square
roots of a, (t2, t3, t4) will be going through all the possibilities of (a, b, c). That is, V (f, g) = X
indeed.

To summarize, by using Corollary 7.3.5 and Theorem 7.2.1 as a helping heuristics to know
how many equations we have to find, we showed that

X = V (x2 − z, y2 − xz).

7.3.3 Proof of Krull’s hauptidealsatz

Material that we are skipping

The proof of Theorem 7.3.4 uses some of the standard techniques of commutative
algebra, in particular localization at a prime ideal. Recall that if p is a prime ideal of
R, then there is an induced homomorphism ι : R→ Rp, along which we extend and
contract ideal (which are defined by Ie = ι(I)·Rp and Jc = ι−1(J)). Also, Proposition
6.19 or Rings and modules provides a precise description of these operations.
Lemma 7.3.8. If R is a ring and p ⊆ R is a prime ideal, then ht p = dimRp.

Proof. This follows straight from the description of the prime ideals of Rp, that is,
they correspond to prime ideals of R contained in p.

Lemma 7.3.9. If mi = mi+1 in a Noetherian local ring (R,m), then dimR = 0.

Proof. mi is a finitely generated R-module such that m · mi = mi. Therefore by
Nakayama’s lemma (Sheet 9, exercise 1 of Rings and Modules), we have mi = 0. In
particular m ⊆ nil(R), where nil(R) is the nilradical. Now, let q ⊊ R be a prime
ideal. Then, the following containments show that q = m:

m ⊆

the above claim

nil(R) ⊆

q is
prime

q ⊆

m is the only maximal ideal

m.

Definition 7.3.10. If I is an ideal of a ring R, then the n-th symbolic power I(n) is

I(n) =
{
r ∈ R

∣∣ sr ∈ In for some s ∈ R \ I
}
.

Lemma 7.3.11. If p ⊆ R is a prime ideal in a ring, and ι : R→ Rp is the localization
with maximal ideal m ⊆ Rp, then for each integer n > 0, p(n) = ι−1(mn).

Additionally, p(n) = p(n+1) if and only if mn = mn+1.
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Proof. Asm = pRp, m
n = pnRp, and hencemn = (pn)e, and hence ι−1(mn) = (pn)ec.

By Proposition 7.3.9.(2) of the Rings and Modules notes, (pn)ec =
⋃

u∈R\p

(pn : u),

which agrees with p(n) of Definition 7.3.10, by the definition of colon ideals.
In particular, the leftward implication of the addendum is automatic. For the

other direction assume that p(n) = p(n+1). By Proposition 7.3.9.(1) of the Rings and
Modules notes, we obtain

mn =

Proposition 7.3.9.(1) of
the Rings and Modules
notes

(mn)ce =

the above
paragraph

(
p(n)

)e
=

p(n) = p(n+1)

(
p(n+1)

)e
=

the above
paragraph

(
mn+1

)ce
=

Proposition 7.3.9.(1) of
the Rings and Modules
notes

mn+1

Lemma 7.3.12. If (R,m) is a Noetherian local ring such that mi = 0 for some
integer i > 0, then R is Artinian.

Proof. Let K be the residue field R/m. The important thing to realize is that

by Noetherianity mj
/
mj+1 is a finite dimensional K-vector space for every j. In

particular, these modules are Artinian R-modules. However, 0 = mi ⊆ mi−1 ⊆ · · · ⊆
m ⊆ R is a filtration of R by ideals such that the quotients of the adjacent terms in
this filtration are Artinian R-modules. Then, by downward induction on j starting
with j = i one can prove that all mj are Artinian, using the statement that if a
submodule and the quotient by it are both Artinian then our module is Artinian
(Prop 3.1.6 from the “Rings and modules” notes).

Proof of Theorem 7.3.4. Let q ⊊ p be a prime ideal. We have to show that ht q = 0.

Claim. We may assume that p is the only maximal ideal of R.

Proof. What we actually show is that we may replace R, p, q and r by Rp,
pRp, qRp and r

1 ∈ Rp. Indeed:

◦ pRp is the maximal ideal of the local ring Rp,

◦ pRp is a minimal prime ideal containing r
1 , by the correspondence

between prime ideals of the localization and prime ideals contained
in p: Proposition 7.3.9.(4) of the “Rings and modules” notes, and

◦ by the same correspondence, we obtain that qRp ⊊ pRp is also a
prime ideal of Rp, with ht qRp = ht q.

Our goal showing that ht q = 0 is equivalent to showing that dimRq = 0, ac-
cording to Lemma 7.3.8. Let m := qRq ⊆ Rq be the maximal ideal. According to
Lemma 7.3.9, it is enough to show that mi = mi+1 for some integer i. For this,
according to Lemma 7.3.11, it is enough to show that q(i) = q(i+1). This is not easy
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to show directly, as q(1) ⊇ q(2) ⊇ . . . is a decreasing chain of ideals and there is no
a-priori reason why a decreasing chain of ideals should stabilize in R. However, there
is a ring floating around where we have such a situation. Before explaining this, first
we need to clarify:

Claim.
√
(r) = p

Proof. According to Proposition 7.3.2, rad(r) =
⋂s

i=1 pi for the minimal
primes pi containing r, one of which agrees with p. Furthermore, no pi
can be thrown away from this decomposition. However, as p is the only
maximal ideal, there cannot be any other prime ideal that is not contained
in it. So, in fact s = 1, and p1 = p.

As p is the unique maximal ideal in R, so is the image p̃ of p in R/(r). Our latest
claim implies that p̃ in R/(r) is also nilpotent. Hence, according to Lemma 7.3.12
every descending chain stabilizes in R/(r). That is, we have found the desired ring.
However, q(i) do not induce ideals of R/(r). The best solution is to consider (r) +
q(i), which do induce ideals of R/(r) via the correspondence theorem. Hence this
decreasing chain stabilizes for i ≥ s. So, q(s) ⊆ (r) + q(s+1). Therefore, any element
x ∈ q(s) can be written as x = yr + z for some y ∈ R and z ∈ q(s+1) ⊆ q(s). It
follows that yr ∈ q(s) holds as well. However, r ̸∈ q (as p is the minimal prime ideal
containing r).

Claim. We have y ∈ q(s).

Proof. We have the assumption yr ∈ q(s). That is, by Definition 7.3.10,
there is r̃ ∈ R\ q such that yrr̃ ∈ qs. However, as r ̸∈ q and as q is a prime
ideal, rr̃ ̸∈ q also holds. By using Definition 7.3.10 and the containment
yrr̃ ∈ qs, we obtain that y ∈ q(s) indeed.

So, by our latest claim, we obtained that every element of q(s) can be written
as yr + z, where y ∈ q(s) and z ∈ q(s+1). In particular q(s) = q(s)r + q(s+1). So,

r ·M = M , where M is the R-module
(
q(s)
)/(

q(s+1)
)
. As r ∈ p, it also follows then

that p ·M = M . Finally, by Nakayama lemma (Sheet 9, exercise 1 of Rings and
Modules), M = 0, or equivalently q(s) = q(s+1). This is exactly what we wanted to
prove.

7.4 DIMENSION OF POLYNOMIAL RINGS OVER RINGS

Theorem 7.4.1. If R is a Noetherian ring, then dimR[x1, . . . , xn] = n + dimR [ or equiva-
lently dimAn

R = n+ dimR ].
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7.4.1 Height estimate in terms of the number of generators

Definition 7.4.2. For a general ideal I in a ring R, we define the height of I to be

ht I = inf
{

ht(p)
∣∣ I ⊆ p ⊆ R is prime ideal

}
Note that here we may restrict to minimal primes of I. If R is Noetherian, then there are
finitely many of those, and hence this infimum is a minimum.

Theorem 7.4.3. If R is a Noetherian ring, and r1, . . . , rs ∈ R, then ht(r1, . . . , rs) ≤ s [ or
equivalently codimV (r1, . . . , rs) ≤ s in SpecR ].

The hard part about proving Theorem 7.4.3 is to deal with the case when the chain giving the
height of a minimal prime of (r1, . . . , rs) does not contain the minimal primes of (r1, . . . , rs−1).
Lemma 7.4.5 says that in fact, one can always change the ri such that this does not happen,
at least in the case of a local ring (to which we will be able to reduce our argument by
localization). Before Lemma 7.4.5 we also state a direct consequence of Krull’s hauptidealsatz
(Theorem 7.3.4).

We call a prime ideal q contained in another prime ideal q maximal in p if q ̸= p, and if
q ⊆ I ⊆ p is another prime ideal, then I = q or I = p.

End of 8.
class, on
15.10.2020.Lemma 7.4.4. If q ⊊ p ⊆ R are prime ideals of R, and r ∈ p \ q such that p is a minimal

prime containing both q and r, then q is maximal in p.

Proof. Apply Theorem 7.3.4 to r + q ∈ R
/
q.

Lemma 7.4.5. Let (R,m) be a local ring, and r1, . . . , rs ∈ m such that
√
(r1, . . . , rs) = m [

or equivalently V (r1, . . . , rs) = m ∈ SpecR ]. If p ⊊ m is a maximal prime in m, then there
are elements r′1, . . . , r

′
s ∈ m such that

(1)
√

(r′1, . . . , r
′
s) = m [ or equivalently V (r′1, . . . , r

′
s) = m ∈ SpecR ], and

(2) p is a minimal prime of (r′1, . . . , r
′
s−1) [ or equivalently V (p) is an irreducible component

of V (r′1, . . . , r
′
s) ].

Proof. As m is the only prime ideal containing all the ri, there is an ri ̸∈ p. By re-indexing we
may assume that rs ̸∈ p. Then we have

p ⊊ p+ (rs) ⊆
√
p+ (rs) =

the primary decomposition of
√

p+ (rs) consists of only prime ideals, and it can contain only p as p ̸= p+ (rs).

m,

Hence, we may find an integer n > 0 such that rni ∈ p + (rs) for every integer 1 ≤ i ≤ s − 1.
With other words, for every integer 1 ≤ i ≤ s− 1, we may define r′i ∈ p and ai ∈ R such that

∀1 ≤ i ≤ s− 1: rni = r′i + airs (7.4.a)

We also set r′s = rs. Then, we prove the two points of the lemma, one by one:

(1) we have

m =

assumption

√
r1, . . . , rs ⊆

ri ∈
√

(r′1, . . . , r
′
s) by (7.4.a)

√
(r′1, . . . , r

′
s) ⊆

r′i ∈ m by definition

m
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(2) By the definition of the r′i we have p ⊇ (r′1, . . . , r
′
s−1). So, it is only left to show that p is

minimal with this property. So, assume the opposite, that is, that there is another prime
ideal (r′1, . . . , r

′
s−1) ⊆ q ⊆ p. As m is a minimal prime containing (r′1, . . . , r

′
s−1, r

′
s), it is

also a minimal prime containing q and r′s. Hence by Lemma 7.4.4, q is maximal in m.
However, this contradicts the fact that q ⊊ p ⊊ m.

Proof of Theorem 7.4.3. We prove the statement by induction on s. For s = 1 the statement
is shown by Krull’s hauptidealsatz (Theorem 7.3.4). So, we assume that s > 1, and that we
know the statement of the theorem for smaller values of s.

Consider a minimal prime p of (r1, . . . , rs). It is enough to prove that ht p ≤ s. For that
we can localize at p, or with other words we may assume that p is the unique maximal ideal of
R. (One needs to check here that the assumptions of the theorem do not change, and also the
height of p does not change. We let you do this checking, which is very similar to the checkings
we did in the proof of Theorem 7.3.4.)

Let q ⊆ p be a prime ideal such that q is maximal in p. By applying Lemma 7.4.5, we may
assume that q is a minimal prime of (r1, . . . , rs−1). By our induction hypothesis ht q ≤ s − 1.
As this is true for all prime ideals that are maximal in p, we obtain that ht p ≤ s.

Corollary 7.4.6. If I ⊆ R is an ideal of a Noetherian ring, then ht I <∞.

Proof. As R is Noetherian, we have I = (r1, . . . , rs), and hence ht I ≤ s [ or equivalently
codim I <∞ in SpecR ].

Corollary 7.4.7. (R,m) is a Noetherian local ring, then dimR < ∞ [ or equivalently
dimSpecR <∞ ].

Proof. By definition, dimR = htm, and then we apply Corollary 7.4.6.

7.4.2 Height of general complete intersections

Theorem 7.4.8. Consider the following situation:

(1) A is a Noetherian ring,

(2) 0 ≤ j ≤ i are integers,

(3) I ⊆ A is an ideal with ht(I) ≥ i [ or equivalently codimV (I) ≥ i in SpecR ]

(4) r1, . . . , rj ∈ I such that ht(r1, . . . , rj) = j [ or equivalently V (r1, . . . , rj) has codimension
j in SpecR, note that V (r1, . . . , rj) ⊇ V (I) ]

Then, there is rj+1, . . . , ri ∈ I so that ht(r1, . . . , rs) = s for every j ≤ s ≤ i [ or equivalently
codim(r1, . . . , rs) = s ].

V (r1, . . . , rs) as in the statement of Theorem 7.4.8, that is, satisfying the condition ht(r1, . . . , rs) =
s are called set theoretic complete intersections. The geometric meaning of Theorem 7.4.8 is
that if an ideal I defines a codimension at least i closed subset, then every set theoretic com-
plete intersection formed of elements of I can be extended to a codimension i set theoretic
complete intersections using elements of I.

The proof itself is just a combination of the corollary of Hauptidealsatz stated in Lemma 7.4.4,
and of the following lemma.
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Lemma 7.4.9. Prime avoidance. If p1, . . . , ps are prime ideal in a ring R, and I ⊆ R is an
ideal such that I ̸⊆ pi for every 1 ≤ i ≤ s [ or equivalently I does not vanish completely on
V (pi) ]. Then I ̸⊆

⋃
i pi [ or equivalently there is an element of I that does not vanish on any

of the V (pi) ].

Proof. We may assume that no two the pi’s are contained in each others. That is, for each
i ̸= j we have an element rji ∈ pj \ pi. Then by the prime property we have bj =

∏
i ̸=j rji ∈(⋃

j ̸=i pj

)
\ pi.

By assumption I ̸⊆ pi for each i we also have ai ∈ I \ pi. Again by prime property

biai ∈ I ∩
(⋃

j ̸=i pj

)
\ pj . Then

s∑
i=1

biai ∈ I \

(
s⋃

i=1

pi

)
.

Proof of Theorem 7.4.8. The statement is made up so that, by induction, it is enough to prove
the case j = i− 1. Let p1, . . . , pl be the minimal primes of (r1, . . . , rj). By Theorem 7.4.3, and
by our assumption ht pn = j for all n. Hence, I ̸⊆ pn for every n. By Lemma 7.4.4, we can

choose rj+1 ∈ I \
(⋃l

i=1 pi

)
. Let q be a mimal prime of (r1, . . . , rj+1). As (r1, . . . , rj) ⊆ q, q

contains one of the minimal primes of (r1, . . . , rj), that is one of the pn’s. Additionally by our
choice of rj+1 this containment is not trivial. Hence ht(r1, . . . , rj+1) ≥ j + 1 = i. We already
know the reverse inequality as well, by Theorem 7.4.3. This concludes our proof.

7.4.3 Dimension of local rings

Corollary 7.4.10. If (R,m) is a Noetherian local ring, then

dimR = min

{
n ∈ Z>0

∣∣∣∣ √(r1, . . . , rn) = m

}
Proof. By definition dimR = htm. Then, we just combine Theorem 7.4.3 and Theorem 7.4.8,
noting that for an ideal I ⊆ m, ht I = htm if and only if m is the only minimal prime of I.

Definition 7.4.11. If (R,m) is a Noetherian local ring, then a system of parameters is a
collection of elements r1, . . . , rdimR ∈ m such that

√
(r1, . . . , rdimR

) = m [ or equivalently
V (r1, . . . , rdimR) = m ∈ SpecR ].

7.4.4 Proof of Theorem 7.4.1

Proof of Theorem 7.4.1. We may assume that s = dimR < ∞, and that n = 1. We also use
the notation x instead of x1.

dimR[x] ≥ s+ 1: Take then a chain p0 ⊊ · · · ⊊ ps exhibiting this. Then,

R[x] · p0 ⊊ · · · ⊊ R[x]ps ⊊ R[x]ps +R[x] · x

is a chain showing that dimR[x] ≥ n + 1. We note that R[x] · pi ∼= R[x] ⊗R pi by the flatness

of R[x] over R. This shows that R[x] · pi+1

/
R[x] · pi ∼= R[x] ⊗R

(
pi+1/pi

)
, and hence all the

steps in the above chain, except the last one are not equalities. For the last one, being not an

equality one just realizes that R[x]
/
R[x] · ps ∼= R[x] ⊗R

(
R
/
ps
)
, and hence the class of x is

not zero in this quotient ring.

dimR[x] ≤ s+ 1: For this we may assume that R is local with maximal ideal m, and dimR ≤
s. Then all maximal ideals of R[x] are of the form m′ = R[x] ·m+R[x] · f , such that the coset
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of f in
(
R
/
m
)
[x] is an irreducible polynomial. However, if r1, . . . , rj is a system of parameters

for R, then r1, . . . , rdimR, f yield elements in R[x]m′ such that V (r1, . . . , rdimR, f) = m′. Then
we just apply Corollary 7.4.10 to get that dimR[x]m′ ≤ dimR + 1 ≤ s + 1, and then also
dimR[x] ≤ s+ 1.



Chapter 8

Projective schemes

8.1 GENERAL REMARKS AND ADDITIONS TO THE MATERIAL

Here we study pages 76-77 of Hartshorne that associates to a graded ring S the scheme
ProjS.

Remark 8.1.1. It is extremely important to note exercise II.2.14.(d) from Hartshorne which says
that if there is a classical projective variety V in Pn given by the homogeneous ideal I(V ), and

hence having homogeneous coordinate ring S(V ) = k[x0, . . . , xn]
/
I(V ), the scheme ProjS(V )

is the scheme corresponding to V , or formally ProjS(V ) = t(V ).

For example, the (classical) elliptic curve in P2 given by zy2 = x3 − xz2 is then identified

with the scheme Proj
(
k[x0, x1, x0]

/
(zy2 = x3 − xz2)

)
.

Remark 8.1.2. The use of graded ring in Hartshorne is a bit ambiguous. A priori by a graded
ring he means a N-graded ring, that is S =

⊕
i∈N Si. However, as soon as one localizes these

rings, one needs to allow Z-graded rings, which is essential in the proofs.

So, to sum it up, the statements are for N-graded rings, but the proofs and constructions
do use Z-graded rings. So, it is best to always say what grading one uses. Also note that a
N-graded ring is also Z-graded.

To be really precise: the definiton of ProjS, and Lemma 2.4 and Proposition 2.5 of
Hartshorne are for N-graded rings (for example because the definition of ProjS uses the irrel-
evant ideal S+ which is not and ideal in the Z-graded case). However, the proofs use Z-graded
rings.

Remark 8.1.3. Hartshorne defines S(p) (here p ⊆ S is a homogeneous ideal) as the degree zero
part in the localization of S by

T = (S \ p)hom =
{
f ∈ S \ p

∣∣ f is a homogeneous element
}

This is a Z-graded ring, before passing to the degree 0-part. It is important to note here that
by the definition of graded rings the degree 0 part is always a subring.

Similarly, Hartshorne define S(f) to be (here f ∈ S is homogeneous) the degee 0 part of Sf .
This is a very unfortunate notation, as it also denotes the localization at the prime ideal (f).
Be careful with it!

End of 9.
class, on
20.10.2020.

Note that in a Z-graded ring S the degree d-part Sd is always a module over the degree
zero part S0. Then the following proposition does make sense:

Proposition 8.1.4. Let S be a Z-graded ring such that there is an invertible element f ∈ Sd.

57
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Then for every integer s > 0 we have the following isomorphism of S0-modules:

S0
oo

∼= // Ssd

r � //

∈

fdr

∈

r′f−d r′�oo

With other words we have a ring isomorphism

S(d)︸︷︷︸
d-the Veronese subring

def
=
⊕
i∈Z

Sid
∼= S0[x, x

−1]

Proof. HW

Example 8.1.5. Let’s consider k[x, y] with the standard grading (so deg x = deg y = 1). Then,

k[x, y](y) ∼=
(
k[x][y, y−1]

)
0
= k

[
x

y
, y, y−1

]
0

= k

[
x

y

]
Similarly

k[x0, . . . , xn](xi)
∼=
(
k[x0, . . . , xn, x

−1
i ]
)
0
∼= k

[
x0
xi

, . . . ,
xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]
.

IMPORTANT: the above isomorphism is given by homogenization and dehomogenization, so
we have seen it in disguise in classical algebraic geometry.

The next definition matches up the properties of the Proj construction learned in Propo-
sition 2.5 of Hartshorne and classical algebraic geometry. It tells you that the description
ProjS|D+(xi)

∼= SpecS(xi) is compatible with the way we were constructing affine charts to
classical projective varieties, via the functor t of Proposition 2.6 of Hartshorne.

Proposition 8.1.6. Let S = k[x0, . . . , xn]
/
I, where

◦ k[x0, . . . , xn] has the standard grading,

◦ I ⊆ k[x0, . . . , xn] is a homogeneous ideal such that I0 = I1 = 0 [ if k is algebraically
closed this means that it defines a projective algebraic set that is not contained in any
hyperplanes ]

Let ϕ : k[x0, . . . , xn] → k[x0, . . . , xn]xi
∼= k[x0, . . . , xn, x

−1
i ] the localization map, and let exten-

sion and contraction of ideals denote extension and contraction via this map. Then:

(1) The ideal (Ie)0 ⊆ k[x0, . . . , xn](xi)
∼= k

[
x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi

]
is generated by the

dehomoginazation of any generator set of I.

(2) Homogenization and dehomogenization gives isomorphism

S(xi)
∼= k[x0, . . . , xi−1, xi+1, . . . , xn]

/
(Ie)0

So, when S is finitely generated over a field k by homogeneous elements of degree 1, then
one can deduce from the above proposition that (at least if k is algebraically closed), then we
are in the classical situation, we have ProjS = t(V ) for an appropriate projective variety V
(exercise II.2.14.(d) of Hartshorne is about putting together the details of this).

A non-classical situation is the following:
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Example 8.1.7. Let’s take S = k[x, y, z] with a non-standard grading, for which deg x = 2
and deg y = deg z = 1. Then

Sx = k

[
y2

x
,
z2

x
,
yz

x

]
︸ ︷︷ ︸

generated subring, not the polynomial ring over
these elements

∼=

u ↔ y2

x
, v ↔ y2

x
, w ↔ yz

x

k[u, v, w]
/
(uv − w2)

With other wordsD+(x) ∼= Spec
(
k[u, v, w]

/
(uv − w2)

)
̸∼= A2. To see this final non-isomorphism

one just shows that the local ring of k[u, v, w]
/
(uv − w2) at (u, v, w) is not regular, which no-

tion is defined below.

Definition 8.1.8. A Noetherian local ring (R,m) is regular if dimR = dimk (m/m2), where
k := R

/
m.

A point x of a scheme X is regular if OX,x is regular. The variety X itself is regular, if
all its points are regular. The opposite of regular is called singular both for points and for
varieties.

8.2 PROOF OF PROPOSITION 2.5 OF HARTSHORNE

To understand Proposition 2.5 of Hartshorne it is really important to understand that we
can at the beginning pass to an Veronese subring. For that we need to understand that that
way Proj does not change, by this:

Proposition 8.2.1. If S is an N-graded ring, and d > 0 an integer, then ProjS(d) ∼= ProjS
naturally.

Proof. We leave the details to the reader, we mention only a few parts of the construction of
the isomorphism. Let ϕ : S(d) ↪→ S be the inclusion. Then, the following operations give a
bijection between the radical ideals of S(d) and S:

(1) S(d) ⊇ I 7→
√
Ie ⊆ S

(2) S ⊇ J 7→ ϕ−1J ⊆ S(d).

In particular, as radical ideals define the topology we obtain that the underlying topological
spaces of ProjS(d) and of ProjS are isomorphic.

Let p ⊆ S(d) and q ⊆ S be prime ideals corresponding to each others via this correspondence.

Then, there is a natural induced ring homomorphism S
(d)
p → Sq. Then, one shows that the

induced map S
(d)
(p) → S(q) is an isomorphism.

It is very much suggested to supplement/amend the beginning of the proof of Proposition
2.5.(b) of Hartshorne by the following: let d = deg f . By Proposition 8.2.1 we may replace S
by S(d), and then we can replace the grading, which is now by dN, by dividing each degree by
d so that deg f = 1. With other words, with this addition to the proof, one can assume that
deg f = 1.

If one does not make this addition to the proof, then one gets into cumbersome analysis of
relating Sf and

(
Sf

)
0
. Indeed, as now we assumed that deg f = 1, by Proposition 8.1.4, we

have a homomorphism as follows when p ∈ D+(f):

Sf
∼= S(f)[x, x

−1]

graded homomorphism, that is,
it respects the grading, i.e., it
sends x to x // Sp

∼= S(p)[x, x
−1]
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In particular, we see that homogeneous ideals of Sf are all of the form I[x, x−1] where I is an
ideal of S(f). Hence, the topology of D+(f) and of SpecS(f) is “the same”. More precisely, if
ϕ : S → Sf is the localization homomorphism, then the bijection is as follows:

D+(f) oo // SpecSf

I

∈

� // (ϕ(I))0

∈

ϕ−1
(
J [x, x−1]

)
J�oo

Consider now for a fixed p ∈ D+(f) the homomorphism S(f) → S(p). Note that (ϕ(p))0
is exactly the premiage of the maximal ideal of S(p). Hence, by the universal property of
localization, we obtain a commutative diagram as follows

S(f)
//

(((
S(f)

)(
ϕ(p)
)
0

α
// S(p)

Then one has to prove that α is an isomorphism. For this it is useful to see that

S(f) \
(
ϕ(p)

)
0
=

{
a

fn
∈ S(f)

∣∣∣∣ a ∈ Sn, ̸ ∃m > 0: afn ∈ p

}
=

f /∈ p, p is prime

{
a

fn
∈ S(f)

∣∣∣∣ a ∈ Sn, a ̸∈ p

}

That is, (
S(f)

)(
ϕ(p)
)
0

=

{
a
fn

b
fm

∣∣∣∣∣ a ∈ Sn, b ∈ (S \ p)m

}
and

S(p) =

{
a

b

∣∣∣∣ ∃n > 0 : a, b ∈ Sn, b ̸∈ p

}
where both sets are quotiented by the appropriate equivalence relation. Additionally we have

α

(
a
fn

b
fm

)
=

afm

bfn

We explain the other details of the proof (including that α is an isomorphism) during the
lectures, or we leave them homework.

End of 10.
class, on
22.10.2020. 8.3 REGULARITY OF CLASSICAL VARIETIES

Lemma 8.3.1. If λ : S ↠ R is a surjective ring homomorphism, and I ⊆ S is an ideal, then
Iec = I + kerλ.

Remark 8.3.2. Note that by the surjectivity assumption Ie = λ(I), as if a ∈ I, and r ∈ R, then
there exists s ∈ S, such that λ(s) = r, and we have rλ(a) = λ(s)λ(a) = λ(sa), where sa ∈ I.

Proof. Obviously, Iec ⊇ I+kerλ, so take a ∈ Iec. Then there exists b ∈ I, such that λ(b) = λ(a),
and hence a− b ∈ kerλ.

Lemma 8.3.3. Consider the following situation:
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◦ P = (c1, . . . , cn) ∈ kn,

◦ m̃ = (x1 − c1, . . . , xn − cn) ⊆ k[x1, . . . , xn] the maximal ideal corresponding to P ,

◦ I ⊆ k[x1, . . . , xn] is an ideal such that I ⊆ m̃ [ or equivalently, P ∈ V (I) ]

◦ R = k[x1, . . . , xn]
/
I, and

◦ m ⊆ R is the image of m̃.

Then

(1) The map

ϕ : k[x1, . . . , xn] ∋ f 7→


∂f
∂x1

(P )
...

∂f
∂xn

(P )

 ∈ kn.

induces a k-linear isomorphism ξ : m̃
/
m̃2 → kn.

(2) We have k-linear isomorphisms

kn
/
ϕ(I)

m̃
/(

m̃2 + I
) ∼= //

∼=
oo m/m2,

where the former is induced by ξ and the latter is induced by the natural map m̃→ m.

Proof. We note that the residue classes of xi − ci form a basis of m̃
/
m̃2 (one can prove the

easiest by translating P to the origin).

(1) First, we note that ϕ is k-linear by the definition of the algebraic partial derivatives.

Second, we claim that ϕ(m̃2) = 0. Indeed, a general element of m̃2 is of the form f =∑
i≤j rij(xi − ci)(xj − cj) for some rij ∈ k[x1, . . . , xn]. Furthermore, for any such element

ϕ(f) = 0, as for every l, i, j, the partial derivative ∂
∂xl

rij(xi− ci)(xj − cj) consists of three
products and each product contains xi − ci or xj − cj as a factor, which takes value 0 at
P .

Hence, the above claim shows that ϕ induces a k-linear homomorphism ξ : m̃
/
m̃2 → kn.

As {
ϕ(xi − ci)

∣∣ i = 1, . . . , n
}
=
{
[0, . . . , 0

i− 1-th

, 1

i-th

, 0

i+ 1-th

, . . . , 0]T
∣∣∣ i = 1, . . . , n

}

form a basis of kn, ξ takes a basis to a basis, and hence it is an isomorphism.

(2) Let α : m̃
/
m̃2 → m/m2 be the natural homomorphism induced by the surjection m̃ ↠ m.

Using Lemma 8.3.1 and that I ⊆ m̃, we obtain that ξ induces an isomorphism

m̃
/
m̃2 ⊇ (I + m̃2)

/
m̃2 → ϕ(I).

However, by again using Lemma 8.3.1, (I + m̃2)
/
m̃2 = kerα. Hence, the isomorphisms

of the statements are obtained by quotienting out by kerα in m̃
/
m̃2 and by the image of
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kerα in kn via ξ. This is pictured in the following commutative diagram, the columns of
which are exact:

ϕ(I)� _

��

I + m̃2
/
m̃2 = kerα

∼=oo
� _

��
kn

����

m̃
/
m̃2

����

∼=oo α // m/m2

kn
/
ϕ(I)

m̃
/(

m̃2 + I
) ∼= //

∼=
oo m/m2

Proposition 8.3.4. Consider the following situation

◦ X = SpecR for R = k[x1, . . . , xn]
/
I, where I = (f1, . . . , fr),

◦ P = (c1, . . . , cn) ∈ kn, and m is the image in R of the ideal m̃ where I ⊆ m̃ = (x1 −
c1, . . . , xn − cn) ⊆ k[x1, . . . , xn].

Then m ∈ X is regular if and only if the rank of the matrix
[
∂fi
∂xj

(P )
]
j=1,...,n; i=1,...,r

is n−dimX.

Proof. We use the notations of Lemma 8.3.3 throughout the proof. Let A be the matrix[
∂fi
∂xj

(P )
]
j=1,...,n; i=1,...,r

. For a general element f :=
∑r

i=1 sifi ∈ I,

∂f

∂xj
(P ) =

∂ (
∑r

i=1 sifi)

∂xj
(P ) =

additivity of derivation and Leibnitz rule

r∑
i=1

∂si
∂xj

(P )fi(P ) + si(P )
∂fi
∂xj

(P ) =

fi ∈ I, I ⊆ m̃ ⇒ fi(P ) = 0

r∑
i=1

si(P )
∂fi
∂xj

(P ). (8.3.a)

Hence:

ϕ(f) =

 ∂f
∂x1

(P )

. . .
∂f
∂xn

(P )

 =

(8.3.a)

r∑
i=1

si(P )


∂fi
∂x1

(P )
...

∂fi
∂xn

(P )


i-th column of A

. (8.3.b)

As si can be chosen so that
(
si(P )

∣∣ i = 1, . . . , r
)
∈ kr takes any value, (8.3.b) tells us that

ϕ(I) = imA. Hence, rkA = dimϕ(I). Now, consider the equalities

dimk (m/m2) =

Lemma 8.3.3.(2)

n− dimϕ(I) = n− rkA.

So, dimk (m/m2) = dimX if and only if the rank of A is n − dimX. Additionally by Exam-
ple 6.0.9 and Remark 6.0.10, we have that m/m2 ∼= mRm

/
m2Rm = m

/
m2, where m is the

maximal ideal of OX,m. This concludes our proof.

Example 8.3.5. Let k be algebraically closed We show that X = Spec
(
k[x, y]

/
(y2 − x3)

)
is regular at all closed point except at (0, 0). By Proposition 8.3.4 we have to show that the
following matrix has rank 2 − 1 = 1 for all closed points P ∈ X \ {(0, 0)} (as usual when we
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work with schemes that can be identified with classical varieties, we identify the maximal ideals
and the corresponding traditional points):

A :=

∂(y2−x3)
∂x

∂(y2−x3)
∂y

 =

[
−3x2
2y

]

Indeed, as A is a 2× 1-matrix, A(P ) having rank 1 means that it is not zero. So, fix X ∋ P =
(x, y) ̸= (0, 0). By the equation y2 − x3 = 0 we obtain that in fact both x and y are non-zero.
We are not quite ready here, because the entries of A(P ) could still be zero, if char k = 2 or
char k = 3. But in either case, at least one of them is non-zero, so A(P ) itself is non-zero.

One shows similarly that (0, 0, 0) is the only singular closed point of Spec
(
k[u, v, w]

/
(u2 − vw)

)
.
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Chapter 9

Properties of schemes

This is about Section II.3 of Hartshorne. There are quite a few definitions at the beginning
of the section that are important to know, including examples (reduced/non-reduced, integral,
Noetherian schemes).

An important non-Noetherian example is:

Example 9.0.1. X = SpecR, where R = Fp

[
x1/p

∞]
=
⋃

n≥0 Fp

[
x1/p

n]
where the union is

taken in a fixed algebraic closure of Fp(x).

The first important statement is Prop 3.2 of Hartshorne. In the proof the following lemma
is used:

Lemma 9.0.2. If R is a Noetherian ring and S ⊆ R is a multiplicatively closed set. Then
S−1R is also Noetherian.

Proof. Let us consider extension and contraction via the localization map. Let I ⊆ S−1R
be an ideal. Then Ic = (f1, . . . , fr)R for some fi ∈ R as R is Noetherian. However, then
I = Ice = (f1, . . . , fr)S−1R.

It is particularly important to remember the reduction steps of Prop 3.2 to be able to solve
next week’s homework problems. The main points

(1) One needs to work with a property that is stable under localization, which is fine here by
Lemma 9.0.2.

(2) Then, one can replace the original affine cover {SpecAi} by principal open sets of SpecAi

that lie inside SpecB. Here, SpecB is the open set of X, for which we want to show that
B is Noetherian. This way we may assume that X is affine.

(3) The next step is to assume that the affine cover is formed of principal open sets of both
X and of the Ai. This way, we may assume that the Ai are principal open sets of X.

(4) Then we may assume that there are finitely many Ai, by X being affine.

(5) Then we are down to an algebra question that we solve by algebra. Here the question:
(f1, . . . , fr) = (1) as ideals of B, and Bfi are Noetherian, then B is also Noetherian. This
we suggest to solve differently than in Hartshorne, by using Lemma 9.0.3.

End of 11.
class, on
27.10.2020.

Lemma 9.0.3. Let f1, . . . , fr ∈ R be finitely many elements such that (f1, . . . , fr) = (1). Then:

(1) I =
⋂

i(I : fs
i ) for every integer s > 0 and any ideal I of R;

(2) Rfi is Noetherian for all i.

65
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Then, R is Noetherian.

Proof. (1): We only have to show ⊇, as the other direction holds by definition of the colon

ideals. Note that
√
(fs

1 , . . . f
s
r ) =

√
(f1, . . . , fr), and hence (fs

1 , . . . , f
s
r ) = (1). With other

words, we may assume that s = 1. In that case, by the assumption (f1, . . . , fr) = (1), there
exist elements a1, . . . , ar ∈ R such that 1 =

∑
aifi. Take then x ∈

⋂
i(I : fi). Then we have

x =
∑
i

ai fix︸︷︷︸
x ∈ (I : fi) =⇒ fix ∈ I

∈ I

(2): As for a fixed i we have (I : fi) ⊆ (I : f2
i ) ⊆ . . . , and as point (1) holds for every s we

obtain

I =

(1) holds for every s, and for a fixed i we
have (I : fi) ⊆ (I : f2

i ) ⊆ . . .

⋂
i

( ⋃
s>0

(I : fs
i )
)
=

ϕi : R → Rfi is the localization homomorphism

⋂
i

ϕ−1
i

(
Rfi · ϕi(I)

)

Now, if I1 ⊆ I2 ⊆ . . . is an ascending chain of ideals of R, then chains Rfi · ϕi(Ij) formed
of the extended ideals for a fixed i stabilize, as Rfi is Noetherian. Then the above inequality
concludes that the chain I1 ⊆ I2 ⊆ . . . also stabilizes.

9.1 SINGULARITY NOTIONS

9.1.1 Regularity and integrality

Here we show.

Theorem 9.1.1. If R is a regular Noetherian local ring, then R is a domain.

Definition 9.1.2. If (R,m) is a regular Noetherian local ring, then r1, . . . , rd ∈ m are called
coordinates, if their images in m/m2 are independent over R

/
m.

Lemma 9.1.3. If (R,m) is a Noetherian local ring, and r1, . . . , rd ∈ m are such that their
images in m/m2 generate m/m2 as an R

/
m-vector space, then m = (r1, . . . , rn).

Proof. Apply Nakayama-lemma to m/(r1, . . . , rn). We leave the details to the reader.

Lemma 9.1.4. If (R,m) is a regular Noetherian local ring, and r ∈ m is a coordinate, then
R
/
(r) is also a regular Noetherian local ring.

Proof. Let n be the maximal ideal of S = R
/
(r). As r is a coordinate, we have an exact

sequence of k = R
/
m = S

/
n vector-spaces (hw: work out the details):

0 // k · r // m/m2 // n/n2 // 0

Hence, if d = dimR, then it is enough to show that dimS = d− 1.

dimS ≤ d− 1: We can extend r to a full set of coordinates r = r1, . . . , rd of R. Let r′i be
the image of ri in S. Then (r′2, . . . , r

′
d) = n by Lemma 9.1.3. Hence, by Corollary 7.4.10,

dimS ≤ d− 1.

dimS = d− 1: Let t′1, . . . , t
′
dimS be elements of n such that

√
(t′1, . . . , t

′
dimS) = n. Let ti ∈ R

be a lift of t′i. Then
√

(r, t1, . . . , tdimS) = m. Hence, by Corollary 7.4.10 we have dimS ≥ d−1.
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By Proposition 8.5.18. and the primary decomposition (Theorem 8.5.21) of the “Rings and
modules” notes we have

Lemma 9.1.5. If q1, . . . , qr are the associated primes of (0) in a Noetherian ring R, then

r⋃
i=1

qi =
{
r ∈ R

∣∣ r is a zero divisor
}

Lemma 9.1.6. If R is a Noetherian local ring and r ∈ R such that

(1) r is not contained in any of the minimal primes of R, and

(2) R
/
(r) is a domain.

Then, R is also a domain.

Proof. As R
/
(r) is a domain, (r) is a prime ideal. Hence it contains some of the minimal

primes q of R. Furthermore, by assumption (1), q ⊊ (r) = Rr.
Take now y ∈ q arbitrary. We may write y = xr for x ∈ R. However, as r ̸∈ q and q

is prime, we in fact have x ∈ q. This shows that we have q = rq. Then, Nakayama Lemma
(Sheet 9, Exc 1 of “Rings and modules”) shows us that there is an element z ∈ 1 + (r) such
that zq = 0. However, then z is invertible, and hence q = 0. This implies that R is a domain
(first R is reduced as the intesrection of all primes is just (0), and then since there is a single
minimal prime, it is even a domain, as SpecR is irreducible).

The following lemma is the direct generalization of Lemma 7.4.9, by allowing two of the
ideals to be non-primes. We phrase the statement in the contrapositive fashion, with respect
to Lemma 7.4.9, as it is easier to prove it this way.

Lemma 9.1.7. Prime avoidance II. If I1, . . . , Is, J are ideals such that

(1) at most two of the Ij are not prime, and

(2) J ⊆
⋃

j Ij,

then J ⊆ Ij for some 1 ≤ j ≤ s.

Proof. We show the statement by induction on s. For s = 1, there is nothing to prove.

s = 2: Suppose that J ̸⊆ Ij for both j = 1, 2. In the rest of the proof of case s = 2, let i
always denote the other index with respect to j, that is, we have {i, j} = {1, 2}. Choose then
xi ∈ J \ Ij for j = 1, 2. Then

xi ∈ J \ Ij ⊆ (I1 ∪ I2) \ Ij ⊆ Ii (9.1.a)

In a similar fashion we have
x1 + x2 ∈ J ⊆ I1 ∪ I2.

So, for one of the indices j we have x1 + x2 ∈ Ij . Let us fix now j to be this value, and let i be
as above the other index. Then we have

xi = (x1 + x2︸ ︷︷ ︸
∈ Ij

)− xj︸︷︷︸
∈ Ij by (9.1.a)

∈ Ij .

This is a contradiction.
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s > 2, the induction step: We may assume that In is a prime ideal. Also, by induction we
may assume that for all 1 ≤ j ≤ s we have

J ̸⊆
⋃
i ̸=j

Ii

Thus we may pick

xj ∈ J \

⋃
i ̸=j

Ii

 ⊆ Ij

Then

x = xs +

s−1∏
i=1

xi ∈ J ⊆
⋃
j

Ij

Hence, we may fix an index j such that x ∈ Ij . There are two cases:

(1) If j = s, then
s−1∏
i=1

xi = x− xs ∈ Is

which contradicts the fact that xi ̸∈ Is for i ̸= s and that Is is prime

(2) If j ̸= s, then

xs = x−
s−1∏
i=1

xi ∈ Ij

which is again a contradiction.

Proof of Theorem 9.1.1. We prove it by induction on dimR. Let m be the maximal ideal of R.

Case of dimR = 0. As in this case m
m2 = 0, by Nakayama lemma we have m = 0. Therefore

R is a field, and hence R is indeed a domain.

Induction step, dimR = n > 0: Let q1, . . . , qs be the minimal primes of R. As htm = dimR >

0, m is not contained in any of the qi. Additionally, by Nakayama lemma m2 ̸= m (see case
dimR = 0).

Hence, by the Prime avoidance lemma II (Lemma 9.1.7), we have

m ̸⊆ m2 ∪
⋃
i

qi.

Let r ∈ m \
(
m2 ∪

⋃
i qi
)
. By Lemma 9.1.4, S = R

/
(r) is also a regular Noetherian local ring.

Hence S is a domain by our induction hypothesis. Then, Lemma 9.1.6 concludes our proof.

Remark 9.1.8. What is even harder to prove, and hence we are not covering it in the present
course, but it is useful to know about it (feel free to use them in exercises):

(1) any localization of a regular Noetherian local ring is a regular Noetherian local ring, and

(2) a regular local ring is a UFD, and hence it is integrally closed.
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9.1.2 Singularity notions

We call the notions singularity notions that can be checked on local rings. So for example
there will be an exercise on the exercise sheet saying that for a Noetherian ring R

◦ R is reduced if and only if Rp is reduced for all p ∈ SpecR,

◦ R is integral if and only if Rp is integral,

◦ SpecR is irreducible if and only if SpecRp is irreducible for all p ∈ SpecR,

◦ if R is a domain, then R is integrally closed if and only if Rp is integrally closed for all
p ∈ R,

As we explained in Remark 9.1.8, the same statement holds for being regular, but it is much
harder to prove it.

Remark 9.1.9. The sitaution is summarized in the following diagram:

all schemes ⊇

⊇

reduced schemes

⊇

irreducible schemes ⊇ integral schemes ⊇ normal schemes ⊇ regular schemes

9.2 FURTHER PROPERTIES OF MORPHISMS

9.2.1 Finite type morphisms

Remark 9.2.1. Here an important point is that morphisms between schemes of finite type over
k are of finite type. That is, morphisms between classical varietiesa are of finite type.

Example 9.2.2. Another very important set of examples are of the form Spec
(
Z[x1, . . . , xn]

/
I

)
→

SpecZ.

9.2.2 Finite morphisms

Here the important thing to realize is that we have learned in “Rings and modules” that if
B ↪→ A is a ring homomorphism then A being a finite module over B is equivalent to A being
integral over B (with other words an integral extension of B).

Example 9.2.3. Noether normalization gives a finite morphism.

Example 9.2.4. A1
k \ {0} ↪→ A1

k is not finite as it corresponds to k[x] ↪→ k[x, x−1].

Example 9.2.5. k[x] ⊇ k[x2] ∼= k[t] yields a finite morphism A1
x → A1

t .

9.3 CLOSED SUBSCHEMES

The examples as in Example 5.0.1, that is Spec
(
k[x, y]

/
(x2y, xy2)

)
yield closed subschemes

of A2
x,y supported on V (xy). However, there is a special one out of all these subschemes,

Spec
(
k[x, y]

/
(xy)

)
, which is the reduced induced closed subscheme on V (xy).

End of 12.
class, on
29.10.2020.9.4 PRODUCTS

The idea:

(1) tensor product yields products in the affine case

(2) then we glue, where the cocycle condition is given by the unicity of the product.
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9.5 FIBERS OF MORPHISMS

Remark 9.5.1. Let λ : B → A be a ring homomorphism and p ∈ SpecB. Let f : X → Y and
y ∈ Y be the corresponding morphism of schemes and the corresponding point of Y . Then we
have

X ×Y Spec k(y) = Spec

((
A \ {0}

)−1 (A/pA)
)

In particular, if p = m is maximal, then we have

X ×Y Spec k(y) = Spec
(
A
/
mA

)
Example 9.5.2. For f being the morphism of Example 9.8.2 the fibers of f are isomorphic to
three possible schemes:

(1) Spec(k ⊕ k)

(2) SpecL for a degree two field extension L of k

(3) Spec k[x]
/
x2.

Remark 9.5.3. Surjective morphisms f : X → Y are many times thought of as families of their
fibers.

For example, schemes over Z are often understood as families of their reductions mod p.
In fact, even more, schemes XQ over Q are many times understood, by finding a scheme

XZ over Z such that
XZ ∼= XQ ×SpecQ SpecZ

In these situation XZ is called a model of XQ (over Z), and the fiber of XZ → SpecZ over
p ∈ SpecZ is a reduction mod p of XQ.

Same notation is used for Q replaced by a number field K, and Z by the ring of integers R
of K.

Remark 9.5.4. Reductions mod p of schemes over Q are not unique! For example P1
Z is a model

of P1
Q over Z, and hence P1

Fp
is a reduction of P1

Q mod p.

However, note that the 2-nd veronese subring of R1 = Q[x, y] (with the standard grading)

is the ring R2 = Q[u, v, w]
/
(uv − w2), where deg u = deg v = degw = 2. Let R3 be the same

ring as R2, but with deg u = deg v = degw = 1. Finally, let R4 = Q[u, v, w]
/
(2uv − w2) with

deg u = deg v = degw = 1. Then we have

P1
Q = ProjR1

∼=

Proposition 8.2.1

ProjR2
∼=

Multiplying the
grading does not
change Proj

ProjR3
∼=

we may construct an isomorphism using Exercise
II.2.14 from Hartshorne, by sending u 7→ 2u in one
direction and u 7→ 1

2
u in the other direction

ProjR4

Hence, X = Proj
(
Z[u, v, w]

/
(2uv − w2)

)
is a model of P1

Q over Z. In particular,

X2 = Proj
(
Z[u, v, w]

/
(2uv − w2)

)
×SpecZSpecF2

∼= Proj
(
F2[u, v, w]

/
(2uv − w2)

)
∼=

By Remark 9.5.5

Proj
(
F2[u, v, w]

/
(w2)

)

is a also a reduction of F1
Q mod 2, which is not isomorphic to P1

F2
. In fact it is a degree 2

infinitesimal thickening of P1
F2
.
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Remark 9.5.5. If S is a N-graded ring with S0 = A, and B is a ring extension of A, then

ProjS ×SpecA SpecB = Proj
(
S ⊗A B

The grading is given by the fact that S =
⊕

n∈N Si is a direct sum of R-modules, which
follows from the definition of a graded ring

)

To see this, construct a morphism

Proj (S ⊗A B)→ ProjS ×SpecA SpecB

by the universal property of products, then localize at homogeneous elements f ∈ S to show
that it is an isomorphism.

We note that the above products are called base-changes.

Remark 9.5.6. A particular base-change which is used plenty of times is the base-change to the
generic point. When the base is SpecZ, then this is the “inverse” of taking a model. On the
ring level both for Spec or for Proj this is given by localization at the multiplicative set R\{0},
assuming that the base is SpecR for a domain R. The resulting scheme is called the generic
fiber of the morphism.

A twist on this is the base-change to an algebraic closure L of the FracR. The resulting
scheme is the geometric generic fiber of the morphism.

The general mantra is that if P is a singularity property (see Section 9.1.2), and f : X → Y
is a morphism of schemes of finite type over k = k (the main example being morphisms of
classical varieties), then there is a non-empty open set U ⊆ Y such that

the geometric generic satisfies P ⇐⇒ for every k-rational point y ∈ U , Xy satsifies P
(9.5.a)

Note that k-rational points are the ones for which k(y) ∼= k. We also note that fibers over such
points in this case are called closed fibers. Additionally, it is particularly important to note
that “geometric generic” cannot be replaced here by simply “generic”, see Example 9.5.7.

Unfortunately, for each property P, one needs to show (9.5.a) separately. For example, we
will return to how (9.5.a) is show for P =“regular” in Section 9.11.1. For P =“reduced” we
will have have an exercise showing one direction (geometric generic fiber is not reduced, then
there is a non-empty open set of the base over which closed fibers are non-reduced). Because
of the lack of time, we do not cover other directions/versions of (9.5.a).

Example 9.5.7. Let k = F2. R =
(
k[x, y, z, u, v, w]

/
(x2t+ y2u+ z2v)

)
with grading deg x =

deg y = deg z = 1 and deg u = deg v = degw = 0. Let X = ProjR. It is over T =
Spec k[u, v, w].

Then X is reduced for example, because we can check that it is regular by the Jacobian
condition. Consider the generic fiber Xη = X ×T (Spec k(u, v, w)). As the stalks of OXη are all
stalks of OX we obtain that Xη is also regular and hence reduced.

However, Xη = X ×T

(
Spec k(u, v, w)

)
is NOT reduced, and so are all the closed fibers.

With other words, the generic fiber of X → T is a not geometrically reduced scheme (the
opposite is characterized in exc II.3.15.b., and the above example explains why they are so
important).

Examples of this type are particularly important, as in characteristic zero they do not
appear, see Cor III.10.7 of Hartshorne, that we do not cover in this course because of the lack
of time.

End of 13.
class, on
03.11.2020.



72 CHAPTER 9. PROPERTIES OF SCHEMES

9.6 BASE-EXTENSIONS

Let X be a scheme of finite type over a perfect field k (e.g., k has characteristic 0, or k
is finite). Let us understand how to think about the closed points of X in terms of Xk =
X×Spec k Spec k. For that we may restrict to an affine open set SpecA, which by the finite type
assumption is the quotient of k[x1, . . . , xn]. With other words, we may assume thatX = SpecA,
or equivalently we may think of X being a closed subscheme of An

k . Take a maximal ideal
m ⊆ A. In “Rings and modules” (Thm 6.1.11 of the “Rings and modules” notes), we showed
that if a finitely generated k algebra is a field then it is an algebraic extension. Putting this
together with the assumption that it is a finitely generated k-algebra, we obtain that it is a
finite extension. Hence

[
L = A

/
m : k

]
<∞. This yields a bijection

closed points of X ←→ k-algebra homomorphisms ϕ : A ↠ L, where [L : k] <∞

Note that ϕ : A→ L induces a k-algebra homomorphism

A⊗k k
ϕ⊗kk

// // L⊗k k

The closed points of Xk lying over the closed point ϕ of X, are exactly the surjective k-algebra
homomorphisms A ↠ k given composing ϕ⊗k k with an k-algebra homomorphism L⊗k k → k
(which is necessarily surjective, as the target is k itself). This follows from the universal
property of tensor product, and the following commutative diagram

A⊗k k
ϕ⊗kk // // ((

L⊗k k
∃! // k

A
?�

OO

ϕ
// // L
( �

66

?�

OO

Lemma 9.6.1. We have∣∣{ k-algebra homomorphisms L⊗k k → k
}∣∣ = [L : k]

Moreover, such k-algebra homomorphisms form a Galk(k)-orbit of k-algebra homomorphisms
L ⊗k k → k (we act by post-composing with the Galois elements). Moreover, the stabiliser of
en element of the orbit is GalL(k).

Proof. In this proof we use a lot of statements from Galois theory. They all can be found in
the “anneaux et corps” notes. Let us know, if you have problems finding them.

First, note that the left side is in bijection with the k-algebra homomorphism ϕ : L → k.
Indeed, ϕ ⊗k k yields a k-algebra homomorphism L ⊗k k → k. And, in the other direction, a
k-algebra homomorphism yields a k-algebra homomorphism by taking ϕ = ξ|L⊗k{1}. We leave
it to the reader to check that these are inverses of each-other. In any case, we obtained that it
is enough to understand k-algebra homomorphisms ϕ : L→ k.

As k ⊆ L is a finite separable extensions (remember that we assumed that k is perfect), it
is a simple extension by α ∈ k with minimal polynomial mα,k over k of degree d = [L : k]. Let
α = α1, . . . , αd be the roots of mα,k (by separability there are no multiple roots). As ϕ is a
k-algebra homomorphism and the coefficients of mα,k are in k, we have ϕ(α) = αi for some i.
So there are at most d options for ϕ.

We show that all d-options are realized. As k ⊇ k(αi) ∼= k[x]
/
mα,k, there is a unique

isomorphism ϕi : L → k(αi) such that ϕi(α) = αi. As k(αi) is a subfield of k, this yields d
different homomorphisms L→ k.

The Galois statement follows from the fact that αi are the elements in the Galois orbit of
α and αi are fixed by the action of GalL(k).
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Putting everything together we obtain that there are [L : k] closed points of Xk = X×Spec k

Spec k = Spec
(
A⊗k k

)
lying over a fixed closed point A ↠ L of X. Additionally these form a

Galois orbit for Galk(k), with stabiliser equal to Galk(L).
Furthermore, if we have a closed point ξ : A ⊗k k → k of Xk, then ξ|A⊗{1} : A → k is a

k-algebra homomorphism. As A is a finitely generated k-algebra, so is the image of ξ|A⊗{1}.

Hence it is contained in a finite field extension k ⊆ L ⊆ k. This shows that all Galois orbits of
closed points of Xk lie over a closed point of X.

If we think about the closed points of Xk as points of the vector space k
n
, then we obtain:

closed points x of X ↔ Galk(k)-orbits of closed points Xk, with stabiliser Galk(k(x)) inside An
k

Additionally we have that the degree degL of the closed point A ↠ L of X equals the size of
the Galois orbit.

Example 9.6.2. Consider X = Spec
(
Q[x, y]

/
(x3 + y3 + 1)

)
. Fermat’s last theorem (showed

by Wiles) says that the only Q-rational points are (−1, 0) and (0,−1). To understand the other
points of X, we have to use the above equivalence. For example:

(1)
(
− 2, 3

√
7
)
is a closed point of XQ, and as 3

√
7 has a Galois orbit of size 3:

3
√
7, e

2πi
3

3
√
7, e

4πi
3

3
√
7,

we obtain a closed point Spec k(x) → X of degree 3 corresponding to the maximal ideal
(x+ 2, y3 − 7).

(2)
(
i, 3
√
i− 1

)
is a closed point of XQ. Here note that x

3−(i−1) is irreducible over Q(i) as it

has degree 3 and it has no root in Q(i). To see that it has no root, note that N(i−1) = 2,
and hence a root w would have N(w) = 3

√
2 which is impossible (the norm N(zz) is always

rational for an element of Q(i)). Hence, it follows hat
[
Q
(
i, 3
√
i− 1

)
: Q
]
= 6, and hence

the Galois orbit has 6 elements. If we put the first coordinate into the picture as well, the
Galois orbit has still 6 elements and it is(

i, 3
√
i− 1

)
,

(
i, e

2πi
3

3
√
i− 1

)
,

(
i, e

4πi
3

3
√
i− 1

)
(
− i, 3

√
−i− 1

)
,

(
− i, e

2πi
3

3
√
−i− 1

)
,

(
− i, e

4πi
3

3
√
−i− 1

)
We obtain a closed point Spec k(x) → X of degree 6, corresponding to maximal ideal
(x2 + 1, y3 − x+ 1).

(3) etc.

9.7 NORMALITY

9.7.1 Integral elements

Recall that if R ⊆ S is a ring extension, then s ∈ S is integral over R if it satisfies a monic
polynomial (so one with leading coefficient 1) with coefficients in R.

Recall further that if M is an R-module, then the annihilator of M is by definition the
following ideal of R: AnnR(M) := { r ∈ R | ∀m ∈M : r ·m = 0 }.

Proposition 9.7.1. For a ring extension R ⊆ S, s ∈ S is integral over R if and only if there is
a faithful module M over R[s] such that M is finitely generated as an R-module. (Here faithful
means that AnnR[s](M) = 0.)



74 CHAPTER 9. PROPERTIES OF SCHEMES

Proof. ⇒ The faithful module will be R[s] itself. It is faithful because no non-zero element
of R[s] can kill 1 ∈ R[s]. It is finitely generated as an R-module because s satisfies the relation
sn =

∑n−1
i=0 ris

i for some integer n > 0 and elements ri ∈ R. Thus, R[s] is generated as an
R-module by {1, s, ..., sn−1}.
⇐ For this direction we just need to repeat the proof of the Nakayama lemma: let

m1, . . . ,mr be generators of M as an R-module and consider the action of s on M . This action
can be described by a matrix (aij), with entries in R. That is, we may find (non-unique!)
aij ∈ R such that

smi =

r∑
j=1

aijmj .

Then the matrix A = (δijs − aij)i,j=1,...,r with entries in R[s] takes the vector [m1, . . . ,mr]
T

to zero (here δij is zero if i ̸= j and 1 if i = j). In particular so does A∗A = (detA) IdM ,
where A∗ is the adjugate matrix. However detA is just an element of R[s]. So, we obtain that
multiplying any mi with this element of R[s] is zero. As mi is a generator set of M as an
R-module, it follows that (detA) ·M = 0. Using now the faithfulness assumption, we obtain
that detA = 0. However, computing detA yields a monic polynomial of s over R. As this is
zero, we obtain that s is integral over R.

Definition 9.7.2. Let R→ S be a ring extension. We say R is integrally closed in S if for any
s ∈ S integral over R, then s ∈ R.

Let R be a domain. We say it is integrally closed if it is integrally closed in Frac(R). If R
is integrally closed, we say that Spec(R) is normal.

We recall

Proposition 9.7.3. Let R be a UFD. Then R is integrally closed. In particular, PID are
integrally closed.

Proof. Let K := Frac(R) and let x ∈ K which satisfies the monic equation

xn +
n−1∑
i=1

aix
i = 0.

We can write x = s
t , where gcd(s, t) ∈ R∗ by UFD hypothesis. Then we have the equation

sn + t

(
n−1∑
i=0

ais
itn−1−i

)
= 0.

In particular t divides sn. Therefore gcd(s, t) = gcd(sn, t) = t ∈ R∗. Therefore x = s
t ∈ R∗

Example 9.7.4. The ring k[t] is integrally closed (so we say that A1
t is a normal variety) as

k[t] is a UFD. Also k[x1, . . . , xn] is UFD and thus integrally closed.
The ring R = k[x, y]/(x3 − y2) is not integrally closed, as y

x ∈ Frac(R) satisfies the monic
polynomial P (t) = t3 − y. Note that Spec(R) is a cuspidal curve in A2.

These examples suggests that normality (and its failure) captures some singularity notions.

Example 9.7.5. It’s not difficult to construct examples of integrally closed domains which are
not a UFD.

Consider R = k[x, y, z]/(z2 − xy) where char(k) ̸= 2. This is not a UFD as

z2 = z · z = x · y.

We now show it is integrally closed. Note that R is an integral extension of k[x, y] (apply
Proposition 9.7.1). Let α = u+ vz ∈ Frac(R) be an integral element over R for some elements
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u, v ∈ k(x, y). We now show that u and v belong to k[x, y]. As R is integral over k[x, y] we
deduce that α is integral over R and let P ∈ k[x, y][T ] such that P (α) = 0. Consider the
minimal polynomial Q of α over k(x, y):

T 2 − 2uT + u2 − xyv2

As Q is the minimal polynomial of α, it must divide P ∈ k[x, y][T ] and so we deduce that
Q ∈ k[x, y][T ].

In particular, 2u and u2 − xyv2 belong to k[x, y]. As p ̸= 2, then u ∈ k[x, y]. Then
xyv2 ∈ k[x, y]. Write v = R

S where R and S are coprime. We have S2 | (xyR2) and therefore
S2 | xy, which is impossible unless S is a constant, showing that v ∈ k[x, y].

9.7.2 Local Noetherian integrally closed domains of dimension 1 are discrete valuation rings

Proposition 9.7.6. If (R,m) is a local, Noetherian domain of dimension 1, then the following
holds.

(1) For each non-zero ideal I ⊆ R,
√
I = m.

If R is integrally closed, then

(2) The ideal m is principal, that is, there exists t ∈ R such that m = (t).

Proof. (1) First we describe the prime ideals of R. As it is a domain, (0) is prime. Thus, as
the dimension is 1, any non-zero prime is maximal (as it contains 0). So the only prime
ideals are m and (0).

As
√
I is radical, according to Proposition 7.3.2, it can be written in a unique way as

an intersection of prime ideals. But as I is non-zero,
√
I is the intersection of the only

non-zero prime, m. Thus
√
I = m.

(2) Fix 0 ̸= a ∈ m. If (a) = m we are ready, so we may assume that (a) ⊊ m.

Claim. For some integer i ≥ 1, the containment (a) ⊇ mi holds.

Proof. We have
√
a = m by point Proposition 9.7.6, and so it is enough to show

that given some ideal I,
√
I
i ⊆ I for i ≫ 0. Let a1, ..., al be generators of

√
I.

Since they are in the radical, there is some integer r > 0 such that for each i,

ari ∈ I. It follows that
(√

I
)1+l(r−1)

⊆ I, by the pigeonhole principle. This

finishes the proof of the claim.

Fix i to be the minimal as above. As we assumed that (a) ⊊ m, i > 1. In particular, for
this choice, i−1 ≥ 1, and furthermore we may choose b ∈ mi−1\(a). Then, bm ⊆ mi ⊆ (a),
and therefore b

am ⊆ R.

Claim. We have b
a ·m ̸⊆ m.

Proof. Assume that b
a ·m ⊆ m. Then, m is a finitely generated R-module which

is a faithful R
[
b
a

]
-module. Hence, by Proposition 9.7.1, b

a is integral over R. As

R is integrally closed this means that b
a ∈ R, which contradicts our assumption

that b /∈ (a).
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The above claim implies that b
am is an ideal of R, which is not contained in the maximal

ideal. Hence, b
am = R, and hence there is a t ∈ m such that b

a t = 1 ⇔ a = bt. In
particular, m = a

bR = tR.

Definition 9.7.7. The element t of the above proposition is called a local parameter if R.

Remark 9.7.8. By the above remark, local parameters are defined up to multiplication by a
unit.

Definition 9.7.9. If K is a field, a discrete valuation of K is a map ν : K \ {0} → Z such that

(1) ν(ab) = ν(a) + ν(b), and

(2) ν(a+ b) ≥ min{ν(a), ν(b)}.

The valuation ring of ν is then {f ∈ K|ν(f) ≥ 0}. (It follows from the above two axioms on ν
that {f ∈ K|ν(f) ≥ 0} is closed under multiplication and addition.)

End of 14.
class, on
05.11.2020. Example 9.7.10. For a prime number p and for the field Q, νp(a/b) = νp(a) − νp(b) gives a

valuation, where νp is the p-adic valuation counting the number of times p appears as a prime
factor. Then the valuation ring is Z(p) ⊆ Q.

Similarly k(t) \ {0} ∋ f(t)
g(t) 7→ νt(f(t))− νt(g(t)) gives a discrete valuation, where νt counts

how many times t is an irreducible factor.

Corollary 9.7.11. Let (R,m) be a local, Noetherian domain of dimension 1 such that R is
either integrally closed, or regular. Set L = R/m. Then

(1) dimL mi
/
mi+1 = 1 (and so even if we assume that R is an integral domain, we obtain

that it is in fact regular),

(2) every element r ∈ R can be written as uta, where u is a unit, and νR(r) := a is a uniquely
determined integer, depending only on r and R.

(3) R is the valuation ring for the discrete valuation on Frac(R) given by

Frac(R) \ {0} ∋ f

g
7→ νR(f)− νR(g) =: νR

(
f

g

)
.

Proof. We note that for either assumption (i.e., R is integrally closed and R is regular), then we
have m = Rt for some t ∈ R. For the integrally closed case this is shown in Proposition 9.7.6.
In the regular case, this is shown in Lemma 9.1.3. This is the only fact that we will use about
R.

(1) According to Proposition 9.7.6.Proposition 9.7.6, dimL

(
mi
/
mi+1

)
= dimL

(
(ti)
/
(ti+1)

)
.

This yields a L-linear surjection R
/
(t) ↠ (ti)

/
(ti+1) defined by [1] 7→ ti. We claim that

this surjection is a bijection, which will conclude our statement. As dimL R
/
(t) = 1, for

this it is enough to show that (ti)/(ti+1) ̸= 0 or equivalently that (ti+1) ⊊ (ti). Assume
the contrary. Then, ti = rti+1 for some r ∈ R. As R is a domain, this implies that
1 = rt. Hence, t is a unit, and hence m = R. This is impossible, as the maximal ideal of
a 1-dimensional local ring has to be a non-trivial ideal.



9.7. NORMALITY 77

(2) First we note that
⋂

j≥1(t
j) = {0}. Indeed, if 0 ̸= f ∈

⋂
j≥1(t

j), then the ideals (f/t) ⊊
(f/t2) ⊊ . . . form an infinite increasing sequence of ideals, contradicting Noetherianity.

Then, we may set j to be the largest integer such that r ∈ (tj). In particular, r = utj ,
where u ̸∈ (t). However, then u is not in the unique maximal ideal of our local ring R,
which implies that it is a unit (otherwise there would be a maximal ideal containing it).

Lastly, the unicity of a as in the statement follows, since a can be characterized as the
largest integer such that r ∈ ma.

(3) First we show that the above formula indeed gives a valuation. For that fix ri = uit
ai for

i = 1, 2, 3, 4 such that ui is a unit. Then:

(i) Well-definedness: if r1r4 = r2r3, then u1u4t
a1+a4 = u2u3t

a2+a3 , where u1u4 =
u2u3 is a unit. In particular by the unicity of the power of t, a1 + a4 = a2 + a3.
Equivalently, a1 − a2 = a3 − a4, which is exactly saying that if r1

r2
= r3

r4
, then

νR

(
r1
r2

)
= νR(r1)− νR(r2) = νR(r3)− νR(r4) = ν

(
r3
r4

)
.

(ii) multiplicative property: We have:

r1
r2

r3
r4

=
u1t

a1

u2ta2
u3t

a3

u4ta4
=

u1u3t
a1+a3

u2u3ta2+a4
,

where u1u3 and u2u4 are units. So, we obtain that

νR

(
r1
r2

r3
r4

)
= νR(r1) + νR(r3)− νR(r2)− νR(r4) = νR

(
r1
r2

)
+ νR

(
r3
r4

)
.

(iii) additive property: assuming that a1 − a2 ≤ a3 − a4, which we may assume by
symmetry, the following holds:

r1
r2

+
r3
r4

=
u1t

a1

u2ta2
+

u3t
a3

u4ta4
=

u1u4t
a1+a4 + u2a3t

a2+a3

u2u4ta2+a4

=
(u1u4 + u2u3t

a2+a3−a1−a4)ta1+a4

u2u4ta2+a4
=

(u1u4 + u2u3t
a2+a3−a1−a4)ta1

u2u4ta2
.

The assumption 0 ≤ a2 + a3 − a1 − a4 implies that u1u4 + u2u3t
a2+a3−a1−a4 ∈ R.

So, the above computation shows that

νR

(
r1
r2

+
r3
r4

)
≥ νR(r1)− νR(r2) = min{νR(r1)− νR(r2), νR(r3)− νR(r4)}︸ ︷︷ ︸

we assumed that a1 − a2 ≤ a3 − a4

= min

{
νR

(
r1
r2

)
, νR

(
r3
r4

)}
.

Now, we prove that R is the valuation ring for νR. So, take f ∈ K := Frac(R), such that
νR(f) ≥ 0. We may write f = r1/r2 for some ri ∈ R, for which we have the presentation
ri = uit

ai as above. Then by definition a1 − a2 ≥ 0. So, f = r1
r2

= u1
u2
ta1−a2 , which is in

R, as u2 is a unit, and a1 − a2 ≥ 0.
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9.7.3 Discrete valuation rings are local Noetherian integrally closed domains of dimension 1

Recall that the valuation ring associated to a discrete valuation ν : K∗ → Z of a field K is
defined by

Oν := {ξ ∈ K : ξ = 0 or ν(ξ) ≥ 0}.

Proposition 9.7.12 (Discrete valuation rings). Let K be a field, and ν : K∗ → Z a non-trivial
valuation. Then Oν is a one-dimensional Noetherian local ring with maximal ideal

mν = {ξ ∈ K : ξ = 0 or ν(ξ) > 0},

which is principal. Additionally, Oν is a PID, is integrally closed, and its ideals are totally
ordered by inclusion.

Proof. (1) Oν is indeed a ring. The properties of a valuation are tailored to this end. Note
that

ν(1) = ν(12) = 2ν(1)

so ν(1) = 0.

(2) Given x ∈ K∗, either x ∈ Oν or x−1 ∈ Oν . Indeed

0 = ν(xx−1) = ν(x) + ν(x−1)

so ν(x−1) = −ν(x). Our claim easily follows.

(3) We may assume that ν is surjective. Indeed, we have seen in the previous point that

ν : (K∗, ·) −→ (Z,+)

is a group morphism. Since it is not trivial, its image is a non-trivial subgroup of Z, and
any such subgroup is isomorphic to Z.

(4) O∗
ν = {ξ ∈ K∗ : ν(ξ) = 0}. This is clear from the second claim.

(5) mν is the unique maximal ideal. From the properties of a valuation, it is easily seen that
mν is an ideal. It is the unique maximal one because Oν −mν = O∗

ν .

(6) mν is principal. Since ν is surjective, there is some element π of Oν such that ν(π) = 1.
We claim that mν = (π). Pick s ∈ mν ; then

ν
( s

πν(s)

)
= 0.

In particular s
πν(s) ∈ O∗

ν and so s ∈ (π). Our claim follows.

(7) For every element s ∈ Oν , there is u ∈ O∗
ν such that s = uπν(s). Follows from the proof

of the previous claim.

(8) Oν is a PID. Let a be an ideal of Oν . Let r = minn{πn ∈ a}. It exists by the previous
claim and the fact that N is well-ordered. Then a = (πr).

(9) The ideals of Oν are totally ordered by the inclusion. Indeed, the chain

mν = (π) ⊃ (π2) ⊃ (π3) ⊃ · · · ⊃ 0

exhausts all the ideals.

(10) Oν is 1-dimensional. The only prime ideals are (π) and 0.
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(11) Oν is Noetherian. It is apparent from claim (9).

(12) Oν is integrally closed. Suppose that x ∈ K is integral over Oν , and assume that x /∈ Oν .
Then x−1 ∈ mν as observed above. Let

xn +

n−1∑
i=0

aix
i = 0

be an equation for x with ai ∈ Oν . Multiplying by x−n we get:

1 +

n−1∑
i=0

aix
i−n = 0

and thus 1 ∈ mν , contradiction. (Alternatively, a PID is integrally closed by Proposi-
tion 9.7.3 so we could conclude from claim (8).)

9.7.4 Wrapping up DVRs

To sum it up:

Theorem 9.7.13. Let R be a Noetherian local ring. Then the following are equivalent:

(1) R is a integrally closed domain of dimension 1,

(2) R is regular of dimension 1, and

(3) R is a discrete valuation ring (DVR for short).

9.7.5 Examples

Example 9.7.14. X = Spec
(
k[x, y]

/
(xy)

)
is not normal. In particular, if p = (x, y) is the

origin, then OX,p = k[x, y]p
/
(xy) is not integrally closed. Indeed, if m is the maximal ideal,

then dimk m/m2 = 2, and so OX,P is not DVR.

Example 9.7.15. On the other hand if X is a normal scheme of dimension 1, then OX,x is
regular.

Definition 9.7.16. A scheme C is called a regular curve if it is a Noetherian regular scheme
of dimension one. Equivalently, it is a Noetherian integral scheme of dimension such that for
all closed points c ∈ C, the local ring OC,c is a DVR.

9.7.6 What we do not cover from normality

We do not cover the statement that if R is a finitely generated k-algebra which is a domain,
then so is its integral closure in L, where L is a finite field extension of Frac(R).

That is a the normalization morphism Xν → X is finite for a scheme X of finite type over
k.

Feel free to use this statement though.

9.8 FINITE MORPHISMS

In Rings and modules we showed that if f : X → Y is a dominant finite morphism, then
dimX = dimY (it follows directly from the algebra statement of Corollary 7.4.4 of the “Rings
and modules” notes).
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Definition 9.8.1. If m < n are integers, then a projection Pn ⊇ U → Pm is the morphism de-
fined by the embedding of graded rings k[x0, . . . , xm] ↪→ k[x0, . . . , xn] (we use standard grading)
and by Exercise II.2.14, and possibly by applying a coordinate transformation on both ends
(so a morphism given by linear transformation of the coordinates). We call V (xm+1, . . . , xn)
the indeterminacy locus of the projection, because U = Pn \ V (xm+1, . . . , xn).

By general theory, if X ⊆ P2
k is a projective curve, P ∈ P2

k \ X is a closed point, and
π : U = P2

k \{P} → P1 is a projection, then π|X : X → P1 is a finite morphism. This morphism
is used crucially in the theory of curves to understand X. We are not able to cover in the
present course that π|X is finite, nevertheless, in concrete situations we already have the tools
to verify it.

Before proceeding to such concrete situations, let us note that the above construction works
also if P ∈ X if X is regular. That is, the induced morphism X \{P} → P1 extends to a unique
finite morphism X → P1. If we proceed in a good pace with the material, we might be cover
at least this extension property, but not the fact that it is finite.

In any case, let us consider some actual example of the above:

Example 9.8.2. Let k be algebraically closed and for some a, b ∈ k let

X = V
(
zy2 − (x3 + axz2 + bz3)

)
⊆ P2

x,y,z/k

We leave it as an exercise that if char(k) ̸= 2, 3, then X is regular if and only if 4a3 +27b2 ̸= 0
(apply Proposition 8.3.4 on affine charts). Let us assume then that 4a3 + 27b2 ̸= 0.

Note that [0, 1, 0] ∈ P2
k is actually contained in X, nevertheless we consider projection from

P = [0, 1, 0]. That is, we do the projection induced by k[x, z] ↪→ k[x, y, z]. Then the induced
morphism X → P1 is the unique extension (we will learn this extension property later) of the
map X \ {P} → P1 induced by the graded homomorphism of rings:

ϕ : k[x, z]→ k[x, y, z]
/(

zy2 − (x3 + axz2 + bz3)
)

Note that zy2− (x3 + axz2 + bz3) is a homogeneous element of k[x, y, z], so we are quotienting
out by a homogeneous element, and hence the quotient ring is a graded ring.

Exercise: what does this morphism look like using the classical language?

In any case, using scheme theory, it is easy to see how this morphism looks like on affine
charts, we just have localize and pass to the degree 0 part by Proposition II.2.5 of Hartshorne
(we are secretely using some functoriality here that we let you think through):(
ϕz

)
0
: R = k[x, z, z−1]0 = k[x]→

(
k[x, y, z, z−1]

/(
zy2 − (x3 + axz2 + bz3)

))
0
= k[x, y]

/(
y2 + (x3 − ax+ b)

) = S

Exercise: do the same passage to affine open set using the classical language.

Above we see that R ⊆ S is an integral extension (as y ∈ S satisfies a the monic equation
(y2+(x3−ax+b)), and hence we obtain thatX\{P} → P1 is finite at least over A1 ∼= D(z) ⊆ P1.

This is one of the most frequently looked finite morphism of affine curves. The curve X is
what we call an elliptic curve.

Definition 9.8.3. Let f : X → Y be a finite morphism of normal schemes and let x ∈ X
and y ∈ Y be codimension one points such that f(x) = y. Then there is an induced ring
homomorphism f#,x : OY,y → OX,x with local parameters ty and tx (local parameter=generator
of the maximal ideal). Note that local parameters exist and OY,y and OX,x are normal local
rings of dimension 1, and hence they are DVRs by Theorem 9.7.13.

We say that f is ramified at x ∈ X, if νOX,x

(
f#,x(ty)

)
> 1 and unramified if νOX,x

(
f#,x(ty)

)
=

1.
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Example 9.8.4. Consider the affine example of Example 9.8.2 for a = 1 and b = 0, that is,
the morphism on spectra given by the ring homomorphism

k[x]→ k[x, y]
/(

y2 − (x3 − x)
)

Note that x3 − x = x(x − 1)(x + 1). There will be an exercise on the exercise sheet that says
that being ramified is the same as the fiber being non-reduced (actually, this is not that hard
to see from the definition). The fiber over (x− c) ⊆ k[x] is

Spec
(
k[x, y]

/(
y2 − (c3 − c)

))
This is non-reduced if and only if c3− c = 0, that is if c = 0, 1 or −1. In these cases y = 0. So,
the ramification points are:

(−1, 0), (0, 0), and (1, 0).

9.9 GENERIC NOETHER NORMALIZATION

For the next section it is important to discuss how much of relative Noether normalization
one can do that is, if R is a finitely generated A algebra over a domain, can one find a subring
S ⊆ R such that R is integral over S and that S ∼= A[x1, . . . , xn].

Note that in this situation, we have dimR = n + dimA by Theorem 7.4.1. Additionally,
we also know that the fibers of R are finite over S.

Now, in the special case when R is a domain and dimR = dimA, then the only option is
that S = A. However, then for the following example we see that Noether normalization of the
above type does not exist:

Example 9.9.1. Consider k[x, y] ↪→ k
[
x, yx

]
. Applying Spec we obtain f : X → Y , and the

fiber over (0, 0) has dimension 1.

However, if we allow ourselves a little localization in the base, then relative Noether nor-
malization does exist:

Theorem 9.9.2. If S ↪→ R is an embedding of domains such that R is a finitely generated
S-algebra, then there is an element f ∈ S such that Rf admits a Noether-normalization over
Sf .

Proof. Idea: You just do the classical Noether normalization and whenever you have to divide
with something, then you put that into f .

We let you figure out the details.

9.10 CHEVALLEY’S THEOREM

Remark 9.10.1. We start this section with a little hint to Exercise II.3.19 of Hartshorne. We
suggest an alternative approach to the algebraic statement of Exercise II.3.19.b.

First, reduce by topological arguments and Noetherian induction to proving that:

the image of a dominant map contains a non-empty open subset (9.10.a)

This is basically point (a) and (c) of the Hartshorne exercise.

We suggest that instead of the algebraic statement in Hartshorne you use for showing point
(b) a relative Noether normalization (see Theorem 9.9.2). Use then that finite morphisms are
surjective (for example by the going up theorem).
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Remark 9.10.2. We also comment on how Chevalley’s theorem states a property of vari-
eties/schemes that does not happen even in complex differential geometry. In fact, if f : X → Y
is a continous and dominant map between topological manifolds with X compact, then f(X)
would be compact and hence closed, and then by the dominant assumption f(X) = Y would
need to hold. With other words, if X is assumed to be compact and f dominant, then Cheval-
ley’s theorem holds for any type of geometries by obvious reasons.

The corresponding notion to compactness in algebraic geometry is projectivity. The power
of algebraic geometry lies in the fact that Chevalley’s theorem does not need compactness, that
is, a projectivity assumption on X.

We conclude this remark by showing that even if f : X → Y is a dominant holomorphic
map of holomorphic manifolds, the Chevalley’s theorem fails as soon as X is not assumed to be
compact. Consider C and Z with the additive group structures, and S1 = { z ∈ C | |z| = 1 }
with the multiplicative group structure. These are commutative groups, and we obtain the
following homomorphism

α : C→ T := C/Z⊕ Z · i ∼=
(R/Z)⊕ (R/Z) ∼=

R/Z ∼= S1, because for the homomorphism ϕ : R → S1 given by x 7→ e2πix, we have kerϕ = Z

S1 × S1

The homomorphism α is a holomorphic covering map, that is, the preimages of small enough
open sets are countably many biholomorphic disjoint copies of the original open sets. Note
additionally that for U := { a + bi ∈ C | a, b ∈ [0, 1) }, the restriction α|U is a holomorphic
bijection (but not a homeomorphism, let alone a biholomorphism).

Fix now d ∈ R \Q, and let f : X := C → Y := T × T be defined by z 7→
(
α(z), α

(
1
d · z

))
.

Fix then also t ∈ T , and choose a, b ∈ R such that α
(
a+ib
d

)
= t. Then:{

z ∈ U
∣∣∣ (α(z), t) ∈ f(X)

}
=
{
{a+ dn}︸ ︷︷ ︸

fractional part

+i {b+ dm}︸ ︷︷ ︸
fractional part

∣∣∣ n,m ∈ Z
}

(9.10.b)

By basic number theory, as d is irrational, { {a+ dm} | m ∈ Z } is dense in [0, 1). Therefore,
by (9.10.b), (T × {t}) ∩ f(X) is countable, but dense in T × {t}. In particular it is dense,
but it does not contain any open set. It follows that f(X) is also dense in T × T but it does
not contain any open set. Hence, f is an example of a holomorphic map between holomorphic
manifolds which is dense but its image does not contain any open sets.

9.11 THE DIMENSION OF FIBERS

Again we suggest some changes to Exercise II.3.22 of Hartshorne. First, one can show the
exercise for finite type morphisms in general. Second, instead of the hint of point (c), you can
use a relative Noether normalziation (see Theorem 9.9.2).

You should also use that generically finite dominant morphisms are finite over an open set
(Exc. II.3.7 of Hartshorne). And you should also use Chevalley’s theorem plenty of times (Exc.
II.3.19).

9.11.1 Regularity of the geometric generic fiber vs. of general fibers

This is a hint to an exercise on the exercise sheet. Consider a finite type morphism f : X →
Y . That is, locally f fits into a commutative diagram as follows

SpecA = X

f
,,

� � ι

closed embedding
// An

Y = SpecB[x1, . . . , xn]

π

��
Y = SpecB
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Let I be the kernal of B[x1, . . . , xn] ↠ A. If we assume that B is Noetherian, then I =
(f1, . . . , fr).

By Exc. II.3.22. we may also assume that all fibers of f have the same dimension, say d.
Set c = n−d. Let F1, . . . , Fs be the determinants of all the c× c minors of the Jacobian matrix(
∂fj
∂xi

)
. Consider then

Z = Spec
(
B[x1, . . . , xn]

/
(f1, . . . , fr, F1, . . . , Fs)

)
.

Then, Z has a-Frac(B) rational point if and only if the geometric generic of f is not regular.
And for some m ∈ SpecA maximal ideal with A

/
m algebraically closed, Zm is not empty if

and only if Xm is not regular.
Use now that Z has a-Frac(B) rational point if and only if Zη ̸= ∅, and then deduce that

this happens if and only if there is a non-empty open set of Y over which the closed fibers Zm

are not-empty.
Use now that a consturctible subset of a scheme of finite type over an algebraically closed

field k is not-empty if and only if it has a k-rational point (this will be an exercise).

End of 15.
class, on
10.11.2020.
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Chapter 10

Coherent sheaves

10.1 EXAMPLES

10.1.1 Sheaves of abelian groups that do not admit structures of sheaves of OX-modules.

Example 10.1.1. Let X = SpecFp[x], and let F = (F2)X be the constant sheaf on X, and
assume that p ̸= 2. We claim that F cannot be endowed with a structure of an OX-module.
Indeed, if it was possible, then F(X) = F2 would be an OX(X) = Fp[x]-module. However by
considering a composition series we see that all finite Fp[x]-modules have pn elements for some
integer n > 0.

Example 10.1.2. Let X = SpecFp[x], and let F = (Fp)X be the constant sheaf on X. We
claim that F cannot be endowed with a structure of an OX-module. Indeed, assume that F
admits and OX -module structure. Then F(X) = Fp is an OX(X) = Fp[x]-module, that is,

F(X) ∼= Fp[x]
/
(x− c) for some c ∈ Fp. Let U = X \ {(x− c)}.

0 =

ρFX,U is a homomorphism
of abelian groups

ρFX,U (0) = ρFX,U (1 · (x− c)) =

F is a sheaf of OX -modules

ρFX,U (1) · ρ
OX
X,U (x− c) = 1︸︷︷︸

∈ F(U) = Fp

· x− c︸ ︷︷ ︸

∈ Fp[x, (x− c)−1]

̸=

x− c ∈ Fp[x, (x− c)−1] is
invertible

0

This is a contradiction.

10.1.2 Naive tensor product is not a sheaf

In this section we will learn about the following sheaves on X = P1
k : OX(1) and OX(−1),

such that Γ(X,OX(1)) ∼=⊕2, Γ(X,OX(−1)) = 0 and OX(1) ⊗OX
OX(−1) ∼= OX . This shows

that the naive tensor product is not a sheaf, or equivalently the natural pre-sheaf homomor-
phism from the naive tensor product to the actual tensor product is not an isomorphism,
because when we apply global sections it is also not an isomorphism:

Γ
(
X,OX(1)⊗OX

OX(−1)
)
= OX(X) = k ̸= 0 = k⊕2⊗k0 ∼=

(
OX(1)

)
(X)⊗OX(X)

(
OX(−1)

)
(X).

10.1.3 Sheaves of OX-modules that are not quasi-coherent

Let ι : U = D(x) = Spec k[x, x−1] ↪→ Spec k[x] = A1
k = X be the open embedding, then

F = ι!OU is a sheaf of OX -modules, but it is not quasi-coherent. Indeed, for a coherent sheaf
G on X, we have G(X) ̸= 0, however F(X) = 0.

10.2 SHEAF HOMOMORPHISMS DEFINED ON BASES OF TOPOLOGIES

The following lemma is the key to make many of the proofs by handwavings in Section 5
precise.
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Lemma 10.2.1. Sheaf homomorphisms can be defined on bases of topologies. Let B
a basis of open sets of a topological space X and let F and G be sheaves of abelian groups (resp.
sheaves of OX-modules) on X . For every U ∈ B, let ϕU : F(U)→ G(U) be a homomorphism
of abelian groups (resp. of OX(U)-modules. Assume that for every V,U ∈ B such that V ⊆ U
the restriction morphisms commute with ϕU and ϕV , that is, the following diagram commutes:

F(U)
ϕU //

ρFU,V

��

G(U)

ρFU,V

��
F(V )

ϕV

// G(V )

Show that then

(1) There exists a unique homomorphism α : F → G of sheaves of abelian groups (resp. of
sheaves of OX-modules), such that αU = ϕU .

(2) If all ϕU are injective, then so is α.

(3) If all ϕU are surjective, then so is α

(4) In particular if all ϕU are isomorphisms, then so is α.

Proof. This will be an exercise on the exercise sheet. (Idea: if Z is a general open set, then
cover it with {U ∈ C} for some subset C ⊆ B. Additionally, for each pair U, V ∈ C, find a
subset DU,V ⊆ B such that {W ∈ DU,V } is an open cover of U ∩ V . Then by the sheaf axioms
we have

F(Z) =

{ ∏
U∈C

sU ∈
∏
u∈C
F(U)

∣∣∣∣∣ ∀U, V ∈ C,∀W ∈ DU,V : sU |W = sV |W

}

and the same one for G(U).
Then it is obvious how to define αZ . The extremely tedious part of the statements is that

it is independent of the choice of C. One way out of this is to choose C to be the set of all
elements of B that is contained in W , that is,

C =
{
U ∈ B

∣∣ U ⊆ Z
}

Similarly, the only canonical choice of DU,V is the following:

DU,V =
{
W ∈ B

∣∣ S ⊆ U ∩ V
}

The above choices of C and DU,V are canonical, and hence one does not have to worry about
well-definedness. )

10.3 PROPOSITION II.5.2

Unfortunately, many details are swept under the rug in Proposition II.5.2 of Hartshorne.
In fact, the proof presented in Hartshorne gives a horrible false impression that certain false
argument are correct. For example that two sheaves are isomorphic if their stalks are isomor-
phic. This is one of the key mistakes one can make: in fact on needs to have a homomorphism
of sheaves between the two sheaves. If that homomorphism is an isomorphism on stalks, then
we can say that the two sheaves are isomorphic. However, there are many sheaves for which
the stalks are isomorphic and still the these sheaves are non-isomorphic as there is no homo-
morphism between them with the above properties.
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10.3.1 Proposition II.5.2.c of Hartshorne

Here as the corresponding pre-sheaf on the right side is already a sheaf, one ca use Lemma 10.2.1
directly. One takes the basis given by open sets and notes that on D(f) the sections of the
sheaf on the left side is (⊕

i

Mi

)
⊗A Af

and on the right side it is ⊕
i

(Mi ⊗A Af )

These are naturally isomorphic, and the isomorphism is compatible with further localization.
Hence, we can apply Lemma 10.2.1.

10.3.2 Proposition II.5.2.b of Hartshorne

This is much trickier, as the sheaf on the right side is the sheafification of the naive pre-
tensor product. Let us denote the latter by ⊗pre. As in the previous point we can produce a
natural isomorphism

(M ⊗A N)f =
(
M̃ ⊗A N

)
(D(f))→

(
M̃ ⊗pre

OX
Ñ
)
(D(f)) = Mf ⊗Af

Nf (10.3.a)

This isomorphism sends m⊗n
f i to m

f i ⊗ n = m⊗ n
f i .

Compose (10.3.a) then with the sheafification, and we obtain a homomorphism(
M̃ ⊗A N

)
(D(f))→→

(
M̃ ⊗OX

Ñ
)
(D(f))

which is again compatible with restrictions to open sets. This yields a global homomorphism

α : M̃ ⊗A N → M̃ ⊗OX
Ñ we want to show that this is an isomorphism. We cannot argue that

it is an isomorphism on principal open sets as sheafification might have changed that.
However, sheafification is an isomorphism on stalks. So, it is enough to verify that α is an

isomorphism on stalks. So, let p ∈ SpecA, and note that as sheafification is an isomorphism
on stalks, αp is the direct limit of the homomorphisms (10.3.a) for p ∈ D(f). It is not hard to
see that this direct limit is nothing else but the natural map (M ⊗AN)p →Mp⊗ApNp defined
by the same formula as (10.3.a). Hence in particular it is an isomorphism.

(The above arugment is still an outline, we let you fill in the details, for example to prove
that lim−→

f ̸∈p
Mf ⊗Af

Nf
∼= Mp ⊗Ap NP as induced by the localization homomorphisms Nf → Np

and Mf →Mp)

10.3.3 Proposition II.5.2.d of Hartshorne

This is again similarly to point (c) easier as there is no sheafification involved. One needs
to use that localization by f ∈ A as an A-module is naturally isomorphic to localization by f
as a B-module.

10.3.4 Proposition II.5.2.e of Hartshorne

This is particularly messy to work out in full details, as it involves double sheafification
(one when passing from M̃ to M̃ , and one by passing from f−1M̃ to f∗M̃). So, the idea
of the solution is as in point (b) above. one constructs a homomorphism on principal open
sets to the corresponding presheaves, and then to the actual sheaves. This then yields a global
homomorphism. We prove that it is an isomorphism by using that sheafification does nothing on
stalks, and that the constructed homomorphisms on principal open sets induce an isomorphism
on stalks after taking direct limit.

We leave the details as homework for the interested reader (it will not be asked in the
exam).
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10.4 ON THE DEFINITION OF COHERENT SHEAF

While the definition of quasi-coherent sheaf given by Hartshorne is correct, the one for
coherence given works fine only for locally Noetherian schemes.

Historically, however, the notion of coherence for sheaves actually originated in complex
analytic geometry (principally in the work of Cartan and Oka) where the ring Ohol

Cn (D) of
holomorphic functions on a polydisk is not Noetherian, but Oka showed it still satisfy certain
finiteness hypothesis (coherence indeed). The notion of coherence was later brought into alge-
braic geometry by J.P. Serre in his famous Faisceaux algébriques cohérents (FAC) article. This
is somehow hinted in Exc II.5.4 of Hartshorne.

The following is the general definition of quasi-coherence for locally ringed spaces:

Definition 10.4.1. Let (X,OX) be a locally ringed space. Let F be a OX -module. We say
that F is quasi-coherent if for every point x ∈ X there exists a neighbourhood U of x such

that F|U is isomorphic to the cokernel of a morphism of OX -modules φ : O(I)
U → O(J)

U .

Clearly OX is a quasi-coherent module by definition.
It is important to remark that in the case of schemes, quasi-coherence detects if the OX -

module comes from a module over ring (so recovering the definition given by Hartshorne):

Proposition 10.4.2. Let A be a ring with X = Spec(A) and let F be an OX-module. Then
the following are equivalent:

(1) F is quasi-coherent;

(2) for every f ∈ A, the canonical map F(X)f → F(D(f)) is an isomorphism of Af -modules;

(3) there exists a module M on A such that F ≃ M̃ .

Proof. The only difficult part is (1) ⇒ (2). We start by taking a collection of principal open

sets D(hk)k∈K such that M |D(hk) ≃ coker(φk). It is possible to show that M |D(hk) ≃ M̃k for
Mk = F(D(hk)) as Ahk

-module (as cokernel of Ahk
-locally free modules). As X is quasi-

compact we can suppose K is finite. We are now ready to prove (2).
We start with injectivity. Let s ∈ F(X)f such that s|D(f) = 0. For any k ∈ K consider

sk ∈ F(D(hk)) such that s|D(hk) = sk. As sk|D(fhk) = 0, we conclude there exists mk > 0 such
that fmksk = 0. Take m = supmk. Then clearly fms = 0 (as fms|D(hk) = 0), so s = 0.

We now show surjectivity. Let s ∈ F(D(f)). Take s|D(fhk) and note by construction of
the covering that there exists sk ∈ F(D(hk)) and mk > 0 such that fmks|D(fhk) = sk|D(fhk).

Taking M = supmk, we have fms|D(fhk) = fM−mksk|D(fhk) (and clearly fM−mksk is a global

section on D(hk)). This says that fM−mksk coincides with fM−mjsj on D(fhkhj). This
implies that there exists m(k, j) such that fm(k,j)(fM−mksk − fM−mjsj) = 0 on D(hkhj).
Take N >> 0 such that fN (fM−mksk − fM−mjsj) = 0 on D(hkhj) for all i, k. From this,
we deduce there exists a section t ∈ F(X) such that t|D(hk) = fN+M−mksk. In particular,

t|D(fhk) = fM+Ns|D(fhk). This implies that the image of t
fM+N ∈ F(X)f via the canonical

map is s, concluding surjectivity.

The following is the general notion of coherence for a sheaf.

Definition 10.4.3. Let X be a locally ringed space and let F be an OX -module. We say that
F is coherent if it is finitely generated and if, for every open subset U of X, and every finite
family si of elements of F(U), the kernel of the associated morphism φ : OI

X → F is finitely
generated.

Note in particular that a coherent sheaf is locally finitely presented (but coherence is a
stronger notion).
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Example 10.4.4. There are at least two reasons why coherent sheaves are important. First,
it is pretty clear that the previous definition is concerned on certain ‘boundedness’ of sections
of sheaves, which will make their algebraically treatment (hopefully) simpler.

The second is that the category of coherent sheaves form an abelian category (don’t think
we will ahve time to prove it using the previous definition) and thus we can use machinery
from homological algebra on it. Moreover, if OX is coherent as a module over itself (look
at Example 10.4.9 for an example which is not) then the category of coherent sheaves form
the smallest abelian category (not time to prove it using the previous definition) containing
locally free sheaves. The ‘naive’ idea of choosing sheaves finitely generated or finitely presented
unfortunately do not form an abelian category outside the Noetherian world.

This is to explain why Hartshorne definition is not well-behaved in the non-Noetherian
setting. The reason is simply because his definition is not the correct one.

We specialise to the case of schemes.

Lemma 10.4.5. Let X = Spec(A) be an affine scheme and let F be a quasi-coherent OX-
module. Then F is a coherent OX-module if and only F(X) is a coherent A-module.

Proof. Omitted.

The following explains that our definition of coherence coincides with Harshorne’s in the
case of locally Noetherian schemes.

Proposition 10.4.6. A Noetherian ring is coherent as a module over itself. In particular, if
X is a locally Noetherian scheme then the following are equivalent

(1) F is coherent;

(2) F is a finitely generated quasi-coherent OX-module;

(3) for any affine open Spec(A) ⊂ X we have F |U = M̃ with M a finite A-module.

Example 10.4.7. There are examples of coherent, not Noetherian rings. One is A = k[{xi}i∈N]
for k field. In this case OSpec(A) is coherent (reference?), even though the scheme is not
Noetherian.

Let me add a more detailed explanation to why a geometer should care about the definition
of coherence we presented.

Remark 10.4.8. Consider the sheaf of holomorphic function Ohol
Cn . It’s not difficult in this case

to see that the stalk Ohol
Cn,0 is Noetherian (consequence of Weierstrass preparation theorem).

However, a polydisk D the sheaf Ohol
Cn (D) is not Noetherian. A deep (and beautiful) theorem of

Oka states that OCn is coherent as a module over itself, which can be thought a finiteness result
on holomorphic functions. This was an important achievement in for the complex analysis in
several variables.

We give a non-coherent example.

Example 10.4.9. The sheaf of C∞-functions on a smooth real manifold is not coherent. This
is somehow one of the reason why complex analytic geometry has more parallelism to algebraic
geometry than differential geometry. Take the famous

f(x) =

{
e−

1
x2 , if x ≥ 0

0, if x < 0.

Consider the kernel ker(φ) of the (not surjective!) multiplication map φ : C∞0 → C∞0 given by
φ(g) = fg. It is easy to see that m ker(φ) = ker(φ) and that ker(φ) is not zero. So if ker(φ)
were finitely generated, we would contradict Nakayama’s lemma.
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10.5 COMPLEMENTING EXAMPLES TO PROP 5.6 - COR 5.10 OF HARTSHORNE

10.5.1 The most frequently used exact sequence of coherent sheaves

L is an invertible sheaf (note the statement of Exc II.5.7.c), Z is a closed subscheme, and
then we consider

0 // L ⊗ IZ // L // L|Z = ι∗ι
∗L // 0 ,

where ι : Z ↪→ X is the inclusion. Note that this is indeed exact.

End of 16.
class, on
12.11.2020.

10.5.2 The exact sequence of Prop 5.6 is not exact typically at the right end

Example 10.5.1. Let Z be the reduced subscheme structure on
{
[1, 0], [0, 1]

}
∈ P1

k. Then
if we take the above exact sequence for L = OP1

k
, after applying Γ(P1

k, ), we do not get a
surjective map at the right end, as the map is a k-linear map

k = Γ
(
P1,OP1

k

)
→ H0(Z,OZ) = k2.

10.5.3 Example that in Proposition 5.8.c f∗F might not be coherent (only quasi-coherent)

Example 10.5.2. Take the structure morphism f : A1
k → Spec k. Then f∗OA1

k
= k̃[x], which

is infinite dimensional as a vector-space over k.

10.6 REMARKS FOR PROP 5.12 OF HARTSHORNE

Here the proof should be clarified as we did in Prop 5.2. The issues are the same: tensor
product and pull-back involves sheafififcation(s). We leave it to the reader to work out the
details not mentioned in class.

10.7 REMARKS FOR LEMMA 5.14 AND PROPOSITION 5.15 OF HARTHORNE

These are just the Proj version of Lemma 5.3 and Prop 5.4 of Hartshorne. Indeed, the two
lemma establish very similary extension and annihilation properties, and the the propositions
show that these are exactly the properties needed to show that the natural homomorphisms
are isomorphisms.

10.8 REMARKS FOR COR 5.16 OF HARTSHORNE

In this course we defined a scheme to be projective over A if it is ProjS for some N-graded
ring S with S0 = A. Now, the book actually does it differently. It gives the definition in Section
4 (which we did not cover), as a closed subschene of Pn

A. Then, here in Cor 5.16 it shows that
the two definitions are equivalent.

10.9 REMARKS ABOUT THM 5.19

Remark 10.9.1. The “well-known criterion for integral dependence” cited towards the end of
the proof is Proposition 9.7.1.

Remark 10.9.2. Thm 5.19 implies that if X is a projective variety over a (not-necessarily closed)
field k, then H0(X,OX) is a finite k-vector-space. Here projective variety means that it is an
integral projective scheme over k.

Hence, in this case, we have that H0(X,OX) is an Artinian ring. If this ring was non-
reduced then we would have non-reduced elements also over some affine open set, which would
contradict the integrality of X. Hence H0(X,OX) is a reduced Artinian ring. However, then it
is a product of fields. Again using the irreducibility of X we obtain that H0(X,OX) is a finite
field extension of k. If k is even algebraically closed then it even follows that H0(X,OX) = k.
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10.10 GEOMETRIC VECTOR BUNDLES AND LINE BUNDLES

Modification to exercise II.5.18: Recall the definition of a geometric vector bundle from
exercise II.5.18. This exercise shows that geometric vector bundles and locally free sheaves
of finite rank are equivalent. Unfortunately the constructions in Hartshorne between the two
notions are not inverses of each others, see point c of the exercise. This can be cured easily by
modifiying the construction of point c. So, we suggest that instead of point (c) of the exercise
show that the following gives a one to one correspondence

{geometric vector bundles over Y } oo // {locally free sheaves of finite rank over Y }

f : X → Y

∈

� // {sheaf of sections of X over Y }

∈

SpecS
(
E∗) E�oo

10.10.1 Geometric meaning of OPn(−1)

The associated geometric line bundle to OPn(−1) is{
(x, y) ∈ Pn × kn+1

∣∣ y ∈ x
}

where the map to Pn is given by projection on the first coordinate. To see let S = k[x0, . . . , xn]
as a graded ring with the standard grading, and this consider the following exact sequence of

S⊕(n+1)
(s0,...,sn) 7→

∑n
i=0 sixi // S(1)

Applying SpecS
(˜)

yields the above description of OPn(−1).

10.10.2 The difference between OP1(−1) and OP1(1)

Let S = k[x, y] with the standard grading. Then P1 = ProjS. We have OP1(−1) = S̃(−1),
and OP1(1) = S̃(1). Let U = D(y) and V = D(x). Then,

OP1(−1)|U = ˜S(−1)(y) =
˜

k

[
x

y

]
1

y

and

OP1(−1)|V = ˜S(−1)(x) =
˜

k
[y
x

] 1
x

Additionally, the gluing morphisms are given by the embeddings

k

[
x

y

]
1

y
↪→ k

[
x

y
,
y

x

]
1

y
= k

[
x

y
,
y

x

]
1

x
←↩ k

[y
x

] 1
x

(Note that here we are working in the degree 1 part of the localization of S at all the homoge-
neous elements, as all our section rings and local rings naturally live inside it, by construction
and by Prop 5.11 of Hartshorne).

Hence, global sections on U are sums of terms of the form xi

yi+1 and over V they are sums of

terms of the form yi

xi , for i ≥ 0. So, the only ones that glue is 0, and hence Γ(P1,OP1(−1)) = 0,
as we know from Prop 5.13 of Hartshorne.

On the other hand, if we replace −1 by 1, then we get

k

[
x

y

]
y ↪→ k

[
x

y
,
y

x

]
y = k

[
x

y
,
y

x

]
x←↩ k

[y
x

]
x

Note that x
y y = x and that y

xx = y. Hence, the global section x
y y on U and the global section

x on V glue to give a global section on P1. Same happens with y and y
xx. Hence we have

two k-linearly independent global section in Γ(P1,OP1(1)), and indeed this is a vector space of
dimension 2.
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Chapter 11

Divisors

This is about Section II.6 of Hartshorne. We skip in this section some proofs, check with the
lecture notes/recordings about what was skipped, and hence not asked in the exam.
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Chapter 12

Morphisms to Pn and linear systems

This is about Section II.7 of Hartshorne. We cover this section only partially, only up to linear
systems. We also skip even in this part some proofs. Check with the lecture notes/recordings
about what was skipped, and hence not asked in the exam.
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Chapter 13

Differentials

This is about Section II.8 of Hartshorne. We cover this section only briefly. We note/cover the
following from Hartshorne

(1) the definition of ΩB/A

(2) If X is a scheme over Y , then there is ΩX/Y , which is...

(3) the regularity criterion

(4) ωX/k = ∧dimXΩX/k.

Remark 13.0.1. Positivity (ampleness) of ωX/k corresponds to negative curvature with differen-

tial geometric terminology. Similarly negativity of ωX/k, that is positivity of ω−1
X/k corresponds

to positive curvature.
One of the main goal of algebraic geometry is to classify varieties, and the above types are the

fundamental building blocks. See https://www.epfl.ch/labs/cag/classification-theory-of-algebraic-varieties/.
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Chapter 14

Cohomology
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Chapter 15

Cohomology of a Noetherian scheme
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Chapter 16

Čech cohomology
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Chapter 17

Riemann-Roch on curves
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Chapter 18

Commutative algebra statements
not covered in the course

(1) any localization of a regular Noetherian local ring is a regular Noetherian local ring, and

(2) a regular local ring is a UFD, and hence it is integrally closed.

(3) if R is a finitely generated k-algebra which is a domain, then so is its integral closure in
L, where L is a finite field extension of Frac(R).

(4) For a given singularity condition P:

(i) P holds for a ring R if and only if Rp holds for all p ∈ SpecR, (this is a different
theorem for all P, and for most of them we did not show it)

(ii) f : X → Y is a morphism of finite type with Y integral, then there is a dense open
set U ⊆ Y such that either for every geometric point SpecL → U the property P
holds for XL or for every geometric point SpecL → U the property P does not for
XL (this is a different theorem for all P, and for most of them we did not show it,
we did P =regular).
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