Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque

EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 9

Exercise 1. Nullstellensatz via Chevalley. Let k be a field and \mathfrak{m} be a maximal ideal of $k[x_1, \ldots, x_n]$.

(1) Show by contradiction and using week 8, exercise 8 (which was a direct consequence of Chevalley), that $\mathfrak{p}_i = k[x_i] \cap \mathfrak{m}$ is maximal (so $\neq 0$) for each $i = 1, \ldots, n$.

Hint: If $\mathfrak{p}_i = 0$, we have a dominant map $\operatorname{Spec}(k(\mathfrak{m})) \to \mathbb{A}^1_k$.

The above is called *Zariski's lemma* and is the key to Nullstellensatz. Deduce from the lemma proved in item (1) the following direct consequences.

(2) Deduce that

$$\mathfrak{m}=(\mathfrak{p}_1,\ldots,\mathfrak{p}_n)$$

and that $k[x_1, \ldots, x_n]/\mathfrak{m}$ is a finite field extension of k.

- (3) Let $A \to B$ a k-algebra map between finite type k-algebras. Show that $f \colon \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ carries closed points to closed points.
- (4) Deduce that any finite type finite type k-algebra A is Jacobson, meaning that the nilradical (intersection of all primes, see week 3 exercise 1) of A is equal to the intersection of maximal ideals of A. Hint: for f not nilpotent, use the preceding point with $A \to A_f$.

Exercise 2. Dual. Let \mathcal{E} be locally free sheaf of finite rank¹ on a ringed space (X, \mathcal{O}_X) and \mathcal{F} an \mathcal{O}_X -module. We define $\mathcal{E}^{\vee} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$.

- (1) Show that \mathcal{E}^{\vee} is a locally free sheaf of finite rank, the same \mathcal{E} .
- (2) Show that there is a natural isomorphism $\mathcal{E} \to \mathcal{E}^{\vee\vee}$.
- (3) Show that there is a natural isomorphism $\mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F})$.

Exercise 3. Compatibilities between f^*, f_* and \otimes . Let $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces.

(1) Let \mathcal{G} and \mathcal{H} be sheaves of \mathcal{O}_Y -modules. Show that there is a natural isomorphism

$$f^*(\mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{H}) \cong f^*(\mathcal{G}) \otimes_{\mathcal{O}_Y} f^*(\mathcal{H}).$$

(2) (Projection formula.) Let \mathcal{F} be an \mathcal{O}_X module and \mathcal{E} be a finite locally free sheaf on \mathcal{O}_Y . Show that there is a natural isomorphism

$$\mathcal{E} \otimes_{\mathcal{O}_Y} f_* \mathcal{F} \to f_* (f^* \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F})$$

¹For $n \in \mathbb{N}$ a locally free sheaf of rank n is an \mathcal{O}_X -module which is locally isomorphic to $\mathcal{O}_U^{\oplus n}$ where U ranges in an open cover of X.

Exercise 4. Fibre dimension (of coherent sheaves). Let X be a Noetherian scheme and \mathcal{F} a coherent sheaf on X. Let

$$\varphi \colon X \to \mathbb{N}$$

be defined as $\varphi(x) = \dim_{k(x)}(\mathcal{F} \otimes_{\mathcal{O}_X} k(x))$. Nakayama's lemma may be useful for the following.

(1) Show that φ is upper semi-continuous meaning that for any $n \geq 0$

$$\{x \in X \mid \varphi(x) \ge n\}$$

is closed.

- (2) If \mathcal{F} is locally free and X connected show that φ is constant.
- (3) Show that if X is reduced and connected show that \mathcal{F} is locally free if and only φ is constant.

Exercise 5. Fibre dimension (of finite type morphisms) We recall some results along the way that you can assume.

Lemma 1 (Krull's height theorem). Let R be a Noetherian ring. Suppose that \mathfrak{p} is a minimal prime of (f_1, \ldots, f_n) . Then

$$ht(\mathfrak{p}) \leq n$$
.

- (1) Let R be a Noetherian ring and \mathfrak{p} be a prime ideal. Using Krull's height theorem, show by induction on the height that for every prime \mathfrak{p} of height n there is $(f_1, \ldots, f_n) \subset \mathfrak{p}$ such that \mathfrak{p} is a minimal prime of (f_1, \ldots, f_n) and every minimal prime of (f_1, \ldots, f_n) has height n.
- (2) Let $f: X \to Y$ be a morphism between locally Noetherian schemes and $Y' \subset Y$ a closed irreducible subset. Show that for every irreducible component $Z \subset f^{-1}(Y')$ that dominates Y' we have

$$\operatorname{codim}(Z, X) \leq \operatorname{codim}(Y', Y).$$

Hint: This is a local problem so you can reduce to affines and use item (1).

Lemma 2. Let k be a field, A be a finite type k-algebra which is also a domain and $\mathfrak{p} \in \operatorname{Spec}(A)$. Then

$$\dim(A) = \operatorname{trdeg}_k(\operatorname{Frac}(A))$$

and $\operatorname{codim}(\operatorname{Spec}(A/\mathfrak{p}), \operatorname{Spec}(A)) = \operatorname{ht}(\mathfrak{p}) = \dim(A) - \dim(A/\mathfrak{p}).$

(3) Let $f: X \to Y$ be a map between finite type integral k-schemes. Show that for every $y \in f(X)$ and Z irreducible component of X_y we have

$$\dim(X) - \dim(Y) \le \dim(Z) \le \dim(X)$$
.

Hint: Use item (2) with $Y' = \overline{\{y\}}$. Use lemma 2 and the additivity of transcendence degree with $k \mid k(y) \mid K(Z)$. Namely

$$\operatorname{trdeg}_k(K(Z)) = \operatorname{trdeg}_k(k(y)) + \operatorname{trdeg}_{k(y)}(K(Z)).$$

(4) Let $f: X \to Y$ be a dominant map between finite type integral k-schemes. Show that there is an open dense $U \subset X$ such that for all $y \in f(U)$ we have $\dim(X_y) = \dim(X) - \dim(Y)$ and f(U) is open. Hint: show that you can reduce to the affine case $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ with $t_1, \ldots, t_e \in B$, where $e = \dim(X) - \dim(Y)$, such that t_1, \ldots, t_e form a transcendence basis of K(X) over K(Y). Then factor the morphism by $\operatorname{Spec}(A[t_1, \ldots, t_n])$. Note that $X \to \operatorname{Spec}(A[t_1, \ldots, t_e])$ induces a finite morphism at fraction fields and that $\operatorname{Spec}(A[t_1, \ldots, t_e]) \to \operatorname{Spec}(A)$ is isomorphic to $A_A^e \to \operatorname{Spec}(A)$ which is open by exercise 2. Use exercise 1.(2) to conclude.

Remark. You are free to prove the following weaker version of the statement: show that there is an open dense $U \subset X$ such that for all $y \in f(U)$ we have $\dim(U_u) = \dim(X) - \dim(Y)$ and f(U) is open.

- (5) Let $f: X \to Y$ be a dominant map between finite type integral k-schemes. For $h \in \mathbb{N}$, let E_h be the set of points x of X such that there is an irreducible component of $X_{f(x)}$ with dimension at least h, which contains x. Show that E_h is closed.²

 Hints: If $h \leq e$, then $E_h = X$ by (3). If h > e, note that $E_h \subset X \setminus U$ where U is the open of item (4). Proceed by induction on the dimension of X.
- (6) Let $f: X \to Y$ be a closed map between finite type integral k-schemes. For $h \in \mathbb{N}$, let F_h be the set of points of y of Y such that there is an irreducible component of X_y with dimension at least h. Show that F_h is closed.

Hint: Show that $F_h = f(E_h)$.

Exercise 6. Criterion of irreducibility. This exercise uses results of the last exercise, see the hint for more details. Let k be a field.

- (1) Suppose that $f \colon X \to Y$ is a map between finite type k-schemes, with Y being irreducible, such that every fiber is irreducible of a fixed dimension $d \ge 0$ (in particular f is surjective). Show that X is irreducible if
 - (a) f is closed or,
 - (b) X is equidimensional.

Hint: write $X = \bigcup_i X_i$ the decomposition into irreducible components of X. There is at least one irreducible component, say X_1 , such that $f(X_1)$ is dense. Write $U_1 = X_1 \setminus \bigcup_{i \neq 1} X_i$. Using irreducibility of fibers, show that for every $y \in f(U_1)$ we have $X_y = X_{1,y}$. Use exercise 2 and hand-in item (3) to get an open set $V \subset f(U_1)$ of Y such that every fiber at $y \in V$ has dimension $\dim(X) - \dim(Y)$. Show also that $X_i \setminus X_1 \subset f^{-1}(Y \setminus V)$. Deduce that X_1 is the only irreducible component with a dense image. Conclude if you suppose (b). If you suppose (a), show that $f(X_1) = Y$ and conclude.

²The statement is true for any $f: X \to Y$ between X and Y finite type k-schemes without the dominant hypothesis. This can be shown by an easy reduction to the case of the exercise.

(2) Deduce that if X is an irreducible finite type k-scheme $X\times_k\mathbb{P}^n_k$

is irreducible.