Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 6

Exercise 1. Normal schemes and normalization An integral scheme X is said to be normal if every stalk $\mathcal{O}_{X,x}$ is integrally closed.

- (1) Show that an affine integral scheme $\operatorname{Spec}(A)$ is normal if and only if A is normal ring.
- (2) Show that an integral scheme is normal if and only for every closed point $x \in U$ the stalk $\mathcal{O}_{X,x}$ is integrally closed for every open affine $U \subset X$.

The normalization of an integral scheme X is a scheme \widetilde{X} together with a dominant map² $\nu \colon \widetilde{X} \to X$ such that for every dominant morphism from an integral normal scheme $f \colon Z \to X$ there exists a unique morphism $\overline{f} \colon Z \to \widetilde{X}$ with $\nu \overline{f} = f$. Therefore the normalization is unique up to unique isomorphism.

- (3) Let A be an integral domain. Show that if $X = \operatorname{Spec}(A)$, then $\operatorname{Spec}(\widetilde{A})$ is the normalization of X if $A \to \widetilde{A}$ is the normalization of A.
- (4) Show that every integral scheme admits a normalization.

Exercise 2. Blow-ups. Let k be an algebraically closed field. You can use the following.

Let $A = k[x_1, ..., x_n]/(f)$. Denote by $\partial_i f$ the derivative of f with respect to x_i . Then

$$\operatorname{Spec}(A)$$
 is regular $\iff V(f, \partial_1 f, \dots, \partial_n f) = \emptyset$.

Moreover $V(f, \partial_1 f, \dots, \partial_n f)$ consists exactly of the non-regular points of Spec(A).

- (0) Let R be a ring. Show that if $I = (f_0, \ldots, f_n)$ is generated by a regular sequence then $\mathrm{Bl}_I = V_+(X_i f_j X_j f_i)$ in $\mathbb{P}^n_R = \mathbb{P}^n_\mathbb{Z} \times \mathrm{Spec}(R)$. (Use the lemmas in the blow-ups document from moodle)
- (1) Show that blow-up of (x^2, y^2) in $\operatorname{Spec}(k[x, y])$ is not normal and that the blow-up of (x, y) is its normalization.
- (2) Show that blow-up of (x^2, y) in $\operatorname{Spec}(k[x, y])$ is not regular. What are the regular points?³
- (3) Show that $X = \operatorname{Spec}(k[x, y, z, w]/(xy zw))$ is not regular. What are the regular points?

¹For finite type k-schemes, this the same as saying every closed point of X. See week 10, exercise 1.

²A map is called *dominant* if the topological image of the map is dense.

³This investigation can be used to show that this blow-up is normal.

- (4) Show that blow-ups of X at (x, y, z, w) and (x, z) are regular. We denote these blow-ups by $X_1 \to X$ and $X_2 \to X$. Remark. This is another example where blow-ups resolves (=removes) singularities, as in 4.(3) of week 5.
- (5) Compute fibers of (x, y, z, w) of $X_1 \to X$ and $X_2 \to X$.

Exercise 3. Integrality/reducedness of Proj. Let B be an \mathbb{N} -graded integral/reduced ring. Show that $\operatorname{Proj}(B)$ is an integral/reduced scheme.

Exercise 4. Fibers.

(1) Compute the fibers of the morphism

$$\operatorname{Spec}(\mathbb{Z}[x, y, z]/(2zx + 9y^2)) \to \operatorname{Spec}(\mathbb{Z}).$$

Which fiber is reduced? Which fiber is integral?

(2) Compute the fibers of the morphism, where p is a prime number

$$\operatorname{Spec}(\mathbb{Z}[x,y]/(xy^2+p)) \to \operatorname{Spec}(\mathbb{Z}).$$

Which fiber is reduced? Which fiber is integral?

Exercise 5. Properties under base change. Let $f: X \to Y$ be a morphism of schemes. Which of the following properties are stable under base change? Prove the statement or provide a counter-example.

- (1) f is an open immersion.
- (2) f is a closed immersion.
- (3) f is injective.
- (4) f has integral fibers.
- (5) f has reduced fibers.

Exercise 6. An open of an affine is not necessarly affine. Let R be a non-zero ring. Show that $U = \operatorname{Spec}(R[x,y]) \setminus V(x,y)$ is not affine. Hint: compute $\mathcal{O}(U)$ using an appropriate cover and the sheaf property.

Exercise to hand in. Twistor \mathbb{P}^1 . (Due Sunday November 3, 18:00) Please write your solution in T_FX.

Consider the following graded \mathbb{R} -algebra map $\sigma \colon \mathbb{C}[x,y] \to \mathbb{C}[x,y]$

$$f(x,y) \mapsto \overline{f}(-y,x),$$

where $\overline{(-)}$ means applying the complex conjugation to the coefficients of the polynomial. Denote by $\tau = \operatorname{Proj}(\sigma)$ the induced \mathbb{R} -scheme morphism of $\mathbb{P}^1_{\mathbb{C}}$.

(1) Recall that we can identify the \mathbb{C} -rational points $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ as equivalences classes $[\alpha, \beta]$ of elements of $\mathbb{C}^2 \setminus 0$. We can also identify those with $\mathbb{C} \cup \infty$ with $[1, 0] \mapsto \infty$ and $[z, 1] \mapsto z$.

Describe τ on \mathbb{C} -rational points

$$\tau \colon \mathbb{P}^1_{\mathbb{C}}(\mathbb{C}) \to \mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$$

with these two identifications of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$.

(2) Show that $\tau^2 = id$ schematically.

We now consider

$$\mathbb{C}[x,y]^{\sigma} = \{ f(x,y) \in \mathbb{C}[x,y] \mid f(x,y) = \sigma(f(x,y)) = \overline{f}(-y,x) \} \}$$

the graded \mathbb{R} -algebra of σ -fixed points. We define the \mathbb{R} -scheme

$$\mathbb{P}^1_{\mathrm{tw}} = \mathrm{Proj}(\mathbb{C}[x, y]^{\sigma})$$

and call it the twistor \mathbb{P}^1 .

(3) Show that

$$\mathbb{C}[x,y]^{\sigma} = \mathbb{R}[ixy, x^2 + y^2, i(x^2 - y^2)].$$

- (4) Show that $\mathbb{P}^1_{\mathrm{tw}} \times_{\mathrm{Spec}(\mathbb{R})} \mathrm{Spec}(\mathbb{C}) \cong \mathbb{P}^1_{\mathbb{C}}$.
- (5) Identify the kernel of the 2-homogeneous map of \mathbb{R} -algebras

$$\mathbb{R}[t_1, t_2, t_3] \to \mathbb{C}[x, y]^{\sigma}$$

sending $t_1 \mapsto 2ixy$, $t_2 \mapsto x^2 + y^2$, $t_3 \mapsto i(x^2 - y^2)$.

(6) Show that there is no \mathbb{R} -rational points of the twistor \mathbb{P}^1 , *i.e.*

$$\mathbb{P}^1_{tw}(\mathbb{R}) = \emptyset.$$

Remark. Some explanations and motivation.

- (1) The map $\tau \colon \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$ from the first part of the exercise is what we call a descent data. Like saying that a sheaf can be described as a collection of sheaves on opens sets which forms a covering with isomorphisms on intersections satisfying the cocycle condition, here we specify an \mathbb{R} scheme as a \mathbb{C} -scheme with some special involution. Here the cover taken is the Galois cover $\operatorname{Spec}(\mathbb{C}) \to \operatorname{Spec}(\mathbb{R})$ and the involution property has to do with the fact that the Galois group $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ is of order 2.
- (2) The descended \mathbb{R} -scheme that we get is a \mathbb{R} -conic (curve described by a degree 2 equation in $\mathbb{P}^2_{\mathbb{R}}$) which has the strange property that it has no \mathbb{R} -points. In general if k is a field and $C \subset \mathbb{P}^2_k$ is a regular conic with admits at least one k-rational point (which here is not the case for $\mathbb{P}^1_{\mathrm{tw}}$), then it is actually isomorphic to \mathbb{P}^1_k . This can be understood via the nice method of stereographic projection. See here for for a nice explanation of this method.
- (3) The \mathbb{R} -scheme \mathbb{P}^1_{tw} appears in cohomology theory. Namely one can show that vector bundles on this scheme are intimately related to *Hodge structures*. Singular cohomology groups of projective varieties admits Hodge structures, that's why we care about this kind of linear algebraic objects.