Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 14

Exercise 1. A short exact sequence. This first exercise is just a recall. If you don't understand why this is true, understand it.

Let $\iota: D \to X$ be an effective Cartier divisor on a integral scheme X. As there is a short exact of sheaves

$$0 \to \mathcal{O}(-D) \to \mathcal{O}_X \to \iota_* \mathcal{O}_D \to 0.$$

In consequence there is a long exact sequence in cohomology,

$$(\dots) \to \mathrm{H}^i(X, \mathcal{O}(-D)) \to \mathrm{H}^i(X, \mathcal{O}_X) \to \mathrm{H}^i(D, \mathcal{O}_D) \to (\dots)$$

Exercise 2. Let $\iota: Z \to X$ be a closed immersion of schemes, where Z and X are not necessarily noetherian schemes.

- (1) Show that the functors $R^{j}\iota_{*}: \operatorname{Mod}_{\mathcal{O}_{Z}} \to \operatorname{Mod}_{\mathcal{O}_{X}}$ are zero for all j > 0.
- (2) Conclude that for an $\mathcal{F} \in \mathrm{Mod}_{\mathcal{O}_Z}$, $\mathrm{H}^i(Z,\mathcal{F}) \cong \mathrm{H}^i(X,\iota_*\mathcal{F})$ for all $i \in \mathbb{N}$.

Exercise 3. A geometric perspective on the Euler sequence. Let A be a ring and M a locally free of finite rank A-module.

(1) Directional derivative. For a $v \in M$, show that there is a unique A-derivation

$$\frac{\partial}{\partial v} \colon \operatorname{Sym}(M^{\vee}) \to \operatorname{Sym}(M^{\vee})$$

which is equal to the evaluation at v on elements of degree 1. If M is free, if (e_i) and (x_i) denotes a basis and a dual basis respectively, and $v = \sum \lambda_i e_i$, show that

$$\frac{\partial}{\partial v} = \sum_{i} \lambda_i \frac{\partial}{\partial x_i}.$$

(2) For $\varphi \in M^{\vee}$, show that $\frac{\partial}{\partial v}$ uniquely extends to an A-derivation

$$\frac{\partial}{\partial v}$$
: $\operatorname{Sym}(M^{\vee})_{\varphi} \to \operatorname{Sym}(M^{\vee})_{\varphi}$.

Deduce that $\frac{\partial}{\partial v}$ defines an A-derivation

$$\frac{\partial}{\partial v}$$
: $\operatorname{Sym}(M^{\vee})_{(\varphi)} \to \operatorname{Sym}(M^{\vee})(-1)_{(\varphi)}$.

(3) Denote by $\pi \colon \mathbb{P}(M) \to \operatorname{Spec}(A)$ and $\mathcal{T}^1_{\mathbb{P}(M)|A} = \left(\Omega^1_{\mathbb{P}(M)|A}\right)^{\vee}$. Deduce that there is a $\mathcal{O}_{\mathbb{P}(M)}$ -linear map

$$\frac{\partial}{\partial (-)} \colon \pi^*M \to \mathcal{T}^1_{\mathbb{P}(M)|A}(-1).$$

Hint: $\mathcal{T}^1_{\mathbb{P}(M)|A}(-1) = \mathcal{H}om_{\mathcal{O}_{\mathbb{P}(M)}}(\Omega^1_{\mathbb{P}(M)|A}, \mathcal{O}(-1))^1$. Use the universal property of $\Omega^1_{\mathbb{P}(M)|A}$ on affines $D_+(\varphi)$.

(4) Euler sequence. Let S be a scheme and \mathcal{E} a locally free sheaf of finite rank on S. Show that there is an exact sequence of $\mathcal{O}_{\mathbb{P}(\mathcal{E})}$ -locally free sheaves

$$0 \to \mathcal{O}(-1) \to \pi^* \mathcal{E} \xrightarrow{\frac{\partial}{\partial (-)}} \mathcal{T}^1_{\mathbb{P}(\mathcal{E})|S}(-1) \to 0$$

where the first arrow is the canonical inclusion $\mathcal{O}(-1) \to \pi^* \mathcal{E}$ and the second is a globalization of the arrow above. Hint: Use the naturality of the construction to reduce to a case where the base is affine and \mathcal{E} is free. We are now working in \mathbb{P}^n_A . Choose a basis and write the matrices of maps in question on opens $D_+(x_i)$.

Exercise 4. Cohomology and affine maps. Let $X \to Y$ be an affine map of schemes and \mathcal{F} a quasi-coherent sheaf on X.

- (1) Show that the natural map $f_* \to Rf_*$ is an isomorphism, meaning that $R^i f_* = 0$ if i > 0.
- (2) Deduce that

$$\mathrm{H}^i(X,\mathcal{F}) \cong \mathrm{H}^i(Y,f_*\mathcal{F}).$$

Exercise 5. Curves in \mathbb{P}^2_k . Let k be a field. Let $C = V_+(F)$ for $F \in \mathcal{O}_{\mathbb{P}^2_k}(d)(\mathbb{P}^2_k)$ for a $d \geq 1$.

- (1) Show that $H^0(C, \mathcal{O}_C) \cong k$.
- (2) Deduce that any C_1 and C_2 of the above form intersect.
- (3) Suppose that C does not contain [0:0:1] (this can always be arranged up to an automorphism of \mathbb{P}^2_k). Calculate the Čech complex associated to the cover $C \cap D_+(Y) \cup C \cap D_+(X)$ explicitly and deduce that $H^1(C, \mathcal{O}_C)$ is a k-vector space of dimension $\frac{(d-1)(d-2)}{2}$.

Remark. We say that $\frac{(d-1)(d-2)}{2}$ is the arithmetic genus of C. Curves of degree 3 are of arithmetic genus 1. Smooth ones are called *elliptic curves*. Any smooth curve C over an algebraically closed field k with $H^1(E, \mathcal{O}_E) = 1$ can be realized as a smooth cubic in \mathbb{P}^2_k , see for example Harthshorne III,4.6.

Exercise 6. A Čech cohomology computation. Let k be a field. Let $U = \mathbb{A}^2_k \setminus 0$. Compute the cohomology of \mathcal{O}_U on U. After showing that \mathcal{O}_U is ample, deduce that Serre vanishing does not hold for U.

¹Because in general if \mathcal{F} is finite locally free and \mathcal{G} is a sheaf of \mathcal{O} -modules, then $\mathcal{F}^{\vee} \otimes \mathcal{G} \cong \mathcal{H}om_{\mathcal{O}}(\mathcal{F}, \mathcal{G})$

Exercise 7. Coherence of derived pushforward: Let $f: X \to Y$ be a projective morphism between two noetherian schemes. For a coherent \mathcal{O}_X -module \mathcal{F} , show that $R^i f_* \mathcal{F}$ is coherent for all i.

The exercise will require material taught on 18.12.24.