Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque

EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 13

Exercise 1. Separable extensions and differentials. Let k be a field and l a finite extension. Show that $\Omega^1_{l|k} = 0$ if and only if l is a separable extension.

Exercise 2. Derivations on an elliptic curve. Let R be a ring, $P = R[x_1, \ldots, x_n]$ and $P \to A$ a surjection, with kernel I. Recall that by the conormal sequence, if $d: I/I^2 \to \bigoplus_{i=1}^n Adx_i$ is given by sending a polynomial to the image of it's derivative then we have an exact sequence

$$I/I^2 \to \bigoplus_{i=1}^n Adx_i \to \Omega^1_{A|R} \to 0.$$

We denote by $T^1_{A|R} = \operatorname{Hom}_A(\Omega^1_{A|R}, A) = \operatorname{Der}_R(A, A)$, the A-module of R-derivations of A.

(1) Let

$$E = \text{Proj}(\mathbb{C}[X, Y, Z]/(Y^2Z - (X^3 + Z^3))).$$

Denote by x, y the images of $\frac{X}{Z}, \frac{Y}{Z}$ in $A_Z := \mathcal{O}_E(D_+(Z))$ and s, t the images of $\frac{X}{Y}, \frac{Z}{Y}$ in $A_Y := \mathcal{O}_E(D_+(Y))$. Show using the sequence recalled above that (meaning that any derivation is a scalar multiplication of the written generator)

$$\mathbf{T}^1_{A_Z|\mathbb{C}} = A_Z(2y\frac{\partial}{\partial x} + 3x^2\frac{\partial}{\partial y}) \quad \mathbf{T}^1_{A_Y|\mathbb{C}} = A_Y((3t^2 - 1)\frac{\partial}{\partial s} - 3s^2\frac{\partial}{\partial t}).$$

(2) Moreover show that the generators displayed above agree on the intersection $D_+(YZ)$, giving a non-vanishing global section π of $T_{E|\mathbb{C}} := \operatorname{Hom}_{\mathcal{O}_E}(\Omega^1_{E|\mathbb{C}}, \mathcal{O}_E)$ implying that

$$T_{E|\mathbb{C}} = \mathcal{O}_{E|\mathbb{C}}\pi.$$

Exercise 3. Relative Spec. Let S be a scheme. Let A be a quasi-coherent \mathcal{O}_S -algebra. This means that it is a sheaf \mathcal{O}_S -algebras which is quasi-coherent as an \mathcal{O}_S -module.

(1) Let $V \subset U \subset S$ two open affines. Show that the diagram

$$\operatorname{Spec}(\mathcal{A}(V)) \longrightarrow \operatorname{Spec}(\mathcal{A}(U)) \\
\downarrow \qquad \qquad \downarrow \\
V \longrightarrow U$$

is cartesian.

(2) Let $X = \bigcup U_i$ be an affine cover. Deduce that we can glue the schemes (Spec($\mathcal{A}(U_i)$)) to an S-scheme

$$\underline{\operatorname{Spec}}_S(\mathcal{A}) \to S.$$

- (3) Show that $\underline{\operatorname{Spec}}_S(\mathcal{A})$ satisfies the following universal property in the category of S-schemes. If $f: T \to S$ is an S-scheme then a S-morphism $T \to \underline{\operatorname{Spec}}_S(\mathcal{A})$ is the same as a morphism of \mathcal{O}_T -algebras $f^*\mathcal{A} \to \mathcal{O}_T$. Deduce that $\underline{\operatorname{Spec}}_S(\mathcal{A})$ is independent of the affine cover for the construction.
- (4) Let $f: X \to Y$ be an affine morphism of schemes. Show that there is a natural isomorphism of Y-schemes $X \cong \operatorname{Spec}_V(f_*\mathcal{O}_X)$.
- (5) Let \mathcal{E} be a locally free sheaf of finite rank on S. We define

$$\mathbb{V}(\mathcal{E}) = \operatorname{Spec}_{S}(\operatorname{Sym}(\mathcal{E}^{\vee}))$$

where the \mathcal{O}_S -algebra $\operatorname{Sym}(\mathcal{E}^{\vee})$ denotes the free \mathcal{O}_S -algebra generated by \mathcal{E}^{\vee} . Show that a S-morphism from $f: T \to S$ to $\mathbb{V}(\mathcal{E})$ is the same as a global section of $f^*(\mathcal{E})$, *i.e* an element of $f^*(\mathcal{E})(T)$.

(6) Show that there is always a canonical section of $p: \mathbb{V}(\mathcal{E}) \to S$ which correspond to $0 \in \mathcal{E}(S)$ which defines a closed subscheme of $\mathbb{V}(\mathcal{E})$ isomorphic to S. We call this closed subscheme the zero section of $\mathbb{V}(\mathcal{E})$.

Exercise 4. Projective bundles. Let S be a scheme. Let A be a quasi-coherent sheaf of graded \mathcal{O}_S -algebras. Let \mathcal{E} be a locally free sheaf of finite rank on S.

(1) Let $V \subset U \subset S$ two open affines. Show that the diagram

$$\begin{array}{ccc} \operatorname{Proj}(\mathcal{A})(V)) & \longrightarrow & \operatorname{Proj}(\mathcal{A})(U)) \\ \downarrow & & \downarrow \\ V & \longrightarrow & U \end{array}$$

is cartesian.

(2) Let $X = \bigcup U_i$ be an affine cover. Deduce that we can glue the schemes $(\operatorname{Proj}(\mathcal{A})(U_i))$ to an S-scheme (the relative Proj)

$$\pi : \underline{\operatorname{Proj}}(\mathcal{A}) \to S.$$

When $\mathcal{A} = \operatorname{Sym}(\mathcal{E}^{\vee})$ we denote $\underline{\operatorname{Proj}}(\operatorname{Sym}(\mathcal{E}^{\vee})) = \mathbb{P}(\mathcal{E})$, the projective bundle associated to \mathcal{E} .

(3) Show that $\mathbb{P}(\mathcal{E})$ satisfies the following universal property in the category of S-schemes. If $f: T \to S$ is an S-scheme then a S-morphism $T \to \mathbb{P}(\mathcal{E})$ is the same as a sub-line bundle² $\mathcal{L} \subset f^*\mathcal{E}$.

Hint: Show that the line bundles $\mathcal{O}(1)$ on $\operatorname{Proj}(\operatorname{Sym}(\mathcal{E}^{\vee})(U))$ glue

$$\pi^* \mathcal{E}^{\vee} \to \mathcal{O}(1)$$
.

naturally to a line bundle $\mathcal{O}(1)$ with a surjection

¹It's a gluing of the usual construction in linear algebra.

²a subsheaf which is a line bundle, and such that $f^*\mathcal{E}/\mathcal{L}$ is locally free.

The identity correspond therefore to the dual inclusion $\mathcal{O}(-1) \subset \pi^* \mathcal{E}$. Recall that for locally free sheaves of finite rank, pullback and dual naturally commute.

(4) Show that the surjection

$$\operatorname{Sym}(\mathcal{E}^{\vee} \oplus \mathcal{O}_S) \to \operatorname{Sym}(\mathcal{E}^{\vee})$$

induces a closed immersion

$$\mathbb{P}(\mathcal{E}) \to \mathbb{P}(\mathcal{E} \oplus \mathcal{O})$$

and that the open complement identifies to $\mathbb{V}(\mathcal{E})$, leading to an openclosed decomposition

$$\mathbb{P}(\mathcal{E} \oplus \mathcal{O}) = \mathbb{V}(\mathcal{E}) \sqcup \mathbb{P}(\mathcal{E}).$$

Remark. This generalizes the open closed decomposition $\mathbb{P}_k^{n+1} = \mathbb{A}_k^{n+1} \sqcup \mathbb{P}_k^n$. We can therefore interpret $\mathbb{P}(\mathcal{E} \oplus \mathcal{O})$ as a compactification of $\mathbb{V}(\mathcal{E})$ where we add an ∞ -point to each line in $\mathbb{V}(\mathcal{E})$, namely the corresponding point in $\mathbb{P}(\mathcal{E})$.

(5) Show that $\mathcal{O} \subset \mathcal{E} \oplus \mathcal{O}$ defines a section of $\mathbb{P}(\mathcal{E} \oplus \mathcal{O}) \to S$ which leads to an open-closed decomposition

$$\mathbb{V}(\mathcal{O}(1)) \sqcup S = \mathbb{P}(\mathcal{E} \oplus \mathcal{O}).$$

Remark. This generalizes

$$\mathbb{P}_k^{n+1} = \left(\bigcup_{i=0}^n D_+(x_i)\right) \sqcup [0:\dots 0:1].$$

Exercise 5. Tautological line bundle. This exercise is a direct follow-up to the preceding one. We call

$$\mathcal{O}(-1) \subset \pi^* \mathcal{E}$$

the tautological line bundle. We gather in this exercise various properties of this universal line bundle.

Say U is an affine of S, $M = \mathcal{E}(U)$ and $\varphi \in M^{\vee}$. Let $c \in M \otimes M^{\vee}$ be the canonical element (corresponding to the identity along the natural isomorphism $M \otimes M^{\vee} \cong \operatorname{Hom}_A(M, M)$).

(1) Show that $\mathcal{O}(-1)$ can be realized as the sub-line bundle of $\pi^*\mathcal{E}$ generated on $D_+(\varphi)$ by

$$c/\varphi \in \pi^*M(D_+(\varphi)) = \operatorname{Sym}(M^{\vee})_{(\varphi)} \otimes M.$$

(2) Let $f: T \to S$ an S-scheme. From the previous exercise, deduce that if $T \to \mathbb{P}(\mathcal{E})$ is the map of S-schemes corresponding to an $\mathcal{L} \subset \pi^* \mathcal{E}$, then the following square

$$\mathbb{V}(\mathcal{L}) \longrightarrow \mathbb{V}(\mathcal{O}(-1))$$

$$\downarrow \qquad \qquad \downarrow$$

$$T \longrightarrow \mathbb{P}(\mathcal{E})$$

is Cartesian.

Remark. The above says that $\mathbb{P}(\mathcal{E})$ is the moduli space of sub-line bundles of \mathcal{E} , and that $\mathcal{O}(-1)$ is the universal line bundle on the moduli.

- (3) Show that $\mathbb{V}(\mathcal{O}(-1))$ is a closed subscheme of $\mathbb{V}(\pi^*\mathcal{E}) = \mathbb{V}(\mathcal{E}) \times_S \mathbb{P}(\mathcal{E})$. This comes from the surjection $\pi^*\mathcal{E}^{\vee} \to \mathcal{O}(1)$.
- (4) Let $f: T \to S$ an S-scheme. Show that a map of S-schemes $T \to \mathbb{V}(\mathcal{E}) \times_S \mathbb{P}(\mathcal{E})$ which corresponds to a pair (\mathcal{L}, v) with $\mathcal{L} \subset f^*\mathcal{E}$ and $v \in f^*\mathcal{E}(T)$ factors through $\mathbb{V}(\mathcal{O}(-1))$ if and only if $v \in \mathcal{L}(T)$. **Remark.** In particular if $S = \operatorname{Spec}(k)$ where k is a field, and $\mathcal{E} = k^{n+1}$, the bundle $\mathbb{V}(\mathcal{O}(-1))$ is realized as a closed subscheme of $\mathbb{A}^{n+1}_k \times_k \mathbb{P}^n_k$.

Exercise 6. Stability properties of (very-)ample sheaves under tensor product. Let X be a Noetherian scheme. Let \mathcal{L} and \mathcal{M} be invertible sheaves on X.

- (1) If \mathcal{L} is ample and \mathcal{M} is globally generated, show that $\mathcal{L} \otimes \mathcal{M}$ is ample.
- (2) If \mathcal{L} is ample and \mathcal{M} is arbitrary, deduce that there is a n such that $\mathcal{L}^n \otimes \mathcal{M}$ is ample.
- (3) Show that if \mathcal{L} and \mathcal{M} are ample, then $\mathcal{L} \otimes \mathcal{M}$ is ample.

Now suppose that X is an A-scheme where A is a Noetherian ring.

- (4) If \mathcal{L} is A-very ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is A-very ample.
- (5) If \mathcal{L} is ample, then there is a $n_0 > 0$ such that \mathcal{L}^n is A-very-ample for all $n \geq n_0$.