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Exercises – week 13

Exercise 1. Separable extensions and differentials. Let k be a field and l a
finite extension. Show that Ω1

l|k = 0 if and only if l is a separable extension.

Exercise 2. Derivations on an elliptic curve. Let R be a ring, P =
R[x1, . . . , xn] and P → A a surjection, with kernel I. Recall that by the
conormal sequence, if d : I/I2 →

⊕n
i=1Adxi is given by sending a polyno-

mial to the image of it’s derivative then we have an exact sequence

I/I2 →
n⊕

i=1

Adxi → Ω1
A|R → 0.

We denote by T1
A|R = HomA(Ω

1
A|R, A) = DerR(A,A), the A-module of R-

derivations of A.

(1) Let

E = Proj(C[X,Y, Z]/(Y 2Z − (X3 + Z3))).

Denote by x, y the images of X
Z , YZ in AZ := OE(D+(Z)) and s, t

the images of X
Y , ZY in AY := OE(D+(Y )). Show using the sequence

recalled above that (meaning that any derivation is a scalar multi-
plication of the written generator)

T1
AZ |C = AZ(2y

∂

∂x
+ 3x2

∂

∂y
) T1

AY |C = AY ((3t
2 − 1)

∂

∂s
− 3s2

∂

∂t
).

(2) Moreover show that the generators displayed above agree on the
intersection D+(Y Z), giving a non-vanishing global section π of
TE|C := HomOE

(Ω1
E|C,OE) implying that

TE|C = OE|Cπ.

Exercise 3. Relative Spec. Let S be a scheme. Let A be a quasi-coherent
OS-algebra. This means that it is a sheaf OS-algebras which is quasi-
coherent as an OS-module.

(1) Let V ⊂ U ⊂ S two open affines. Show that the diagram

Spec(A(V )) Spec(A(U))

V U

is cartesian.
1
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(2) Let X =
⋃
Ui be an affine cover. Deduce that we can glue the

schemes (Spec(A(Ui))) to an S-scheme

Spec
S
(A) → S.

(3) Show that Spec
S
(A) satisfies the following universal property in the

category of S-schemes. If f : T → S is an S-scheme then a S-
morphism T → Spec

S
(A) is the same as a morphism of OT -algebras

f∗A → OT . Deduce that Spec
S
(A) is independent of the affine cover

for the construction.
(4) Let f : X → Y be an affine morphism of schemes. Show that there

is a natural isomorphism of Y -schemes X ∼= Spec
Y
(f∗OX).

(5) Let E be a locally free sheaf of finite rank on S. We define

V(E) = Spec
S
(Sym(E∨))

where the OS-algebra Sym(E∨) denotes the free OS-algebra gener-
ated by E∨.1 Show that a S-morphism from f : T → S to V(E) is
the same as a global section of f∗(E), i.e an element of f∗(E)(T ).

(6) Show that there is always a canonical section of p : V(E) → S which
correspond to 0 ∈ E(S) which defines a closed subscheme of V(E)
isomorphic to S. We call this closed subscheme the zero section of
V(E).

Exercise 4. Projective bundles. Let S be a scheme. Let A be a quasi-
coherent sheaf of graded OS-algebras. Let E be a locally free sheaf of finite
rank on S.

(1) Let V ⊂ U ⊂ S two open affines. Show that the diagram

Proj(A)(V )) Proj(A)(U))

V U

is cartesian.
(2) Let X =

⋃
Ui be an affine cover. Deduce that we can glue the

schemes (Proj(A)(Ui))) to an S-scheme (the relative Proj)

π : Proj(A) → S.

When A = Sym(E∨) we denote Proj(Sym(E∨)) = P(E), the projec-
tive bundle associated to E .

(3) Show that P(E) satisfies the following universal property in the cat-
egory of S-schemes. If f : T → S is an S-scheme then a S-morphism
T → P(E) is the same as a sub-line bundle2 L ⊂ f∗E .
Hint: Show that the line bundles O(1) on Proj(Sym(E∨)(U)) glue
naturally to a line bundle O(1) with a surjection

π∗E∨ → O(1).

1It’s a gluing of the usual construction in linear algebra.
2a subsheaf which is a line bundle, and such that f∗E/L is locally free.
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The identity correspond therefore to the dual inclusion O(−1) ⊂ π∗E.
Recall that for locally free sheaves of finite rank, pullback and dual
naturally commute.

(4) Show that the surjection

Sym(E∨ ⊕OS) → Sym(E∨)

induces a closed immersion

P(E) → P(E ⊕ O)

and that the open complement identifies to V(E), leading to an open-
closed decomposition

P(E ⊕ O) = V(E) ⊔ P(E).

Remark. This generalizes the open closed decomposition Pn+1
k =

An+1
k ⊔Pn

k . We can therefore interpret P(E⊕O) as a compactification
of V(E) where we add an ∞-point to each line in V(E), namely the
corresponding point in P(E).

(5) Show that O ⊂ E ⊕O defines a section of P(E ⊕O) → S which leads
to an open-closed decomposition

V(O(1)) ⊔ S = P(E ⊕ O).

Remark. This generalizes

Pn+1
k =

(
n⋃

i=0

D+(xi)

)
⊔ [0 : . . . 0 : 1].

Exercise 5. Tautological line bundle. This exercise is a direct follow-up to
the preceding one. We call

O(−1) ⊂ π∗E

the tautological line bundle. We gather in this exercise various properties of
this universal line bundle.
Say U is an affine of S, M = E(U) and φ ∈ M∨. Let c ∈ M ⊗ M∨

be the canonical element (corresponding to the identity along the natural
isomorphism M ⊗M∨ ∼= HomA(M,M)).

(1) Show that O(−1) can be realized as the sub-line bundle of π∗E gen-
erated on D+(φ) by

c/φ ∈ π∗M(D+(φ)) = Sym(M∨)(φ) ⊗M.

(2) Let f : T → S an S-scheme. From the previous exercise, deduce that
if T → P(E) is the map of S-schemes corresponding to an L ⊂ π∗E ,
then the following square

V(L) V(O(−1))

T P(E)

is Cartesian.
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Remark. The above says that P(E) is the moduli space of sub-line
bundles of E , and that O(−1) is the universal line bundle on the
moduli.

(3) Show that V(O(−1)) is a closed subscheme of V(π∗E) = V(E) ×S

P(E). This comes from the surjection π∗E∨ → O(1).
(4) Let f : T → S an S-scheme. Show that a map of S-schemes T →

V(E)×S P(E) which corresponds to a pair (L, v) with L ⊂ f∗E and
v ∈ f∗E(T ) factors through V(O(−1)) if and only if v ∈ L(T ).
Remark. In particular if S = Spec(k) where k is a field, and
E = kn+1, the bundle V(O(−1)) is realized as a closed subscheme of
An+1
k ×k Pn

k .

Exercise 6. Stability properties of (very-)ample sheaves under tensor prod-
uct. Let X be a Noetherian scheme. Let L and M be invertible sheaves on
X.

(1) If L is ample and M is globally generated, show that L ⊗ M is
ample.

(2) If L is ample and M is arbitrary, deduce that there is a n such that
Ln ⊗M is ample.

(3) Show that if L and M are ample, then L ⊗M is ample.

Now suppose that X is an A-scheme where A is a Noetherian ring.

(4) If L is A-very ample and M is globally generated, then L ⊗ M is
A-very ample.

(5) If L is ample, then there is a n0 > 0 such that Ln is A-very-ample
for all n ≥ n0.


