Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque

EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 10

Exercise 1. Functoriality of $\mathcal{O}(n)$. Let R and S be N-graded rings, where R is generated in degree 1, so that $\mathcal{O}(n)$ is a line bundle for each $n \in \mathbb{Z}$. Let $f: R \to S$ be an homogeneous map of degree $d \ge 1$, see Exercise 5, week 4. Denote by $q: U \to \operatorname{Proj}(R)$ the induced map at Proj from functoriality of Proj. Show then that for $n \geq 0$ we have $g^*\mathcal{O}(n) = \mathcal{O}(nd)_{|U}$. Hint: check the claim on cocycles.

Exercise 2. A principal divisor is effective where it has no poles. Let X be a Noetherian, normal and integral scheme. Recall that for normal Noetherian domain A, the ring A is the intersection of $A_{\mathfrak{p}}$ where $\operatorname{ht}(\mathfrak{p}) = 1$. Let $f \in K(X)$. Let $U \subset X$ open. Show that if $\operatorname{div}(f)_{|U} \geq 0$ then $f \in K(X)$ $\mathcal{O}_X(U)$. If $\operatorname{div}(f)_{|U} = 0$ then $f \in \mathcal{O}(U)^{\times}$.

Exercise 3. Divisors that are not Cartier. Let k be a field and X = V(xy - y)zw) in \mathbb{A}^4_k . Note that X is integral and regular in codimension 1.

- (1) Show that the closed subsets in X defined by x = z = 0 and x = z = 0w=0 are prime divisors that are not Cartier. Denote by D_z and D_w these divisors.
- (2) Show that $D_z + D_w$ is a Cartier divisor.

Exercise 4. Exact sequence for class groups. Let X be an integral separated scheme which is regular in codimension 1. Let Z be a proper closed subset of X and $U = X \setminus Z$.

- (1) Show that $Cl(X) \to Cl(U)$ defined by $\sum n_i D_i \mapsto \sum n_i (D_i \cap U)$ is surjective.
- (2) If $\operatorname{codim}(Z, X) \leq 2$, show that that this map is also injective.
- (3) If $\operatorname{codim}(Z, X) = 1$ and Z is irreducible, show that there is an exact sequence

$$\mathbb{Z} \to \mathrm{Cl}(X) \to \mathrm{Cl}(U) \to 1$$

where $\mathbb{Z} \to \mathrm{Cl}(X)$ send 1 to Z.

(4) Let k be a field. Let Z be the zero set of an irreducible homogeneous polynomial of degree d in \mathbb{P}_k^n . Deduce that $\mathrm{Cl}(\mathbb{P}_k^n \setminus Z) \cong \mathbb{Z}/d\mathbb{Z}$.

Hint: You may look at chapter II.6 of Hartshorne.

Exercise 5. Let A be a ring and R_{\bullet} the graded ring $A[x_0,\ldots,x_n]$ with $deg(x_i) = 1$. Show that the natural map

$$R_m \to \Gamma(\operatorname{Proj}(R), \mathcal{O}(m))$$

is an isomorphism for $m \in \mathbb{Z}$. Hint: Use the usual cover and the sheaf property.

Exercise 6. Support of coherent sheaves. We define

$$\operatorname{supp}(\mathcal{F}) = \{ x \in X \mid \mathcal{F}_x \neq 0 \}$$

- (1) Let A be a ring and M a finitely generated module. Show that supp(M) is closed.
- (2) In the same setup as in item (1), show that supp(M) = V(Ann(M)), where

$$\operatorname{Ann}(M) = \{ f \in A \mid fM = 0 \}.$$

- (3) Let A be a Noetherian ring, $f \in A$ and M be a finitely generated module. Show $Ann(M)_f = Ann(M_f)$.
- (4) Let X be a locally Noetherian scheme and \mathcal{F} a coherent sheaf on X. Using the preceding point, define a quasi-coherent sheaf of ideals $\operatorname{Ann}(\mathcal{F})$. Show that $V(\operatorname{Ann}(\mathcal{F})) = \operatorname{supp}(\mathcal{F})$.

Remark. In this case, we then call $V(\text{Ann}(\mathcal{F}))$ with it's natural scheme structure coming from the quasi-coherent sheaf of ideals $\text{Ann}(\mathcal{F})$ the scheme theoretic support of \mathcal{F} .

Exercise 7. Torsion free sheaves. Let X be an integral scheme with generic point η . Let \mathcal{F} be a quasi-coherent \mathcal{O}_X -module. We say that \mathcal{F} is torsion free if $\mathcal{F}(U)$ is a torsion free $\mathcal{O}(U)$ -module for all opens $U \subset X$.

- (1) Let \mathcal{F} be any quasi-coherent sheaf. Show that $\mathcal{F}_{tors} \subset \mathcal{F}$, where $s \in \mathcal{F}_{tors}(U)$ if $s \mapsto 0$ along $\mathcal{F} \to \mathcal{F}_{\eta}$, is a quasi-coherent sheaf and that $\mathcal{F}/\mathcal{F}_{tors}$ is torsion free.
- (2) Show that a map between torsion free sheaves is injective if and only if it is injective at a stalk at some point $x \in X$.
- (3) Deduce that a map between locally free sheaves of rank 1 is injective or zero.

Exercise 8. Generic flatness. Let X be a connected reduced Noetherian scheme. Let \mathcal{F} be a coherent sheaf on X.

(1) Show that there is an non empty open U such that \mathcal{F} is locally free (possibly zero).

Use Exercise 4.(3), week 9.

(2) Show by Noetherian induction¹ on X that there is a finite partition of X by locally closed subschemes (X_i) with the reduced scheme structure such that \mathcal{F} is locally free when restricted (meaning taking the pullback) to X_i .

Exercise to hand in. Morphisms and maps between projective spaces. (Due 2 December, 18:00) Please write your solution in T_FX.

¹see Hartshorne, II.3.16

Let k be a field, and m < n two positive integers. Consider the two k-algebra morphisms given by the natural inclusion $\phi \colon k[x_0,\ldots,x_m] \hookrightarrow k[x_0,\ldots,x_n]$ and the natural quotient $\psi \colon k[x_0,\ldots,x_n] \twoheadrightarrow k[x_0,\ldots,x_m]$. Let $f \colon \mathbb{A}_k^{n+1} \to \mathbb{A}_k^{m+1}$ and $g \colon \mathbb{A}_k^{m+1} \to \mathbb{A}_k^{n+1}$ denote the corresponding morphisms of affine spaces, and let $\pi \colon \mathbb{P}_k^n \dashrightarrow \mathbb{P}_k^m$ and $\iota \colon \mathbb{P}_k^m \dashrightarrow \mathbb{P}_k^n$ be the corresponding rational maps between projective spaces, obtained by functoriality of Proj, see Exercise 5, week 5.

- (1) Assuming that k is algebraically closed so that we can represent closed points with Cartesian coordinates (a_0, \ldots, a_m) and (b_0, \ldots, b_n) , describe the morphisms f and g at the level of coordinates.
- (2) Show that ι is a morphism and a closed embedding, and show that π is not everywhere defined. Furthermore, show that the locus where π is not defined is a copy of \mathbb{P}^{n-m-1}_k . Lastly, assuming that k is algebraically closed so that we can represent closed points with projective Cartesian coordinates $[a_0:\ldots:a_m]$ and $[b_0:\ldots:b_n]$, describe the two maps at the level of coordinates.

In general, π is called *projection from an* (n-m-1)-plane. The fibers over closed points of this rational map (i.e., the closure of the fibers of the morphism defined on the domain of π) are copies of \mathbb{P}^{n-m-1}_k . For instance, if n=2 and m=1, it is a projection from a the point [0:0:1].

From the point of view of linear systems (cf. Ch. II.7 in Hartshorne), the rational map π is defined by a proper subspace of $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(1))$, namely by those global sections that vanish along the linear subspace we are projecting from. For instance, in the case n=2 and m=1, the rational map π is defined by considering the sections of $\Gamma(\mathbb{P}^n_k, \mathcal{O}_{\mathbb{P}^n_k}(1))$ corresponding (cf. Exercise 2) to the lines through the point [0:0:1].

In the following, \mathbb{P}_k^{n-m-1} will denote the copy of the projective (n-m-1)-space along which π is not defined.

- (3) Show that $\iota^*\mathcal{O}_{\mathbb{P}^n_k}(1) = \mathcal{O}_{\mathbb{P}^m_k}(1)$. Hint: you can use Exercise 1.
- (4) Show that $\mathcal{O}_{\mathbb{P}^n}(1)|_{\mathbb{P}^n_k\setminus\mathbb{P}^n_k^{n-m-1}}$ is isomorphic to $\pi^*\mathcal{O}_{\mathbb{P}^m_k}(1)$. Hint: you can use Exercise 1.

In the following, we focus on the case n=2 and m=1, and we further assume that k is algebraically closed. We will denote by P=[0:0:1] the copy of \mathbb{P}_k^{2-1-1} (i.e., a point) along which π is not defined. We let C_1 be the conic with equation $x_2^2 - x_0x_1 = 0$, which corresponds to the Veronese embedding of \mathbb{P}_k^1 in \mathbb{P}_k^2 (cf. Exercise 6 in sheet 4)². Then, we denote by C_2 the conic with equation $x_0^2 - x_1x_2 = 0$. Notice that $P \in C_2$ and $P \notin C_1$.

- (5) Show that $\mathcal{O}_{\mathbb{P}^2_k}(1)|_{C_1}$ is isomorphic to $\mathcal{O}_{\mathbb{P}^1_k}(2)$, where we identify \mathbb{P}^1_k with C_1 via the Veronese embedding. *Hint: you can use Exercise 1.*
- (6) Show that $\pi|_{C_1}: C_1 \to \mathbb{P}^1_k$ is finite of degree 2. Hint: via isomorphism given by the Veronese embedding, you can identify π_{C_1} with one of the morphisms in Exercise 1 in sheet 7.
- (7) Show that $\pi|_{C_2} : C_2 \setminus \{P\} \to \mathbb{P}^1_k$ extends uniquely to an isomorphism $\pi|_{C_2} : C_2 \to \mathbb{P}^1_k$. Hint: Define a map $D_+(x_2) \cap C_2 \to D_+(x_0) \subset \mathbb{P}^1_k$

²More precisely we ware talking about the one induced by Proj by $x_0 \mapsto x_0^2$, $x_1 \mapsto x_1^2$ and $x_2 \mapsto x_0 x_1$.

- that glues with $\pi|_{C_2}: C_2 \setminus \{P\} \to \mathbb{P}^1_k$. Note that you are forced to send $\frac{x_1}{x_0} \in K(\mathbb{P}^1_k)$ to $\frac{x_1}{x_0} = \frac{x_0}{x_2} \in K(C_2)$ which ensures unicity.

 (8) Show that $\mathcal{O}_{\mathbb{P}^2_k}(1)|_{C_2}$ is not isomorphic to $(\pi|_{C_2})^*\mathcal{O}_{\mathbb{P}^1_k}(1)$. Hint: you
- can use Exercise 1.

The morphism $\pi|_{C_2}$ is nothing but the stereographic projection. Indeed, the fibers of π (i.e., the closure of the fibers of the morphism $\mathbb{P}^2_k \setminus \{P\} \to \mathbb{P}^1_k$) are lines. In the case of C_1 , these lines intersect C_1 in 2 (by Bézout's theorem) distinct points, and these points vary as we vary the target point in \mathbb{P}^1_k . On the other hand, in the case of C_2 , one of the two points is always P. Thus, we get a morphism from $C_2 \setminus \{P\}$ which is an isomorphism with its image, which in turn extends to the whole C_2 (ancient Greeks just settled for a bijection...).

More generally, if we have a regular conic C with a k-rational point P, the projection from P always induces and isomorphism with \mathbb{P}^1_k .