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Exercises — week 10

Exercise 1. Functoriality of O(n). Let R and S be N-graded rings, where
R is generated in degree 1, so that O(n) is a line bundle for each n € Z. Let
f: R — S be an homogeneous map of degree d > 1, see Exercise 5, week 4.
Denote by g: U — Proj(R) the induced map at Proj from functoriality of
Proj. Show then that for n > 0 we have g*O(n) = O(nd)|y.

Hint: check the claim on cocycles.

Exercise 2. A principal divisor is effective where it has no poles. Let X be a
Noetherian, normal and integral scheme. Recall that for normal Noetherian
domain A, the ring A is the intersection of A, where ht(p) = 1.

Let f € K(X). Let U C X open. Show that if div(f);y > 0 then f €
Ox(U). If div(f);y = 0 then f € O(U)*.

Exercise 3. Divisors that are not Cartier. Let k be a field and X = V (zy—
zw) in Ai. Note that X is integral and regular in codimension 1.

(1) Show that the closed subsets in X defined by z = z = 0 and = =
w = 0 are prime divisors that are not Cartier. Denote by D, and
D,, these divisors.

(2) Show that D, + D,, is a Cartier divisor.

Exercise 4. Ezact sequence for class groups. Let X be an integral separated
scheme which is regular in codimension 1. Let Z be a proper closed subset
of Xand U =X\ Z.

(1) Show that ClI(X) — ClL(U) defined by > n;D; — > n;(D; NU) is
surjective.
(2) If codim(Z, X) < 2, show that that this map is also injective.
(3) If codim(Z, X) = 1 and Z is irreducible, show that there is an exact
sequence
Z— Cl(X)—=ClU) =1
where Z — CI(X) send 1 to Z.

(4) Let k be a field. Let Z be the zero set of an irreducible homogeneous
polynomial of degree d in P}. Deduce that CI(P} \ Z) = Z/dZ.

Hint: You may look at chapter I1.6 of Hartshorne.

Exercise 5. Let A be a ring and R, the graded ring Alx,...,z,] with
deg(z;) = 1. Show that the natural map

Ry, — T'(Proj(R),O(m))
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is an isomorphism for m € Z. Hint: Use the usual cover and the sheaf
property.

Exercise 6. Support of coherent sheaves. We define
supp(F) = {z € X [ F; # 0}

(1) Let A be a ring and M a finitely generated module. Show that
supp(M) is closed.

(2) In the same setup as in item (1), show that supp(M) = V(Ann(M)),
where

Anmn(M)={fe€ A| fM =0}.

(3) Let A be a Noetherian ring, f € A and M be a finitely generated
module. Show Ann(M); = Ann(My).

(4) Let X be a locally Noetherian scheme and F a coherent sheaf on
X. Using the preceding point, define a quasi-coherent sheaf of ideals
Ann(F). Show that V(Ann(F)) = supp(F).

Remark. In this case, we then call V(Ann(F)) with it’s natural scheme
structure coming from the quasi-coherent sheaf of ideals Ann(F) the scheme
theoretic support of F.

Exercise 7. Torsion free sheaves. Let X be an integral scheme with generic
point 7. Let F be a quasi-coherent Ox-module. We say that F is torsion
free if F(U) is a torsion free O(U)-module for all opens U C X.

(1) Let F be any quasi-coherent sheaf. Show that Fiors C F, where
s € Fiors(U) if s — 0 along F — F,, is a quasi-coherent sheaf and
that F/Fiors is torsion free.

(2) Show that a map between torsion free sheaves is injective if and only
if it is injective at a stalk at some point z € X.

(3) Deduce that a map between locally free sheaves of rank 1 is injective
or Zero.

Exercise 8. Generic flatness. Let X be a connected reduced Noetherian
scheme. Let F be a coherent sheaf on X.

(1) Show that there is an non empty open U such that F is locally free
(possibly zero).

Use Exercise 4.(3), week 9.

(2) Show by Noetherian induction! on X that there is a finite partition
of X by locally closed subschemes (X;) with the reduced scheme
structure such that F is locally free when restricted (meaning taking
the pullback) to X;.

Exercise to hand in. Morphisms and maps between projective spaces.
(Due 2 December, 18:00) Please write your solution in TEX.

Lsee Hartshorne, 11.5.16
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Let k be a field, and m < n two positive integers. Consider the two k-algebra
morphisms given by the natural inclusion ¢: k[zo, ..., Tm] < kixo,. .., n]
and the natural quotient v: k[xo, ..., zn] = k2o, .., zm]. Let f: AZ“ —
A’,?H and g: A’;H — AZ“ denote the corresponding morphisms of affine
spaces, and let 7: P} --» P}* and ¢: P" --» P} be the corresponding ratio-
nal maps between projective spaces, obtained by functoriality of Proj, see
Exercise 5, week 5.

(1) Assuming that k is algebraically closed so that we can represent
closed points with Cartesian coordinates (ao, . . ., an,) and (b, . .., by),
describe the morphisms f and g at the level of coordinates.

(2) Show that ¢ is a morphism and a closed embedding, and show that 7
is not everywhere defined. Furthermore, show that the locus where
7 is not defined is a copy of ]P’Z_m_l. Lastly, assuming that k is alge-
braically closed so that we can represent closed points with projective
Cartesian coordinates [ag : ... : an] and [b : ... : by], describe the
two maps at the level of coordinates.

In general, 7 is called projection from an (n — m — 1)-plane. The fibers
over closed points of this rational map (i.e., the closure of the fibers of the
morphism defined on the domain of 7) are copies of P} '. For instance,
if n =2 and m = 1, it is a projection from a the point [0 : 0 : 1].

From the point of view of linear systems (cf. Ch. II.7 in Hartshorne), the
rational map 7 is defined by a proper subspace of I'(P}, Opr (1)), namely by
those global sections that vanish along the linear subspace we are projecting
from. For instance, in the case n = 2 and m = 1, the rational map =
is defined by considering the sections of I'(P}, Opn(1)) corresponding (cf.
Exercise 2) to the lines through the point [0: 0 : 1].

In the following, szmfl will denote the copy of the projective (n —m — 1)-
space along which 7 is not defined.

(3) Show that .*Opr (1) = Opr(1). Hint: you can use Ezercise 1.
(4) Show that O[Pn(l)hpz\ﬂpz—m—l is isomorphic to 7*Opp (1). Hint: you
can use Ezercise 1.

In the following, we focus on the case n = 2 and m = 1, and we further
assume that k is algebraically closed. We will denote by P = [0: 0 : 1] the
copy of Pi_l_l (i.e., a point) along which 7 is not defined. We let C; be
the conic with equation 2% — z¢z; = 0, which corresponds to the Veronese
embedding of P} in P? (cf. Exercise 6 in sheet 4)%. Then, we denote by C
the conic with equation :c% — x1x9 = 0. Notice that P € Cy and P ¢ C}.
(5) Show that Op2 (1)|¢, is isomorphic to Op1 (2), where we identify P},
with C] via the Veronese embedding. Hint: you can use Exercise 1.
(6) Show that 7|c, : C1 — P} is finite of degree 2. Hint: via isomorphism
giwen by the Veronese embedding, you can identify mc, with one of
the morphisms in Exercise 1 in sheet 7.
(7) Show that |c,: Co\ {P} — P} extends uniquely to an isomorphism
T|cy: Co — PL. Hint: Define a map Dy (z2) N Cy — D (z0) C P}

2More precisely we ware talking about the one induced by Proj by zo — 22, z1 — 22
and zs — xox1.



that glues with w|c,: Co \ {P} — Pi. Note that you are forced to
send Tk € K(P}) to o= 22 € K(C3) which ensures unicity.
(8) Show that Opi(1)|02 is not isomorphic to (W‘CQ)*O]P}C(l). Hint: you
can use Ezercise 1.
The morphism 7|¢, is nothing but the stereographic projection. Indeed, the
fibers of 7 (i.e., the closure of the fibers of the morphism P2 \ { P} — P}) are
lines. In the case of C1, these lines intersect Cy in 2 (by Bézout’s theorem)
distinct points, and these points vary as we vary the target point in }P’Ilg. On
the other hand, in the case of Cs, one of the two points is always P. Thus,
we get a morphism from Cy \ {P} which is an isomorphism with its image,
which in turn extends to the whole C5 (ancient Greeks just settled for a
bijection...).
More generally, if we have a regular conic C with a k-rational point P, the
projection from P always induces and isomorphism with P,lg.



