
Dr. Stefano Filipazzi EPFL, fall semester 2024
Dr. Alapan Mukhopadhyay AG II - Schemes and sheaves
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Exercises – week 10

Exercise 1. Functoriality of O(n). Let R and S be N-graded rings, where
R is generated in degree 1, so that O(n) is a line bundle for each n ∈ Z. Let
f : R → S be an homogeneous map of degree d ≥ 1, see Exercise 5, week 4.
Denote by g : U → Proj(R) the induced map at Proj from functoriality of
Proj. Show then that for n ≥ 0 we have g∗O(n) = O(nd)|U .
Hint: check the claim on cocycles.

Exercise 2. A principal divisor is effective where it has no poles. LetX be a
Noetherian, normal and integral scheme. Recall that for normal Noetherian
domain A, the ring A is the intersection of Ap where ht(p) = 1.
Let f ∈ K(X). Let U ⊂ X open. Show that if div(f)|U ≥ 0 then f ∈
OX(U). If div(f)|U = 0 then f ∈ O(U)×.

Exercise 3. Divisors that are not Cartier. Let k be a field and X = V (xy−
zw) in A4

k. Note that X is integral and regular in codimension 1.

(1) Show that the closed subsets in X defined by x = z = 0 and x =
w = 0 are prime divisors that are not Cartier. Denote by Dz and
Dw these divisors.

(2) Show that Dz +Dw is a Cartier divisor.

Exercise 4. Exact sequence for class groups. LetX be an integral separated
scheme which is regular in codimension 1. Let Z be a proper closed subset
of X and U = X \ Z.

(1) Show that Cl(X) → Cl(U) defined by
∑
niDi 7→

∑
ni(Di ∩ U) is

surjective.
(2) If codim(Z,X) ≤ 2, show that that this map is also injective.
(3) If codim(Z,X) = 1 and Z is irreducible, show that there is an exact

sequence

Z → Cl(X) → Cl(U) → 1

where Z → Cl(X) send 1 to Z.
(4) Let k be a field. Let Z be the zero set of an irreducible homogeneous

polynomial of degree d in Pn
k . Deduce that Cl(Pn

k \ Z) ∼= Z/dZ.
Hint: You may look at chapter II.6 of Hartshorne.

Exercise 5. Let A be a ring and R• the graded ring A[x0, . . . , xn] with
deg(xi) = 1. Show that the natural map

Rm → Γ(Proj(R),O(m))
1



2

is an isomorphism for m ∈ Z. Hint: Use the usual cover and the sheaf
property.

Exercise 6. Support of coherent sheaves. We define

supp(F) = {x ∈ X | Fx ̸= 0}
(1) Let A be a ring and M a finitely generated module. Show that

supp(M) is closed.
(2) In the same setup as in item (1), show that supp(M) = V (Ann(M)),

where
Ann(M) = {f ∈ A | fM = 0}.

(3) Let A be a Noetherian ring, f ∈ A and M be a finitely generated
module. Show Ann(M)f = Ann(Mf ).

(4) Let X be a locally Noetherian scheme and F a coherent sheaf on
X. Using the preceding point, define a quasi-coherent sheaf of ideals
Ann(F). Show that V (Ann(F)) = supp(F).

Remark. In this case, we then call V (Ann(F)) with it’s natural scheme
structure coming from the quasi-coherent sheaf of ideals Ann(F) the scheme
theoretic support of F .

Exercise 7. Torsion free sheaves. Let X be an integral scheme with generic
point η. Let F be a quasi-coherent OX -module. We say that F is torsion
free if F(U) is a torsion free O(U)-module for all opens U ⊂ X.

(1) Let F be any quasi-coherent sheaf. Show that Ftors ⊂ F , where
s ∈ Ftors(U) if s 7→ 0 along F → Fη, is a quasi-coherent sheaf and
that F/Ftors is torsion free.

(2) Show that a map between torsion free sheaves is injective if and only
if it is injective at a stalk at some point x ∈ X.

(3) Deduce that a map between locally free sheaves of rank 1 is injective
or zero.

Exercise 8. Generic flatness. Let X be a connected reduced Noetherian
scheme. Let F be a coherent sheaf on X.

(1) Show that there is an non empty open U such that F is locally free
(possibly zero).

Use Exercise 4.(3), week 9.
(2) Show by Noetherian induction1 on X that there is a finite partition

of X by locally closed subschemes (Xi) with the reduced scheme
structure such that F is locally free when restricted (meaning taking
the pullback) to Xi.

Exercise to hand in. Morphisms and maps between projective spaces.
(Due 2 December, 18:00) Please write your solution in TEX.

1see Hartshorne, II.3.16



3

Let k be a field, andm < n two positive integers. Consider the two k-algebra
morphisms given by the natural inclusion ϕ : k[x0, . . . , xm] ↪→ k[x0, . . . , xn]

and the natural quotient ψ : k[x0, . . . , xn] ↠ k[x0, . . . , xm]. Let f : An+1
k →

Am+1
k and g : Am+1

k → An+1
k denote the corresponding morphisms of affine

spaces, and let π : Pn
k 99K Pm

k and ι : Pm
k 99K Pn

k be the corresponding ratio-
nal maps between projective spaces, obtained by functoriality of Proj, see
Exercise 5, week 5.

(1) Assuming that k is algebraically closed so that we can represent
closed points with Cartesian coordinates (a0, . . . , am) and (b0, . . . , bn),
describe the morphisms f and g at the level of coordinates.

(2) Show that ι is a morphism and a closed embedding, and show that π
is not everywhere defined. Furthermore, show that the locus where
π is not defined is a copy of Pn−m−1

k . Lastly, assuming that k is alge-
braically closed so that we can represent closed points with projective
Cartesian coordinates [a0 : . . . : am] and [b0 : . . . : bn], describe the
two maps at the level of coordinates.

In general, π is called projection from an (n − m − 1)-plane. The fibers
over closed points of this rational map (i.e., the closure of the fibers of the
morphism defined on the domain of π) are copies of Pn−m−1

k . For instance,
if n = 2 and m = 1, it is a projection from a the point [0 : 0 : 1].
From the point of view of linear systems (cf. Ch. II.7 in Hartshorne), the
rational map π is defined by a proper subspace of Γ(Pn

k ,OPn
k
(1)), namely by

those global sections that vanish along the linear subspace we are projecting
from. For instance, in the case n = 2 and m = 1, the rational map π
is defined by considering the sections of Γ(Pn

k ,OPn
k
(1)) corresponding (cf.

Exercise 2) to the lines through the point [0 : 0 : 1].
In the following, Pn−m−1

k will denote the copy of the projective (n−m− 1)-
space along which π is not defined.

(3) Show that ι∗OPn
k
(1) = OPm

k
(1). Hint: you can use Exercise 1.

(4) Show that OPn(1)|Pn
k\P

n−m−1
k

is isomorphic to π∗OPm
k
(1). Hint: you

can use Exercise 1.

In the following, we focus on the case n = 2 and m = 1, and we further
assume that k is algebraically closed. We will denote by P = [0 : 0 : 1] the
copy of P2−1−1

k (i.e., a point) along which π is not defined. We let C1 be
the conic with equation x22 − x0x1 = 0, which corresponds to the Veronese
embedding of P1

k in P2
k (cf. Exercise 6 in sheet 4)2. Then, we denote by C2

the conic with equation x20 − x1x2 = 0. Notice that P ∈ C2 and P ̸∈ C1.

(5) Show that OP2
k
(1)|C1 is isomorphic to OP1

k
(2), where we identify P1

k

with C1 via the Veronese embedding. Hint: you can use Exercise 1.
(6) Show that π|C1 : C1 → P1

k is finite of degree 2. Hint: via isomorphism
given by the Veronese embedding, you can identify πC1 with one of
the morphisms in Exercise 1 in sheet 7.

(7) Show that π|C2 : C2 \{P} → P1
k extends uniquely to an isomorphism

π|C2 : C2 → P1
k. Hint: Define a map D+(x2) ∩ C2 → D+(x0) ⊂ P1

k

2More precisely we ware talking about the one induced by Proj by x0 7→ x2
0, x1 7→ x2

1

and x2 7→ x0x1.



4

that glues with π|C2 : C2 \ {P} → P1
k. Note that you are forced to

send x1
x0

∈ K(P1
k) to

x1
x0

= x0
x2

∈ K(C2) which ensures unicity.

(8) Show that OP2
k
(1)|C2 is not isomorphic to (π|C2)

∗OP1
k
(1). Hint: you

can use Exercise 1.

The morphism π|C2 is nothing but the stereographic projection. Indeed, the
fibers of π (i.e., the closure of the fibers of the morphism P2

k \{P} → P1
k) are

lines. In the case of C1, these lines intersect C1 in 2 (by Bézout’s theorem)
distinct points, and these points vary as we vary the target point in P1

k. On
the other hand, in the case of C2, one of the two points is always P . Thus,
we get a morphism from C2 \ {P} which is an isomorphism with its image,
which in turn extends to the whole C2 (ancient Greeks just settled for a
bijection...).
More generally, if we have a regular conic C with a k-rational point P , the
projection from P always induces and isomorphism with P1

k.


