
BLOW-UPS

Abstract. This document is meant to be an introduction to blow-ups.

1. Introduction

Blowing-up is a construction with many faces and many uses. We will try
to expose some of these features in this introduction. In this introduction
every scheme appearing is a scheme over an algebraically closed eld.

1.1. Replacing a closed subscheme with directions out of it. Take
a scheme X and a closed subscheme Z. The rst description of the blow-up
of X at Z is a scheme

b : BlZ → X

with a map to X which is an isomorphism on the complement of Z in the
sense that

b : BlZ \b−1(Z) → X \ Z,
and the map

b−1(Z) → Z

is the space of directions out of Z. We wish to make more clear this last
sentence in a rst example.

Example. We take X to be A2 and Z = V (x, y) the origin, that we denote
by 0. A description of Bl0 on points is the following closed subscheme1 of
A2 × P1

Bl0 = (x, l) ∈ A2 × P1  x ∈ l
If x ̸= 0, there is a unique linear line that goes through x, explaining why
the projection is an isomorphism on A2 \ 0. However, the linear lines all
goes through 0 so the preimage of 0 is P1. We see here that we replaced 0
by directions out of 0 which is here the set of lines out of 0.

1.2. Resolving indeterminacies. Blow-up can also be useful to extend
maps that are not dened everywhere. Namely if U ⊂ X is an open set and
U → Pn is a map, we want to nd a way to extend the map outside of U

to a scheme X → Pn. The relation of X with X should be given by a map

b : X → X such that b−1(U) → U is an isomorphism.
For example if U = A2 \ 0 ⊂ A2 and

A2 \ 0 → P1

is the quotient map, we can try to extend the map. Note that every point
which is in the same line is sent to the same point in P1. Therefore if we

want to extend this map, in A2 there should be at least one new point per
line, which should be the limit of the non-zero points in the line.

1This subscheme is also called the canonical bundle on P1
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2 BLOW-UPS

A way to extend a map is to look at the closure of the graph in A2 × P1,
and then look at the rst projection. Note that with the above map we
exactly get the blow-up of A2 at the origin, the example displayed in the
last section.

1.3. Resolving singularities. Blow-up can also serve to resolve singular-
ities. We take the example of a curve which is singular at one point. If
the curve is singular, this means that the tangent space at this point is of
dimension strictly greater than 1, so that there are more than one tangent
directions. Blowing-up this point will separate the directions in the sense
that it will replace the point by as many points that they are directions out
of the point. This will reduce the dimension of the tangent space at these
point, and with possibly many blow-ups we will nd a regular curve and a
map to the singular which an isomorphism on an open set. This is what we
call a resolution of singularities. There is an example of such a blow-up at
the end of this document.

Remark. Hironaka showed in 1964 that if k is a eld of characteristic zero,
any separated and nite type scheme over Spec(k) admits a resolution of
singularities as a sequence of blow-ups. The problem of resolution of sin-
gularities over an arbitrary base eld is one of the most important open
problems in algebraic geometry.

1.4. Turning an ideal principal. The last point of view that we mention
in this introduction about blowing-up can be understood as the universal
way of turning an ideal locally principal. Namely if I is an ideal in R, then
in BlI the pre-image of V (I) will be a closed subscheme E ⊂ BlI that is
locally principal in the following sense: for suciently small open anes
Spec(A) ⊂ BlI , the closed subscheme E ∩ Spec(A) is given by an ideal
J = (j) with j being a non-zero divisor (so that (j) ∼= A as modules).
Geometrically this can be interpreted as follows: blowing-up is the universal
way of turning any closed subscheme into a codimension 1 closed subscheme.
Recall that closed subschemes cut by one non-zero divisor are codimension
1 closed subschemes by Krull’s height theorem.

2. Definitions and key properties

2.1. Denitions. We will now dene blow-ups in the language of schemes.
Let X = Spec(R) be an ane scheme and I be an ideal. We denote by
Z = V (I) the closed subscheme associated to I and U = X \ Z.

Denition 2.1 (Blow-up). The blow-up of X at Z is

b : Proj(


n≥0

In) → X

where


n≥0 I
n is the graded algebra with In placed in degree n with I0 = R.

Remark. We can realize the blow-up algebra


n≥0

In
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(also called the Rees algebra of I) by the sub-graded algebra of R[T ]


n≥0

Intn ⊂ R[T ]

where the grading comes from the T -grading.

Example. We begin by a rather uninteresting example but realizing this will
be useful for the rst key property. If I = R, (so Z = ∅) then


n≥0 I

n =
n≥0R. One sees that sending t to 1(1) ∈ R in degree 1 gives a graded

isomorphism

R[t] →


n≥0

R

Therefore BlR = Proj(R[t]) = Spec(R).

Denition 2.2 (Exceptional divisor). The exceptional divisor E is dened
to be the ber product of (Z → X ← BlI). In other words this is b−1(Z)
with it’s natural scheme structure. It is therefore a closed subscheme of X.
Note that by the compatibility of Proj with pullbacks this can be described
as

Proj(


n≥0

InIn+1)

2.2. Key properties. We will show some properties and explain why some
features of the introduction are indeed met by this construction.

(1) We show that b induces an isomorphism

b : b−1(U) → U

To see this, let f ∈ I so that D(f) ⊂ U . Note that If = Rf .
Therefore by the compatibility of Proj and pullbacks we have as in
the example above

b−1(U) = Proj(


n≥0

Rf ) = Proj(Rf [t]) = Spec(Rf )

As U is covered by such D(f)’s the above map is locally an isomor-
phism and therefore an isomorphism.

(2) The exceptional divisor can be interpreted in good cases as the spaces
of directions outside Z. By this, we mean that each point of E
should correspond to a directions in X which cut transversely to Z.
Namely, II2 is in good cases the co-normal bundle. We will see
that therefore E = P(NZ|X) the projective bundle associated to the
normal bundle. We have already seen an important case where we
know how to interpret II2 as a space of directions out of Z. Namely
the case when Z is a k-rational and X is a k-scheme for a eld k. We
have seen that mxm

2
x is to be interpreted as the co-tangent space at

the point.

2.2.1. Blowing-up the origin in the ane space. We now concentrate on
describing the case R = A[x0,    , xn] and I = (x0,    , xn). We denote this
blow-up by Bl0.
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(1) Standard charts. Let us now consider The goal is to understand
more clearly the blow-up algebra



n≥0

In

in this case.
Note that we have the following surjective morphism of graded

A[x0,    , xn]-algebras

A[x0,    , xn, Y0,    , Yn] →


n≥0

In

sending2 Yi to x
(1)
i . We claim that the kernel of this map is

(xiYj − xjYi)

See the appendix A for a detailed proof. The key is that x0,    , xn
form a regular sequence.

We then conclude that

Bl0 ∼= V+(xiYj − xjYi) ⊂ An+1
A ×A Pn

A

(2) Standard ane charts. We furthermore investigate the last point
and exhibit ane charts. We denote by D+(Yk) the open of Bl0
coming from the construction as a Proj. One nds that the equations
dening the ideal become

(xj
Yi

Yk
− xi

Yj

Yk
)

after localizing by Yk. In particular we have for j ̸= k that xi =

xk
Yi
Yk
. Note that when i, j ̸= k we have then that xj

Yi
Yk

= xk
Yj

Yk

Yi
Yk

=

xk
Yi
Yk

Yj

Yk
= xi

Yj

Yk
 Therefore we can keep only the equations for i ̸= k

xi − xk
Yi

Yk


Therefore functions on D+(Yk) are given by

A[x0,    , xn,
Y0

Yk
,    ,

Yn

Yk
](xi − xk

Yi

Yk
)i̸=k

But sending xi → xi and
Yi
Yk

→ xi
xk

gives an isomorphism to

A[xk,
xi
xk

]i=0,...,n

This last ring is a polynomial ring on A in n + 1 variables so we
conclude that D+(Yk) ∼= An+1

A .
Note also that on D+(YkYk′) we get that functions identies to

A[xk, xk′ ,
xi
xk

,
xj
xk′

]i,j=0,...,n

and that D+(YkYk′) → D+(Yk) is induced by the obvious inclusion
at the level of rings.

2the notation (1) meaning placed in degree 1
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We conclude that

Bl0 =


k

Spec(A[xk,
xi
xk

]i=0,...,n)

along the natural gluing maps displayed just above.
(3) Locally principal. Note that the ideal (x0,    , xn) turns into the

principal ideal (xk) under

A[x0,    , xn] → A[xk,
xi
xk

]i=0,...,n

which is the algebraic counterpart of b : D+(Yk) → An+1
A .

(4) Exceptional divisor. Still in the above case, note that the excep-
tional divisor which is the ber of (x0,    , xn) is then given by
V+(x0,    , xn, xiYj − xjYi) = V+(x0,    , xn) so is (using the com-
patibility of Proj and base change)

Proj(A[Y0,    , Yn]) = Pn
A

2.3. Strict transforms. Let X = Spec(R), Z = V (I) and C = V (J)
another closed subscheme of X.

Denition 2.3. The strict transform StJ of J with respect to the blow-up
b : BlI → Spec(R) is the blow-up of C ∩Z = V (I+JJ) in Spec(RJ) = C.

Remark. This is called the strict transform in opposition with the total
transform which is dened to b−1(C). The strict transform is always a
closed subscheme of the total transform. (See the remark below).

Remark. By denition the strict transform StJ is

Proj(


n≥0

(I + J)nJ)

As the kernel of In → (I + J)nJ is In ∩ J we see that we can realize the
strict transform as the closed subscheme of BlI given by V+(


n≥0 I

n ∩ J).

In opposition the total transform is V+(


n≥0 I
nJ) using compatibility of

Proj and base change.

Example. We give an example of strict transform which will also show how
blow-ups can resolve singularities.
Let k be a eld and consider R = k[x0, x1], I = (x0, x1) and J = (x21 −
(x30 + x20)) which is a singular plane curve, which is the called the node.
We compute the strict transform StJ . We claim that StJ ∼= A1

k (which is
regular) and that the blow-up map may be described as A1

k → C ⊂ A2
k

λ → (λ2 − 1,λ3 − λ)

We use the standard charts, meaning that we see BlI ⊂ A2×P1. Recall that
this inclusion is induced by the surjection

k[x0, x1, Y0, Y1] →


n

In

sending Yi to xi in degree 1. We claim that the preimage of the ideal

V+



n

In ∩ J


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by the above map is given by (H, (x1Y0 − x0Y1)) where

H = (x21 − (x30 + x20), x1Y1 − (x20Y0 + x0Y0), Y
2
1 − (x0Y

2
0 + Y 2

0 ))

Indeed, for degree zero, one and two, these elements are sent to the generator
of J (we have In ∩ J = J for n ≤ 2).
We now argue that these generators are enough. Note that being in In for
a polynomial means that the monomials forming it are at least of degree n.
Being in J means that the polynomial is of the form f(x0, x1)(x

2
1−(x30+x20))

for an f(x0, x1) ∈ k[x0, x1]. So we see that if such an element f(x0, x1)(x
2
1−

(x30 + x20)) is in In ∩ J , then f(x0, x1) ∈ In−2 counting the degrees of the
monomials because (x21 − (x30 + x20)) ∈ I2 \ I3. Therefore for n ≥ 3 using
the degree 2 generator and elements of I in degree 1, we can attain every
element of In ∩ J .
Therefore the strict transform is

Proj(A[x0, x1, Y0, Y1](H, x0Y1 − x1Y0))

Denote by B the grading ring we are taking Proj of. Note that V+(H,x0Y1−
x1Y0, Y0) = ∅, so that V+(H,x0Y1 − x1Y0, Y0) ⊂ D+(Y0) implying that

Proj(A[x0, x1, Y0, Y1](H, x0Y1 − x1Y0)) = Spec(B(Y0))

But, if we write Y1
Y0

by y we get

B(Y0) = A[x0, x1, y](x
2
1 − (x30 + x20), x1y − (x20 + x0), y

2 − (x0 + 1), (x0y − x1))

∼= A[x0, y](y
2 − (x0 + 1)) ∼= A[y]

Indeed using x0y = x1 the equation x21− (x30+x20) turn into x20(y
2− (x0+1))

and x1y− (x20+x0) turn into x0(y
2− (x0+1)) which are both subsumed by

the equation coming from degree 2.
Therefore we see that the strict transform is isomoprhic to A1. By using
that under this isomorphisms x0 → y2 − 1 and x1 → x0y = y3 − y the claim
about the form of the map follows.
If k = C something really intuitive happens on real points. Namely note that
solutions to J are given by gure 1. Then, the map A1

k → C is understood
to be a parameterization of the curve where both 1 and −1 are sent to the
origin. We can therefore picture this as in gure 2.
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Figure 1. The real points of the cusp.

Figure 2. An horrible paint drawing of what is meant to
happen. You can check that on real points this is a depiction
of λ → (λ2 − 1,λ3 − λ).

Appendix A. Equations of standard charts

Denition A.1 (Regular sequence). Let R be a ring. A nite sequence of
elements f1,    , fn is said to be a regular sequence if fi is a non-zero divisor
in R(f1,    , fi−1) and R(f1,    , fn) is non-zero.

Example. Let A be a ring and R = A[x0,    , xn]. Then x0,    , xk for 0 ≤
k ≤ n is a regular sequence. If f1,    , fk is a regular sequence in a general
ring, then for integers ei > 0 the sequence f e1

1 ,    , f ek
k is also a regular

sequence.

We show the following.

Proposition A.1. Let R be a ring and I = (f1,    , fn) where f1,    , fn

form a regular sequence. Then the kernel of the surjection sending Yi to f
(1)
i

R[Y1,    , Yn] →


n≥0

In
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is given by the ideal J = (fiYj − fjYj).

Proof. We show this using two steps which both really heavily on the regular
sequence hypothesis.
First, we show that the kernel of

Rn → I

sending ei → fi is generated by the vectors eifj − ejfi. We proceed by
induction on n the length of the regular sequence. For n = 0, 1 the claim is
obvious. To proceed inductively we dene the chain complex Kn

R(n2) → Rn → R

with R placed in degree zero and dierentials being respectively given by
ei,j → fjei − fjei and ei → fi. Note that H0(Kn) of this complex is
R(f1,    , fn). and that the claim amounts to this complex being exact
in the middle, meaning that H1(Kn) = 0. Note that we also have the fol-
lowing exact sequence of complexes

R(n2) Rn R

R(n+1
2 ) Rn+1 R

Rn R 0

Where the left vertical arrows are given by ei,j → ei,j and ei,j → δn+1,jei.
The middle vertical arrows are ei → ei and ei → δi,n+1. The rst right
vertical arrow is the identity.
By induction H1(Kn) = 0, and we want to show that H1(Kn+1) = 0. The
long exact sequence in homology gives

0 = H1(Kn) → H1(Kn+1) → R(f1,    , fn)
δ−→ R(f1,    , fn),

where δ is the connecting morphism. The connecting morphism is computed
by following the red arrows on the diagram above. It is therefore given by
δ = ·fn+1 the multiplication by fn+1. As f1,    , fn+1 is a regular sequence
δ is injective and therefore H1(Kn+1) = 0.

Remark. These complexes are not taken out of nowhere. They are simpli-
cations of Koszul complexes, a well known notion.

We have now understood the degree 1 elements of the kernel of the surjection

sending Yi to f
(1)
i

R[Y1,    , Yn] →


n≥0

In

It now suces to show that this kernel is generated by degree 1 elements.
Just for the rest of this proof, we call a polynomial F ∈ R[Y1,    , Yn] to
be of weight i if i is the minimal integer such that F ∈ (Y1,    , Yi) but
f(Y1,    , Yn) ̸∈ (Y1,    , Yi−1). A weight 0 polynomial is dened to be 0.
This proposition will be shown as a special case (but the general case will
be needed in the proof by induction) of the following.
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Claim. Let F ∈ R[Y1,    , Yn] be an homogeneous polynomial of degree m
with

F (f1,    , fn) ∈ (f1,    , fk)

Then there exists an homogeneous polynomial G of degree m and weight at
most k such that F −G ∈ (fiYj − fjYj). In particular if F (f1,    , fn) = 0,
then F ∈ J = (fiYj − fjYj), showing the proposition.

We prove the claim by induction on the degree m of the polynomial. Let F
be a polynomial of degree 1. Then

F (f1,    , fn) =

k

i=1

aifi

Therefore the weight k and degree 1 polynomial G =
k

i=1 aiYi satises
the claim: indeed F − G is an homogeneous polynomial of degree 1 with
(F − G)(f1,    , fn) = 0. Therefore using the rst part of the proof above,
we see that F −G ∈ J .
Now if F is a polynomial of degree m, we show the claim by induction on
the weight l of F . If l ≤ k, set F = G. Otherwise write F = YlF1 + F2 with
F1 homogeneous of degree m−1 and F2 of weight at most l− 1. Recall that
by hypothesis

flF1(f1,    , fn) + F2(f1,    , fn) ∈ (f1,    , fk) ⊂ (f1,    , fl−1)

and F2(f1,    , fn) ∈ (f1,    , fl−1) because F2 is of weight at most l − 1
by construction. Modding out by f1,    , fl−1 and using that f1    , fl is
a regular sequence we get that F1(f1,    , fn) ∈ (f1,    , fl−1). We apply
induction on the degree to get a polynomial G1 of weight at most l− 1 such
that F1−G1 ∈ J . Now set G′ = YlG1+F2. This is a polynomial of weight at
most l−1 because G1 and F2 are. Note also that F −G′ = Yl(F1−G1) ∈ J .
Note also that G′(f1,    , fn) = F (f1,    , fn) ∈ (f1,    , fk). By induction
on the weight there is a polynomial G of weight at most k such that G′−G ∈
J . But now F −G = (F −G′) + (G′ −G) ∈ J , concluding the proof. □


