
HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Mart́ınez Aguilar

Session 11 – November 28, 2023

Randomized rank revealing factorizations for low rank
approximation

Exercise 1: Column selection with randomized QRCP

The truncated SVD provides the best low rank approximation in terms of the Frobenius and L2
norms. Sometimes we don’t want to compute the full SVD because it might be expensive to do so.
Last week we implemented a deterministic rank revealing factorization using either strong RRQR
or just column pivoting. We were able to detect columns of A, I02 from which to construct a low
rank approximation.

This was based on the fact that for a given matrix A ∈ Rm×n there is a permutation Pc and an
integer k such that the QR factorization with column pivoting:

APc = QR =
[
Q1 Q2

] [R11 R12

0 R22

]
reveals the numerical rank k of A. The upper k×k triangular matrix R11 is well conditioned, ∥R22∥2
is small and R12 is linearly dependent on R11 with coefficients bounded by a low-degree polynomial
in n. In our case we used a binary tree of depth log2 (n/k) . This gives us the following bound:

∥R−1
11 R12∥max ≤ 1√

2k

(n
k

)log2(√2fk)
.

Notice that if this is the case then we can build a low rank approximation to A as follows:

Ãqr = Q1

[
R11 R12

]
P⊤
c = Q1Q

⊤
1 A.

We have the following bounds for the singular values:

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√
1 + f2k(n− k).

(Note: if you are confused with what f is refer to the lecture notes)

1

The downside of this algorithm is that is (much) more expensive than regular QR factorization
without column pivoting. It has been shown that their randomized counterparts, RQRCP can be
as reliable with failure probabilities exponentially decaying in oversampling size. This week we are
going to implement a rather simple version of RQRCP based on last week’s code.

The idea is as follows:

Algorithm 1 RQRCP

Input: A ∈ Rm×n, Ω ∈ Rl×m, k l > k
Output: I02, indices of the columns of A from which to build the low rank approximation
Compute B = ΩA, B ∈ Rl×n.
Compute k steps of QRCP on B and select k columns.
Return k selected columns, with indices saved in I02.

With this setup with have the following bounds for 1 ≤ j ≤ k:

σ2
j (A) ≤ σ2

j

([
R11 R12

])
+ ∥R22∥22 (1)

∥R22∥2 ≤ g1g2
√
(l + 1)(n− l)σl+1(A) (2)

where:

g1 ≤
√

1 + ε

1− ε

g2 ≤
√

2(1 + ε)

1− ε

(
1 +

√
1 + ε

1− ε

)l−1

ε ∈ (0, 1)

l − k ≥ ⌈ 4

ε2
log

(
2nk

δ

)
⌉ − 1

For more about this, check Xiao, Gu, and Langou’s paper Fast Parallel Randomized QR with Column
Pivoting Algorithms for Reliable Low-rank Matrix Approximations.

a) Consider a matrix A partitioned into 4 column blocks. Each processor has one of these blocks.

b) Implement RQRCP using your code from last week.

c) Test your method with two different matrices and different values of l (keep k fixed):

• A = HnDH⊤
n , where Hn is the normalized Hadamard matrix of dimension n, D is a

diagonal matrix of your choice. Pick n to be ”small”.

• Load the normalized MNIST data set and build A as in the project (or last week’s
exercises). Select a few columns and rows.

d) Comment your results with the different matrices. Do you notice any significant differences
with deterministic QRCP?

2

e) Build a low rank approximation of A. Check the L2 norm of the error with respect to the
error of the truncated SVD.

f) Check if the singular values of these selected columns approximate well the singular values of
A.

g) Check if the diagonal elements of R11 approximate well the singular values of A.

Using last week’s code and implementing the randomization we get:

�
from mpi4py import MPI
import numpy as np
from numpy.linalg import norm, svd
import matplotlib.pyplot as plt
from copy import deepcopy
from scipy.linalg import hadamard, qr
from math import sqrt, exp, ceil, log
import pandas as pd

Custom library
from sRRQR import sRRQR rank

plt.ion()

Functions to build the matrix A (see last week's exercises)
def readData(filename, size = 784, save = False):

'''
Read MNIST sparse data from filename
and transforms this into a dense
matrix, each line representing an entry
of the database (i.e. a "flattened" image)
'''
dataR = pd.read csv(filename, sep=',', header = None)
n = len(dataR)
data = np.zeros((n, size))
labels = np.zeros((n, 1))
Format accordingly
for i in range(n):

l = dataR.iloc[i, 0]
labels[i] = int(l[0]) # We know that the first digit is the label
l = l[2:]
indices values = [tuple(map(float, pair.split(':'))) for pair in l.split()]
Separate indices and values
indices, values = zip(*indices values)
indices = [int(i) for i in indices]
Fill in the values at the specified indices
data[i, indices] = values

if save:
data.tofile('./denseData.csv', sep = ',',format='%10.f')
labels.tofile('./labels.csv', sep = ',',format='%10.f')

return data, labels

def buildA sequential(data, c = 1e3, save = False):
'''
Function to build A out of a data base
using the RBF exp(− | | x i − x j | |/c)
Notice that we only need to fill in the

3

upper triangle part of A since it's symmetric
and its diagonal elements are all 1.
'''
n = data.shape[0]
A = np.zeros((n, n))
for j in range(n):

for i in range(j):
A[i,j] = exp(−norm(data[i, :] − data[j, :])**2/c)

A = A + np.transpose(A)
np.fill diagonal(A, 1.0)
if save:

A.tofile('./A.csv',sep=',',format='%10.f')
return A

def matTranspose(A, n):
'''
Since we want to distribute A's columns
we need to manipulate our data into the correct
order before sending it.
'''
arrs = np.split(A, n, axis = 1)
raveled = [np.ravel(arr) for arr in arrs]
A transpose = np.concatenate(raveled)
return A transpose

Initialize MPI (world)

comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

A = None
m = None
n = None
l = None
local sizeCols = None
B T = None
f = 1.3
k = 9
eps = 0.5
∆ = 0.75

if rank == 0:
Read the files and build the matrix A here (see last week's exercises)
filename = "mnist 780"
data, labels = readData(filename)
A = buildA sequential(data)
A = A[:, 0:200]
D = np.diag([1, 0.9, 0.8, 0.7, 0.65, 0.4, 0.1, 0.001])
H = hadamard(8)
H = 1/norm(H[:, 0])*H
A = H@D@np.transpose(H)
A = np.arange(0, 108)
A = np.reshape(A, (9, 12)) + 0.0
m = A.shape[0]
n = A.shape[1]
Set the oversampling size (change this and see what happens)
l = int(k − 1 + ceil(4/(eps**2)*log(2*n*k/∆)))
print("m: ", m, "n: ", n, "l: ", l)

4

Get the sketching matrix
Omega = np.random.normal(scale=1/l, size = (l, m))
Get B
B = Omega@A
, S, = svd(B)

print("largest singular value B: ", S[0], " smallest: ", S[−1])
print("B shape: ", B.shape)
local sizeCols = n//size # number of columns
B T = matTranspose(B, n)

Step one: partition A into 4 column blocks
local sizeCols = comm.bcast(local sizeCols, root=0)
l = comm.bcast(l, root=0)
B local = np.empty((local sizeCols, l))
comm.Scatter(B T, B local, root = 0)
Step 0
From each column block A1i, i = 1, . . . , 4, k columns are selected by using
strong RRQR, and their indices are given in Ii0.
Q, R, P = sRRQR rank(np.transpose(B local), f, k)
P = P[0:k]
Pall = deepcopy(P) + rank*local sizeCols
#Start iterating
for i in range(1, ceil(log(size)) + 1):

#print("i: ", i)
if rank%(2**i) == 0 and rank + 2**(i−1)<size:

j = rank + 2**(i−1)
Phere = np.copy(P)
Psave = deepcopy(Pall)
Bhere = np.copy(B local)
Bhere = Bhere[Phere, :]
We receive the first k indices from Pj from processor j
#print("Receiving and factorizing at: ", rank)
comm.Recv(P, source = j, tag = 77)
comm.Recv(B local, source = j, tag = 88)
comm.Recv(Pall, source = j, tag = 99)
B local = B local[P, :]
B local = np.concatenate((Bhere, B local))
Pall = np.concatenate((Psave, Pall))
strong RRQR
Q, R, P = sRRQR rank(np.transpose(B local), f, k)
P = P[0:k]
Pall = Pall[P]

elif rank%(2**i) == 2**(i−1):
Send the local P
#print("Sending from: ", rank)
comm.Send(P, dest = rank − 2**(i−1), tag = 77)
comm.Send(B local, dest = rank − 2**(i−1), tag = 88)
comm.Send(Pall, dest = rank − 2**(i−1), tag = 99)

if rank == 0:
Print the selected columns I02
Make the low rank approximation
print("\nRandomized QRCP\n")
Pall = Pall.flatten()
restCols = [i for i in range(n) if i not in Pall]
orderCols = list(Pall) + restCols
print("Selected columns: ", Pall)
Q, R = qr(A[:, orderCols])

5

R11 = R[0:l, 0:l]
U, Sigma, V = svd(R[0:l, :])
sigmaR = Sigma[0:k]
Q1 = Q[:, 0:l]
R22 = R[l:, l:]
print("size R22: ", R22.shape)
Compute the rhs of the bounds
g1 = sqrt((1+eps)/(1−eps))
g2 = sqrt(2 + 2*eps)/(1−eps)*(1 + sqrt((1+eps)/(1−eps)))**(l−1)
Get the singular values from the diagonal of R
print("Approximated singular values (first k of them): ")
print(sigmaR)
Singular values of full A
Uf, Sigma, Vf = svd(A)
Uf = Uf[:, 0:k]
Sigmaf = Sigma[0:k]
Vf = Vf[0:k, :]
appfull = Uf@np.diag(Sigmaf)@Vf
Get the full singular values
print("Exact singular values (first k of them): ")
print(Sigmaf)
Get bound 1
print("|sigma j(A) − sigma j(R)|/(sigma j(A)): ",

(np.power(Sigmaf, 2) − np.power(sigmaR, 2))/(np.power(Sigmaf, 2)))
Get bound 2
print("Norm of R22: ", norm(R[k:, k:]))
print("LHS of bound 2: ", g1*g2*sqrt((l+1)*(n−l))*Sigma[l+1])
Compute the L2 error with respect to the SVD low rank approximation
appsRQRCP = Q1@np.transpose(Q1)@A
print("L2 error with respect to truncated SVD: ",

norm(appsRQRCP − appfull))
print("L2 error with respect to full A: ",

norm(appsRQRCP − A))� �

6

