EPFL

HPC for numerical methods and data analysis
Fall Semester 202
Prof. Laura Grigori

Assistant: Mariana Martinez Aguilar

Session 11 — November 28, 2023

Randomized rank revealing factorizations for low rank
approximation

Exercise 1: Column selection with randomized QRCP

The truncated SVD provides the best low rank approximation in terms of the Frobenius and L2
norms. Sometimes we don’t want to compute the full SVD because it might be expensive to do so.
Last week we implemented a deterministic rank revealing factorization using either strong RRQR
or just column pivoting. We were able to detect columns of A, Ipy from which to construct a low
rank approximation.

This was based on the fact that for a given matrix A € R™*" there is a permutation P. and an
integer k such that the QR factorization with column pivoting:

ar=qr=[or @ |3t 1

reveals the numerical rank k£ of A. The upper k x k triangular matrix Ry; is well conditioned, || Roz||2
is small and Rj» is linearly dependent on Ry with coefficients bounded by a low-degree polynomial
in n. In our case we used a binary tree of depth log, (n/k) . This gives us the following bound:

n\ logz(V2/k)
\/12—k<)lg ka.

IR Ri2lmax < k:

Notice that if this is the case then we can build a low rank approximation to A as follows:

Ay =Q1[Ri1 Ria] P| =Q1Q{ A.

We have the following bounds for the singular values:

0i(A) 0j(Ra) —
~ oi(’l) opi(A) < Vit fPhin =)

(Note: if you are confused with what f is refer to the lecture notes)

The downside of this algorithm is that is (much) more expensive than regular QR factorization
without column pivoting. It has been shown that their randomized counterparts, RQRCP can be
as reliable with failure probabilities exponentially decaying in oversampling size. This week we are
going to implement a rather simple version of RQRCP based on last week’s code.

The idea is as follows:

Algorithm 1 RQRCP

Input: A€ R™" Qe R>™ k1>k

Output: Iy, indices of the columns of A from which to build the low rank approximation
Compute B = QA, B € R*",
Compute k steps of QRCP on B and select k& columns.
Return k selected columns, with indices saved in Ijs.

With this setup with have the following bounds for 1 < j < k:

UJZ(A) < UJZ ([Ri1 Ri2]) + |Ra2ll3 (1)

[Raz2l2 < 91927/ (1 + 1)(n = Dor11(A) (2)

where:

[14+¢
<
g1 = 1—¢
2(1 +¢) T
15 €
g < —— | 1+4/ —
1—¢ 1—¢

e€(0,1)
4 2nk

For more about this, check Xiao, Gu, and Langou’s paper Fast Parallel Randomized QR with Column
Pivoting Algorithms for Reliable Low-rank Matrix Approximations.

a) Consider a matrix A partitioned into 4 column blocks. Each processor has one of these blocks.
b) Implement RQRCP using your code from last week.
c¢) Test your method with two different matrices and different values of [(keep k fixed):

o A = HnDH,—ll— , where H,, is the normalized Hadamard matrix of dimension n, D is a
diagonal matrix of your choice. Pick n to be ”small”.

e Load the normalized MNIST data set and build A as in the project (or last week’s
exercises). Select a few columns and rows.

d) Comment your results with the different matrices. Do you notice any significant differences
with deterministic QRCP?

e) Build a low rank approximation of A. Check the L2 norm of the error with respect to the
error of the truncated SVD.

f) Check if the singular values of these selected columns approximate well the singular values of

A.

g) Check if the diagonal elements of R;; approximate well the singular values of A.

Using last week’s code and implementing the randomization we get:

P
from mpid4py import MPI

import numpy as np

from numpy.linalg import norm, svd
import matplotlib.pyplot as plt

from copy import deepcopy

from scipy.linalg import hadamard, gr
from math import sqgrt, exp, ceil, log
import pandas as pd

Custom library
from sRRQR import sRRQR_rank

plt.ion()

Functions to build the matrix A (see last week's exercises)
def readData(filename, size = 784, save = False):

L B

Read MNIST sparse data from filename

and transforms this into a dense

matrix, each line representing an entry

of the database (i.e. a "flattened" image)

dataR = pd.read.csv(filename, sep=',', header = None)

n = len (dataR)

data = np.zeros((n, size))

labels = np.zeros((n, 1))

Format accordingly

for i in range(n):

1 = dataR.iloc[i, 0]

labels[i] = int(1[0]) # We know that the first digit is the label
1 =1[2:]
indices_values = [tuple(map(float, pair.split(':"))) for pair in l.split ()]
Separate indices and values
indices, values = zip(xindices_values)
indices = [int (i) for 1 in indices]
Fill in the values at the specified indices
data[i, indices] = values
if save:
data.tofile('./denseData.csv', sep = ',',format='%10.f")
labels.tofile('./labels.csv', sep = ', ', format="%10.£f")

return data, labels

def buildA_sequential (data, ¢ = le3, save = False):
Function to build A out of a data base
using the RBF exp(—||x-i - x_j||/¢c)
Notice that we only need to fill in the

upper triangle part of A since it's symmetric

and its diagonal elements are all 1.
n = data.shape[0]
A = np.zeros((n, n))
for 3 in range(n):

for 1 in range(j):

Ali, 3] = exp(

A = A + np.transpose (A
np.fill diagonal (A, 1.
if save:

-norm(datali, :]

)
0)

- datalj,

:])xx2/c)

A.tofile('./A.csv',sep="',"',format="'%10.f")

return A

def matTranspose (A,
L]

n) :

Since we want to distribute A's columns

we need to manipulate our data into the correct

order before sending it.
LN B |

arrs = np.split (A, axis = 1)
raveled = [np.ravel (arr) for arr in arrs]
A_transpose = np.concatenate (raveled)

return A_transpose

n,

Initialize MPI (world)

comm = MPI.COMM_WORLD
rank = comm.Get_rank ()
size = comm.Get_size ()
A = None
m = None
n = None
1 = None
local_sizeCols = None
B_T = None
f=1.3
k =9
eps = 0.5
A = 0.75
if rank == 0:
Read the files and build the matrix A here
filename = "mnist_780"
data, labels = readData (filename)
A = buildA_sequential (data)
A = A[:, 0:200]
D = np.diag([l, 0.9, 0.8, 0.7, 0.65, 0.4, 0.
H = hadamard(8)
H= 1/norm(H[:, 0])«*H
A = H@D@np.transpose (H)
A = np.arange (0, 108)
A = np.reshape(d, (9, 12)) + 0.0
m = A.shapel[0]
n A.shape[1l]
Set the oversampling size
1 =idnt(k = 1 + ceil(4/ (epsx*2)xlog(2+xn*k/A)
print("m: ", m, "n: ", n, "1: ", 1)

(see last week's exercises)

1, 0.0011)

(change this and see what happens)

))

Get the sketching matrix

Omega = np.random.normal (scale=1/1, size = (1, m))

Get B

B = Omega(lA

_, S, - = svd(B)

print ("largest singular value B: ", S[0], " smallest: ", S[-1])
print ("B shape: ", B.shape)

local_sizeCols = n//size # number of columns

B_.T = matTranspose (B, n)

Step one: partition A into 4 column blocks

local_sizeCols = comm.bcast (local_sizeCols, root=0)

1l = comm.bcast (1, root=0)

B_.local = np.empty((local_sizeCols, 1))

comm.Scatter (B_.T, B_local, root = 0)

Step 0

From each column block Ali, i =1, . . . , 4, k columns are selected by using

strong RRQR, and their indices are given in TIiO.
Q, R, P = sRRQR_rank (np.transpose(B_local), £, k)
P = P[0:k]

Pall = deepcopy(P) + rankxlocal_sizeCols

#Start iterating

for i in range(l, ceil(log(size)) + 1):
#print ("i: ", 1)
i1f rank% (2*x1) == 0 and rank + 2*xx(i-1l)<size:

J = rank + 2%%(i-1)

Phere = np.copy (P)

Psave = deepcopy (Pall)

Bhere = np.copy(B_-local)

Bhere = Bhere[Phere, :]

We receive the first k indices from Pj from processor j

#print ("Receiving and factorizing at: ", rank)
comm.Recv (P, source = j, tag = 77)

comm.Recv (B_local, source = j, tag = 88)
comm.Recv (Pall, source = j, tag = 99)

B_local = B_locall[P, :]

B_local = np.concatenate((Bhere, B_local))

Pall = np.concatenate((Psave, Pall))

strong RRQR

Q, R, P = sRRQR_rank (np.transpose(B_local), £, k)

P = P[0:k]

Pall = Pall[P]
elif rank% (2x%1) == 2% (1-1):

Send the local P

#print ("Sending from: ", rank)

comm.Send (P, dest = rank - 2xx%(i-1), tag = 77)

comm. Send (B_.local, dest = rank - 2x%%(i-1), tag = 88)

comm. Send (Pall, dest = rank - 2xx(i-1), tag = 99)

if rank ==
Print the selected columns I02
Make the low rank approximation
print ("\nRandomized QRCP\n")
Pall = Pall.flatten ()

restCols = [1 for i in range(n) if i not in Pall]
orderCols = list (Pall) + restCols
print ("Selected columns: ", Pall)

Q, R = gr(A[:, orderCols])

R11 = R[0:1, 0:1]

U, Sigma, V = svd(R[0:1, :])

sigmaR = Sigma[0:k]

Q1 = Qf[:, 0:1]

R22 = R[1l:, 1:]

print ("size R22: ", R22.shape)

Compute the rhs of the bounds

gl = sqgrt((l+eps)/ (1l-eps))

g2 = sqgrt (2 + 2xeps)/(l-eps)* (1 + sqgrt((l+eps)/(l-eps)))**(1-1)
Get the singular values from the diagonal of R
print ("Approximated singular values (first k of them): ")
print (sigmaR)

Singular values of full A

Uf, Sigma, VI = svd(A)

Uf = Uf[:, 0:k]

Sigmaf = Sigma[0:k]

vVt = VE[0:k, :]

appfull = Uf@np.diag(Sigmaf)@VE

Get the full singular values

print ("Exact singular values (first k of them): ")
print (Sigmaf)

Get bound 1

print ("|sigma-j (A) - sigma-j(R)|/ (sigma-j(A)): ",

(np.power (Sigmaf, 2) - np.power (sigmaR, 2))/ (np.power (Sigmaf, 2)))
Get bound 2
print ("Norm of R22: ", norm(R[k:, k:]))

print ("LHS of bound 2: ", glxg2xsqgrt ((l+1)*(n-1))=*Sigmal[l+1l])
Compute the L2 error with respect to the SVD low rank approximation
appsRQRCP = Ql@np.transpose (Ql) @A
print ("L2 error with respect to truncated SVvD: ",
norm(appsRQRCP - appfull))
print ("L2 error with respect to full A: ",
norm (appsRORCP - A))

