
HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Mart́ınez Aguilar

Session 10 – November 19, 2024

Randomized low rank approximation on MNIST data
set

The Radial Basis Function (RBF) applications can be found in neural networks, data visualization,
surface reconstruction, etc. These techniques are based on collocation in a set of scattered nodes,
the computational cost of these techniques increase with the number of points in the given
dataset with the dimensionality of the data.

For RBF approximation we assume that we have an unordered dataset {xi}n1 , each point associated
with a given fi ∈ Rp. We are going to consider fi ∈ R (meaning that each point in the dataset is
associated with a label). The approximation scheme can be written as follows:

s(x) =
n∑

i=1

λiϕ (∥x− xi∥) ,

where:

• xi are the data points

• x is a free variable at which we wish to evaluate the approximation

• ϕ is the RBF

• λi are the scalar parameters

The λi’s are chosen so that s approximates f in a desired way. One of the simplest ways of computing
these parameters is by forcing the interpolation to be exact at xi i.e. s(xi) = f(xi) = fi. Define a
matrix A ∈ Rn×n such that Aij = ϕ(∥xi − xj∥), let λ = [λ1, ..., λn] ∈ Rn and f = [f1, ..., fn] ∈ Rn

(both column vectors). Then in order to compute the scalar parameters we need to solve the
following linear system:

Aλ = f. (1)

Before computing A, answer the following questions:

1

a) How does the computational cost of solving (1) scale in both the number of data points and
the dimension of such points?
Solution: Notice that if n is the number of points in our data set, then A ∈ Rn×n. Then
the size of our matrix grows quadratically with respect to the number of data points. If we
assume that the most expensive computational cost for getting ϕ is computing ∥xi−xj∥2 then
its cost is O(p) for each pair of points. We have to compute this 1/2n2 times to fill in the
entries of A, hence the computational cost of just building A is O(pn2). After this we have to
solve the linear system which depends on the method used but can be assume to be O(n3).
Hence the cost of computing λ is O(n3 + pn2) if n ≫ p the second term can be ignored, but
if p ≫ n then building A dominates the computational cost.

b) What would it mean if A is nearly singular?
Solution: Thanks to the definition of RBF we know that all the ϕj = ϕ(∥xi−xj∥) are linearly
independent. Then A is nearly singular whenever two points are too close together (or are
the same point).

c) What would be the effect on A if ϕ has compact support? What would be the disadvantage
of using such RBF?
Solution: building RBF with compact support such that they’re smooth and yield a positive
definite A is difficult. If you’re interested in this topic you can read about Askey’s truncated
power function, cardinal B-splines, and Euclidian’s hat function. Recall that positive defi-
niteness makes solving (1) “easier”. On the other hand, if ϕ is compactly supported then it
means that it’s non zero only on a closed interval. Depending how the RBF is defined and
how our data points are scattered we might be able to make A sparser. This might be good
if the number of points n is big. Compactly supported RBF only “see” local interactions,
i.e. the interpolation within a small radius of a point is not affected by points outside of this
ball. Even though we might gain a lot when using compactly supported RBF we need to be
careful on how mall their support is. If chosen too small then we loose information about the
interaction of the data points, for a given point the interpolation might end up just depending
on that point itself.

The MNIST data set contains pictures of handwritten digits. It contains 60’000 training images
and 10’000 testing images. You can download this database from here: https://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/. You can also download the labels for the training and
testing images (these are going to be our fi’s. We are going to use the following RBF:

ϕ (∥xi − xj∥) = e−∥xi−xj∥/c,

with c > 0.

d) We are going to start by taking a relatively small sample of the training set (i.e. n being
”small”). Download the data set (both the test and training sets). Then from the training
set (and the labels) pick the n top rows.

e) Write a Python scrip that computes A using the subsampled data set and optionally saves
it to memory. In this section you are going to determine the value of c to use. You can test
different values of c to solve (1). (Optional: write a parallel implementation of the function
to build A)

f) Explain Nyström approximation and why it would be useful in this setting.

2

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

g) Given a sketch matrix Ω and using your code from last week and for different values of l
compute ANyst = (AΩ)(Ω⊤AΩ)†(Ω⊤A).

h) Test the accuracy of the previously computed Nyström approximation. Provide graphs that
show the error of the approximation using the nuclear norm.

i) (Optional) Try solving (1) using ANyst

The bash script to get the data set is the following:

�
#!/usr/bin/env bash

wget https://www.csie.ntu.edu.tw/\∼cjlin/libsvmtools/datasets/multiclass/mnist.scale.bz2

wget https://www.csie.ntu.edu.tw/\∼cjlin/libsvmtools/datasets/multiclass/mnist.scale.t.bz2

bzip2 −d mnist.scale.bz2

bzip2 −d mnist.scale.t.bz2

head −n 2048 mnist.scale > mnist 780� �
The Python script to generate the matrix A and compute the Nystrom approximation for solving
the system is:

�
import numpy as np
import matplotlib.pyplot as plt
from math import exp, ceil, log
import pandas as pd
from numpy.linalg import norm, qr, cholesky, inv, svd, matrix rank, lstsq, cond

plt.ion()

def readData(filename, size = 784, save = True):
'''
Read MNIST sparse data from filename
and transforms this into a dense
matrix, each line representing an entry
of the database (i.e. a "flattened" image)
'''
dataR = pd.read csv(filename, sep=',', header = None)
n = len(dataR)
data = np.zeros((n, size))
labels = np.zeros((n, 1))
Format accordingly
for i in range(n):

l = dataR.iloc[i, 0]
labels[i] = int(l[0]) # We know that the first digit is the label
l = l[2:]
indices values = [tuple(map(float, pair.split(':'))) for pair in l.split()]
Separate indices and values
indices, values = zip(*indices values)
indices = [int(i) for i in indices]
Fill in the values at the specified indices
data[i, indices] = values

if save:

3

data.tofile('./denseData.csv', sep = ',',format='%10.f')
labels.tofile('./labels.csv', sep = ',',format='%10.f')

return data, labels

Define function to build A
def buildA sequential(data, c = 1e−4, save = True):

'''
Function to build A out of a data base
using the RBF exp(− | | x i − x j | |/c)
Notice that we only need to fill in the
upper triangle part of A since it's symmetric
and its diagonal elements are all 1.
'''
n = data.shape[0]
A = np.zeros((n, n))
for j in range(n):

for i in range(j):
A[i,j] = exp(−norm(data[i, :] − data[j, :])**2/c)

A = A + np.transpose(A)
np.fill diagonal(A, 1.0)
if save:

A.tofile('./A.csv',sep=',',format='%10.f')
return A

We are going to use the previously build
function randNystrom
def randNystrom(A, Omega, returnExtra = True):

'''
Randomized Nystrom
Option to return the singular values of B and rank of A
'''
m = A.shape[0]
n = A.shape[1]
l = Omega.shape[1]
C = A@Omega
B = np.transpose(Omega)@C
try:

Try Cholesky
L = cholesky(B)
Z = lstsq(L, np.transpose(C))[0]
Z = np.transpose(Z)

except np.linalg.LinAlgError as err:
Do LDL Factorization
lu, d, perm = ldl(B)
Question for you: why is the following line not 100% correct?
lu = lu@np.sqrt(np.abs(d))
Does this factorization actually work?
L = lu[perm, :]
Cperm = C[:, perm]
Z = lstsq(L, np.transpose(Cperm))[0]
Z = np.transpose(Z)

Q, R = qr(Z)
U t, Sigma t, V t = svd(R)
Sigma t = np.diag(Sigma t)
U = Q@U t
if returnExtra:

S B = cond(B)
rank A = matrix rank(A)

4

return U, Sigma t@Sigma t, np.transpose(U), S B, rank A
else:

return U, Sigma t@Sigma t, np.transpose(U)

Try solving the least squares problem with randomized Nystrom
filename = "mnist 780"
n omega = 2048
l = 50
cs = [1e1, 1e2, 1e3, 1e4, 1e5]
Omega = np.random.normal(loc= 0.0, scale = 1.0, size = [n omega, l])
data, labels = readData(filename, save = False)

err cN = np.zeros((5, 1))
err cE = np.zeros((5, 1))

for i in range(len(cs)):
c = cs[i]
A = buildA sequential(data, c = c, save = False)
U, Sigma, V t = randNystrom(A, Omega, returnExtra = False)
Solve the least squares problem
S rec = np.where(Sigma>1e−10, 1/Sigma, 0)
lam = np.transpose(V t)@S rec@np.transpose(U)@labels
err cN[i] = norm(A@lam − labels, 'nuc')/norm(A, 'nuc')

Plot

plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(cs, err cN, c = "#003aff", marker = 'o', label = 'Nystrom approx')
plt.legend()
plt.title("RBF approximation " + r'$\phi\left(\ | x i − x j \ | \right) = eˆ{− \ | x i − x j \ | / c}$')
plt.xlabel("c")
plt.ylabel("Relative error, nuclear norm")

Now solve the problem with different values of l
ls = [10, 25, 50, 75, 100]
c = 100
data, labels = readData(filename, save = False)
A = buildA sequential(data, c = c, save = False)

err cN2 = np.zeros((5, 1))

for i in range(len(ls)):
l = ls[i]
Omega = np.random.normal(loc= 0.0, scale = 1.0, size = [n omega, l])
U, Sigma, V t = randNystrom(A, Omega, returnExtra = False)
Solve the least squares problem
S rec = np.where(Sigma>1e−10, 1/Sigma, 0)
lam = np.transpose(V t)@S rec@np.transpose(U)@labels
err cN2[i] = norm(A@lam − labels, 'nuc')/norm(A, 'nuc')

Plot

plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(ls, err cN2, c = "#003aff", marker = 'o', label = 'Nystrom approx')
plt.legend()
plt.title("RBF approximation " + r'$\phi\left(\ | x i − x j \ | \right) = eˆ{− \ | x i − x j \ | / c}$')
plt.xlabel("l")

5

plt.ylabel("Relative error, nuclear norm")� �

6

