
HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Mart́ınez Aguilar

Session 8 – November 5, 2024

Randomized SVD

Exercise 1: SRHT

In the context of overdetermined least-squares problems, we need to find x ∈ Rn such that it
minimizes:

∥Wx− b∥22,

where W ∈ Rm×n, b ∈ Rm,m > n. There is a class of randomized algorithms for solving this
problem based on sketching method. Sketching methods involve using a random matrix Ω ∈ Rl×m

to project the data W (and maybe also b) to a lower dimensional space with l ≪ m. Then they
approximately solve the least-squares problem using the sketch ΩW (and/or Ωb). One relaxes the
problem to finding a vector x so that

∥Wx− b∥ ≤ (1 + ε)∥Wx∗ − b∥,

where x∗ is the optimal solution. The overview of sketching applied to solve linear least squares is:

a) Sample/build a random matrix Ω

b) Compute ΩA and Ωb

c) Output the exact solution to the problem minx ∥(ΩW)x− (Ω)b∥2.

Given a data matrix, W ∈ Rm×n, we want to reduce the dimensionality of W by defining a random
orthonormal matrix Ω ∈ Rl×m with l ≪ m. For m = 2q, q ∈ N, the Subsampled Randomized
Hadamard Transform (SRHT) algorithm defined a l ×m matrix as:

Ω =

√
m

l
PHmD,

where:

• D ∈ Rm×m is a diagonal matrix whose elements are independent random signs, i.e. it’s
diagonal entries are just −1 or 1.

1

• H ∈ Rm×m is a normalized Walsh-Hadamard matrix. If you’re going to use a library that
implements this transform then check that it implements the normalized Walsh-Hadamard
matrix. This matrix is defined recursively as:

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
H2 =

[
1 1
1 −1

]
H =

1√
m
Hm ∈ Rm×m.

• P ∈ Rl×m is a subset of randomly sampled l columns from the m × m identity matrix.
The purpose of using P is to uniformly sample r columns from the rotated data matrix
Xrot = HmDX.

The following theorem help us get an idea for the size of l.

Theorem 1 (Subsampled Randomized Hadamard Transform) Let Ω =
√

m
l PHmD as pre-

viously defined. Then if

l ≥ O((ε−2 log(n))(
√
n+

√
logm)2)

with probability 0, 99 for any fixed U ∈ Rm×n with orthonormal columns:

∥I − U⊤ΩΩ⊤U∥2 ≤ ε.

Further, for any vector x ∈ Rm,Ωx can be computed in O(n log l) time.

Choose a data set from [https://www.kaggle.com/datasets?tags=13405-Linear+Regression]. Com-
pare the randomized least squares fit using SRHT vs the deterministic least squares fit. Use the
previous theorem to estimate l. Hint: you can use the fast Hadamard transform from scipy or
pytorch
A Python script with the solutions is found below:

�
import numpy as np
from numpy.linalg import norm, lstsq
from pandas import read csv
from numpy.random import normal
from math import ceil, log, sqrt, floor
import matplotlib.pyplot as plt
import time
from random import sample
import random
import torch
from hadamard transform import hadamard transform

plt.ion()

For SRHT sketching applied to a least squares problem
we report the following quantities:
Time taken to solve the full problem
Time taken to solve the compressed problem
Residual norm full problem
Residual norm compressed problem
Relative error in the spectral norm

2

https://www.kaggle.com/datasets?tags=13405-Linear+Regression

We are going to read the data (which was previously downloaded)
We just want to work with certain columns, not all of them
d = read csv("ParisHousing.csv")
b = d.price
b = b.values
d.drop(['hasYard', 'hasPool', 'floors', 'cityCode', 'numPrevOwners',

'made', 'basement', 'attic', 'garage', 'hasGuestRoom'], axis = 1)
A = d.values
But we need to make sure m is a power of 2
m = int(2**(floor(log(A.shape[0])/log(2))))
A = A[0:m, :]
b = b[0:m]

Now that we have out set up
n = A.shape[1]
nRuns = 10
sigma = 0.99
epsilon = np.array([100, 10, 5, 2, 1, 0.5, 0.1])
rVec = np.ceil((log(n)/(epsilon**2))*(sqrt(n) + log(m))**2).astype('int')
Notice that some r's might be bigger than m

timeF = np.empty like(epsilon)
timeC = np.empty like(epsilon)
resF = np.empty like(epsilon)
resC = np.empty like(epsilon)
relErrSpec = np.empty like(epsilon)

for k in range(len(epsilon)):
eps = epsilon[k]
r = min(m, rVec[k])
tF = 0
tC = 0
rC = 0
rES = 0
for run in range(nRuns):

Begin with the compressed problem
ts = time.time()
d = np.array([1 if random.random() < 0.5 else −1 for i in range(m)])
D = np.diag(sqrt(m/r)*d)
P = sample(range(m), r)
omega = D
omega = np.array([hadamard transform(torch.from numpy(omega[:, i])).numpy() for i in range(m)])
omega = np.transpose(omega)
omega = omega[P, :]
omegaA = omega@A
omegab = omega@b
xPrime = lstsq(omegaA, omegab)
xPrime = xPrime[0]
tC += time.time() − ts
Now for the full problem
ts = time.time()
xStar = lstsq(A, b)
xStar = xStar[0]
tF += time.time() − ts
Report desired quantities for the randomized part
rC += norm(omegaA@xPrime − omegab)
rES += abs(norm(omegaA) − norm(A))/norm(A)

3

Save averages
timeF[k] = tF/nRuns
timeC[k] = tC/nRuns
resF[k] = norm(A@xStar − b)
resC[k] = rC/nRuns
relErrSpec[k] = rES/nRuns

###
Plot plot plot
Time
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(epsilon, timeF, c = "#003aff", marker = 'o',

label = "Full problem")
plt.loglog(epsilon, timeC, c = "#00b310", marker = '*',

label = "Compressed problem")
plt.legend()
plt.title(r'ε' +

", time taken to build and compute")
plt.xlabel(r'ε')
plt.ylabel("Time, s")

Norm of residual
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(epsilon, resF, c = "#003aff", marker = 'o',

label = "Full problem")
plt.loglog(epsilon, resC, c = "#00b310", marker = '*',

label = "Compressed problem")
plt.legend()
plt.title(r'ε' + ", norm of residual")
plt.xlabel(r'ε')
plt.ylabel("Norm of residual")

Relative error in spectral norm
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(epsilon, relErrSpec, c = "#5400b3", marker = 'o',

label = "Relative error")
plt.loglog(epsilon, epsilon, c = '#676b74', linestyle='dashed',

label = r'ε')
plt.legend()
plt.title(r'ε' + ", relative error spectral norm " +

r'$ | \ |\Omega A\ | 2 − \ |A\ | 2 |/\ | A\ | 2$')
plt.xlabel(r'ε')
plt.ylabel(r'$ | \ |\Omega A\ | 2 − \ |A\ | 2 |/\ | A\ | 2$')� �
Exercise 2: Randomized SVD
Consider the following algorithm to compute a randomized SVD factorization:
Remember the following theorem:

Theorem 2 If Ω is chosen to be i.i.d. N (0, 1), k, p ≥ 2, then the expectation with respect to the
random matrix Ω is:

E(∥A−QQ⊤A∥2) ≤
(
1 +

4
√
k + p

p− 1

√
min(m,n)

)
σk+1(A)

and the probability that the error satisfies

4

Algorithm 1 Randomized SVD q = 1

Input: A ∈ Rm×n, desired rank k, l = p+ k
Output: Approximation Ak = QU,Σ, V
Sample an n× l test matrix Ω with independent mean-zero, unit-variance Gaussian entries.
Compute Y = (AA⊤)AΩ
Construct Q ∈ Rm×l with columns forming an orthonormal basis for the range of Y .
Compute B = Q⊤A,B ∈ Rl×n

Compute the rank-k truncated SVD of B as UΣV ⊤, U ∈ Rl×k, V ∈ Rn×k

∥A−QQ⊤A∥2 ≤
(
1 + 11

√
k + p

√
min(m,n)

)
σk+1(A)

is at least 1− 6/pp. For p = 6, the probability becomes 0, 99.

Construct a rank−k approximation with k = 10, p = 6 to a matrix A ∈ Rm×2m via its SVD:

A = U (A)Σ(A)V (A)⊤,

where:

• U ∈ Rm×m is a Hadamard matrix

• V ∈ R2m×2m is a Hadamard matrix

• Σ ∈ Rm×2m is a diagonal matrix whose diagonal entries are defined as:

Σjj = σj = (σk+1)
⌊j/2⌋/5,

for j = 1, 2, ..., 9, 10 and

Σjj = σj = σk+1
m− j

m− 11
,

for j = 11, 12, ...,m− 1,m. Thus σ1 = 1 and σk = σk+1.

Test this algorithm for m = 211, σk+1 = 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001. Plot the decay
of the singular values of A and compare such decay with the accuracy of the approximation, ∥A−
QQ⊤A∥2. Compare it with the theorem presented above.
A Python script with the solutions is found below:

�
import numpy as np
from numpy.linalg import svd, qr, norm
import matplotlib.pyplot as plt
from scipy.linalg import hadamard
from math import log, sqrt, floor
import torch
from hadamard transform import hadamard transform

So that the plots are "interactive" when we run this script
plt.ion()

def SVD rand(A, k, p):
'''

5

Randomized SVD with q = 1
IN :

A : mxn matrix to be factorized
k : order of approximation
p : such that l = p + k

OUT :
U : approximated left singular vectors
Sigma : approximated singular values
V : approximated right singular vectors

'''
m = A.shape[0]
n = A.shape[1]
l = p+k
STEP 1
Using a random number generator form a i.i.d. Gaussian matrix
Omega1 = np.random.normal(loc= 0.0, scale = 1.0, size = [n, l])
Y = (A@np.transpose(A))@A@Omega1
Construct Q
Q, R = qr(Y)
Compute B
B = np.transpose(Q)@A
Compute th rank−k truncated SVD of B
U, Sigma, V = svd(B)
U = U[:, 0:k]
Sigma = Sigma[0:k]
V = V[:, 0:k]
U = Q@U
return Q, U, Sigma, V

def buildA(m, sigma k1, k = 10):
'''
From Rokhlin, Szlam, Tygert paper A Randomized Algorithm For Principal Component
Analysis, build test matrix A of size mx(2m). We use the fast Hadamard transform
IN: m : number of desired rows in matrix A

sigma k1 : (k+1)th biggest singular value of A
k : where we are going to truncate the approximation of A

OUT: A : matrix with desired structure

QUESTION: Can we build A faster? Notice that Sigma is just a diagonal matrix.
Also notice that we can use the fast Hadamard transform to build A.
If you can, change this function so that it builds A faster!
'''
U = (1/sqrt(m))*hadamard(m)
V = (1/sqrt(2*m))*hadamard(2*m)
firstSig = [sigma k1**(floor(j/2)/5) for j in range(1, k+1)]
sigmas = firstSig + [sigma k1*(m − j)/(m − 11) for j in range(k+1, m+1)]
Sigma = np.zeros((m, 2*m))
np.fill diagonal(Sigma, sigmas)
return U@Sigma@np.transpose(V), sigmas

Test
m = 2**11
k = 10
p = 6
sigma k1S = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001]
errorApprox = np.empty(6)
errorApproxRel = np.empty(6)
errTh = np.empty(6)

6

for s in range(6):
sigma = sigma k1S[s]
Build A
A, sigmas = buildA(m, sigma, k)
Randomized SVD
Q, U, S, V = SVD rand(A, k, p)
Sigma = np.zeros((U.shape[1], S.shape[0]))
np.fill diagonal(Sigma, S)
Plot the decay of the singular values
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(np.arange(m), sigmas, marker = 'o', c = "#0800ff")
plt.title("Decay on singular values for " + r"$\sigma {k+1} = $" + str(sigma))
plt.xlabel("k")
plt.ylabel(r"$\sigma {k}$")
Save the error of the approximation
errTh[s] = norm(A − Q@np.transpose(Q)@A)

Plot error from theorem
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(sigma k1S, errTh, marker = 'o', c = "#ff8f00")
plt.title(r"$ | \ | A − Q Qˆ{\top}A\ | $" + " and decay on singular values")
plt.xlabel(r"$\sigma {k+1}$")
plt.ylabel(r"$ | \ | A − Q Qˆ{\top}A\ | $")� �

7

