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Randomized SVD

Exercise 1: SRHT

In the context of overdetermined least-squares problems, we need to find x € R"™ such that it
minimizes:
2

W — |3,
where W € R™*"™ b € R™ m > n. There is a class of randomized algorithms for solving this
problem based on sketching method. Sketching methods involve using a random matrix € R>*™
to project the data W (and maybe also b) to a lower dimensional space with [ < m. Then they
approximately solve the least-squares problem using the sketch QW (and/or £2b). One relaxes the
problem to finding a vector x so that

Wz bl < (1+¢e)[[Wz* b,

where z* is the optimal solution. The overview of sketching applied to solve linear least squares is:
a) Sample/build a random matrix

b) Compute QA and Qb

c¢) Output the exact solution to the problem ming ||[(QW)x — (©2)b]|2.

Given a data matrix, W € R™*" we want to reduce the dimensionality of W by defining a random
orthonormal matrix Q € R>™ with | < m. For m = 29,¢q € N, the Subsampled Randomized
Hadamard Transform (SRHT) algorithm defined a [ x m matrix as:

0= 1/?PHmD,

e D € R™™ is a diagonal matrix whose elements are independent random signs, i.e. it’s
diagonal entries are just —1 or 1.

where:




e H € R™*™ is a normalized Walsh-Hadamard matrix. If you're going to use a library that
implements this transform then check that it implements the normalized Walsh-Hadamard

matrix. This matrix is defined recursively as:

H H
H,, = m/2 m/2 :|
[fﬂn/2 __Eﬂn/Q
1

t="Tm

H,, ¢ R™*™,

11
m=ly

e P € R™¥™ ig a subset of randomly sampled ! columns from the m x m identity matrix.
The purpose of using P is to uniformly sample r columns from the rotated data matrix

Xiot = HpnDX.

The following theorem help us get an idea for the size of [.

Theorem 1 (Subsampled Randomized Hadamard Transform) LetQ = /' PH,,D as pre-

viously defined. Then if

1> O((elog(n)(Vn + /logm)?)

with probability 0,99 for any fized U € R™*™ with orthonormal columns:

II-UTQQ Uz <e.

Further, for any vector x € R™,Qx can be computed in O(nlogl) time.

Choose a data set from |[https://www.kaggle.com/datasets?tags=13405-Linear+Regression]. Com-
pare the randomized least squares fit using SRHT vs the deterministic least squares fit. Use the
previous theorem to estimate [. Hint: you can use the fast Hadamard transform from scipy or

pytorch
A Python script with the solutions is found below:

-
import numpy as np

from numpy.linalg import norm, lstsqg

from pandas import read.-csv

from numpy.random import normal

from math import ceil, log, sqgrt, floor

import matplotlib.pyplot as plt

import time

from random import sample

import random

import torch

from hadamard_transform import hadamard-transform

plt.ion()

# For SRHT sketching applied to a least squares problem
# we report the following quantities:

##### Time taken to solve the full problem

##### Time taken to solve the compressed problem

####4 Residual norm full problem

##### Residual norm compressed problem

##### Relative error in the spectral norm



https://www.kaggle.com/datasets?tags=13405-Linear+Regression

We are going to read the data (which was previously downloaded)
We just want to work with certain columns, not all of them
= read-csv ("ParisHousing.csv")

Q. O O Q # =+

= d.price
= b.values
.drop ([ 'hasYard', 'hasPool', 'floors', 'cityCode', 'numPrevOwners',
'made', 'basement', 'attic', 'garage', 'hasGuestRoom'], axis = 1)
A = d.values
# But we need to make sure m is a power of 2
m = int (2*x (floor (log(A.shape[0])/log(2))))
A = A[0:m, :]
b = b[0:m]

# Now that we have out set up

n = A.shape[l]

nRuns = 10

sigma = 0.99

epsilon = np.array([1l00, 10, 5, 2, 1, 0.5, 0.11])

rVec = np.ceil( (log(n)/ (epsilonx*2))* (sqrt(n) + log(m))=*x2).astype('int")
# Notice that some r's might be bigger than m

timeF np.empty_like (epsilon)
timeC = np.empty-like (epsilon)
resF = np.empty-like (epsilon)
resC = np.empty_like (epsilon)

relErrSpec = np.empty-like (epsilon)

for k in range(len(epsilon)):

eps = epsilonl[k]

r = min(m, rVecl[k])
tF = 0

tC =0

rC =0

rES = 0

for run in range (nRuns) :
# Begin with the compressed problem
ts = time.time ()
d = np.array ([l if random.random() < 0.5 else -1 for i in range(m)])

D = np.diag(sqgrt (m/r) *d)

P = sample(range(m), r)

omega = D

omega = np.array ([ hadamard_transform(torch.from_numpy (omegal:, i])) .numpy ()
omega = np.transpose (omega)

omega = omegal[P, :]

omegaA = omegalA
omegab = omega@b

xPrime = lstsqg(omegalA, omegab)
xPrime = xPrime[0]
tC += time.time () - ts

# Now for the full problem
ts = time.time ()

xStar = lstsqg(A, b)

xStar = xStar[0]

tF += time.time () - ts

# Report desired quantities for the randomized part
rC += norm(omegaA@xPrime - omegab)

rES += abs (norm(omegal) — norm(A))/norm(A)

for

i in range (n



# Save averages

timeF [k] = tF/nRuns
timeC[k] = tC/nRuns
resF[k] = norm(A@xStar - Db)
resC[k] = rC/nRuns
relErrSpec[k] = rES/nRuns
#H#
### Plot plot plot
# Time
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(epsilon, timeF, c = "#003aff", marker = 'o',
label = "Full problem")
plt.loglog(epsilon, timeC, ¢ = "#00b310", marker = 'x',
label = "Compressed problem")
plt.legend()
plt.title(r'$\varepsilon$' +
", time taken to build and compute")
plt.xlabel (r's$\varepsilon$"')
plt.ylabel ("Time, s")
# Norm of residual
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(epsilon, resF, c = "#003aff", marker = 'o',
label = "Full problem")
plt.loglog(epsilon, resC, c = "#00b310", marker = 'x',
label = "Compressed problem")
plt.legend()
plt.title(r's$\varepsilon$' + ", norm of residual")
plt.xlabel(r'$\varepsilon$')
plt.ylabel ("Norm of residual")
# Relative error in spectral norm
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog(epsilon, relErrSpec, c = "#5400b3", marker = 'o',
label = "Relative error")
plt.loglog(epsilon, epsilon, c = '#676b74', linestyle='dashed',
label = r'$\varepsilon$')

plt.legend()

plt.title(r'$\varepsilon$' + ", relative error spectral norm " +
r's| \[\Omega A\[.2 - \|a\|_2 [/\| a\|-25")

plt.xlabel(r'$\varepsilon$')

plt.ylabel(r'$| \|\Omega A\|-2 - \|a\|-2 |/\| &\]|-28")

Exercise 2: Randomized SVD
Consider the following algorithm to compute a randomized SVD factorization:
Remember the following theorem:

Theorem 2 If Q is chosen to be i.i.d. N(0,1), k,p > 2, then the expectation with respect to the
random matriz € is:

E(|A—-QQTA|s2) < (1 + w\/min(m,n)> or+1(A)

and the probability that the error satisfies




Algorithm 1 Randomized SVD q =1

Input: A € R™*", desired rank k, l = p+ k

Output: Approximation Ay = QU, X,V
Sample an n x [ test matrix 2 with independent mean-zero, unit-variance Gaussian entries.
Compute Y = (AAT)AQ
Construct Q € R™*! with columns forming an orthonormal basis for the range of Y.
Compute B = Q' A, B € R
Compute the rank-k truncated SVD of B as UXV T, U € R>*F v € R?*k

|A—QQTA|, < (1 + 11y/k 4 py/min(m, n)) ops1(A)
is at least 1 — 6/pP. For p = 6, the probability becomes 0,99.

Construct a rank—k approximation with k& = 10, p = 6 to a matrix A € R™*?™ via its SVD:

A=UWxsA@yWT

where:

o U € R™*™ is 3 Hadamard matrix
o V € R2ZmX2m ig o Hadamard matrix

e ¥ € R™*?™ s a diagonal matrix whose diagonal entries are defined as:

S = 0 = (op41) /275,

for j=1,2,...,9,10 and
m—j
33 =05 = Ok Ym—11

for j =11,12,...,m — 1,m. Thus 01 = 1 and o} = og41.
Test this algorithm for m = 21, o441 = 0.1,0.01,0.001,0.0001, 0.00001,0.000001. Plot the decay
of the singular values of A and compare such decay with the accuracy of the approximation, ||A —

QQT Al]2. Compare it with the theorem presented above.
A Python script with the solutions is found below:

import numpy as np

from numpy.linalg import svd, gr, norm

import matplotlib.pyplot as plt

from scipy.linalg import hadamard

from math import log, sgrt, floor

import torch

from hadamard_-transform import hadamard-transform

# So that the plots are "interactive" when we run this script
plt.ion ()

def SVD_rand(A, k, p):




Randomized SVD with g =1

IN
A : mxn matrix to be factorized
k : order of approximation
o) : such that 1 = p + k
OouT
U : approximated left singular vectors
Sigma : approximated singular values
v : approximated right singular vectors
Tra
m = A.shapel0]
n = A.shape[l]
1 = ptk
# STEP 1
# Using a random number generator form a i.i.d. Gaussian matrix
Omegal = np.random.normal (loc= 0.0, scale = 1.0, size = [n, 1])

Y = (A@np.transpose (A))Q@AQOmegal

# Construct Q

Q, R = qr(Y)

# Compute B

B = np.transpose (Q) QA

# Compute th rank-k truncated SVD of B
U, Sigma, V = svd(B)

U =U[:, 0:k]
Sigma = Sigma[0:k]
V =V[:, 0:k]

U = QQU

return Q, U, Sigma, V

def buildA(m, sigma_kl, k = 10):

v

From Rokhlin, Szlam, Tygert paper A Randomized Algorithm For Principal Component

Analysis, build test matrix A of size mx(2m). We use the fast Hadamard transform
IN: m : number of desired rows in matrix A

sigma_kl : (k+1)th biggest singular value of A

k : where we are going to truncate the approximation of A
OUT: A : matrix with desired structure

QUESTION: Can we build A faster? Notice that Sigma is just a diagonal matrix.
Also notice that we can use the fast Hadamard transform to build A.
If you can, change this function so that it builds A faster!

T

U = (1/sgrt (m))+hadamard (m)

V = (1/sgrt (2+m))+hadamard (2+m)

firstSig = [sigma-klx* (floor(j/2)/5) for J in range(l, k+1)]

sigmas = firstSig + [sigma_kl*(m - j)/(m - 11) for j in range(k+1, m+1)]
Sigma = np.zeros((m, 2*m))

np.fill diagonal (Sigma, sigmas)
return U€Sigma@np.transpose (V), sigmas

Test

2%x11

=10

p =6

sigma_kls = [0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001]
errorApprox = np.empty (6)

errorApproxRel = np.empty (6)

errTh = np.empty (6)

~ B
Il




for s in range(6):
sigma = sigma_k1S([s]
# Build A
A, sigmas = buildA(m, sigma, k)
# Randomized SVD
Q, U, S, V = SVD_rand(A, k, p)
Sigma = np.zeros((U.shape[l], S.shape[0]))
np.fill _diagonal (Sigma, S)
# Plot the decay of the singular values
plt.figure(figsize=(8, 6), dpi=80)
plt.loglog (np.arange (m), sigmas, marker = 'o', c = "#0800ff")
plt.title("Decay on singular values for " + r"$\sigma_{k+1} = $" + str(sigma))
plt.xlabel ("k")
plt.ylabel (r"$\sigma_{k}$")
# Save the error of the approximation
errTh[s] = norm( A - Q@np.transpose (Q) @A )

# Plot error from theorem

plt.figure(figsize=(8, 6), dpi=80)

plt.loglog(sigma_klS, errTh, marker = 'o', c = "#££8£f00")

plt.title(zr"$| \|] &2 - 0 0" {\top}A\| $" + " and decay on singular values")
plt.xlabel (r"$\sigma_{k+1}$")

plt.ylabel (r"$| \| & - Q 0" {\top}a\| s
N\




