EPFL

HPC for numerical methods and data analysis
Fall Semester 202
Prof. Laura Grigori

Assistant: Mariana Martinez Aguilar

Session 5 — October 8, 2024

TSQR Factorization

For this week you can choose what to do: either these exercises or continue working on your project
(or maybe even both).
Exercise 1 CGS and MGS

If we recall what a QR factorization is, given a matrix W € R™*" with m > n, its QR factorization
is

- - [R o

W=QR=[Q Q] [0] = QR,
where @@ € R™*" orthogonal and R € R™*™ upper triangular. Note that W can be seen as a map
W : R™ — R™. Recall that computing the QR decomposition using CGS is numerically unstable. An
alternative algorithm, which is mathematically equivalent is the Modified Gram-Schmidt algorithm
(MGS). Define Q;_1 as the matrix we get at the j-th step, Q;—1 = [ql g2 ... qj_l] and P; as

the projector onto the subspace orthogonal to the column space col(Q;j—1). Then we can write this
as:

Pi=1-Q;1Qj1=—¢i-1¢j_1).-.-(I —qqy).

a) How many synchronizations do we need for each vector w; in this case? Why?
Solution: We need j-1 synchronizations since we need these previous vectors.

b) Why is this more stable than CSG? Solution: Intuitively, CSG is more unstable because you
subtract off the projections of the (k+1)th vector onto de first k vectors. You ensure that this
new vector is orthogonal to the input vector in question but fail to ensure that the vectors you
get at the end of the process are orthogonal to each other. So MGS is more stable because
you do ensure that the vectors you get at the end of the process are orthogonal to each other.

c) Make the necessary modifications to your last week’s code to implement MGS. Compare both
codes by computing || — QQT|.

Exercise 2 TSQR

Remember that communication refers to messages between processors. In the recent years we’ve
seen trends causing floating point to become faster than communication. This is why it’s important
to minimize communication when dealing with parallelism. The TSQR, “Tall Skinny QR” algorithm
is a communication avoiding algorithm for matrices with many more rows than columns. In this
exercise we are going to assume we're using P = 4 processors and the matrix we want to factorize
is A € R™"™ with m > n. The computation can be expressed as a product of intermediate
orthonormal factors in a binary tree like structure. We scatter row wise our matrix A along 4
processors Ay, Ay, Ag, Ay € R™/4*"_ At the leaves of the binary tree, we perform in parallel 4
local QR factorizations to get Ay = Agz)R§2)7A2 = Qg)ég),Ag = QéQ)R§2),A4 = Qf)Rf). Here
Ql(2) e R™/4xm/4 and]:21(2) e R™/4*"_1In block structure we get

a7 [Ry
Ay o R
A3 - A§2) Ri(’,Q)
A A (2 ~(2
' Q) LAY

Recall that Rz(2) € R™/**" are tall and skinny upper triangular matrices, hence they can be written
as

R

(2
RY =1

)

where Rl(z) € R™™. In the second level of the binary tree we combine the upper triangular matrices

R§2) with RéQ) and RgQ) with Rff) to get block structured matrices. We perform the QR factorization

in parallel to get the following structured matrices

(2) A1) AL (2) A1) A
| = [%fi Elf; ae | = [Q%i”; %fi &
R Qo @] | 0 Ry Quz Qui| | 0
This can be written as
. " .
QY Qb
~(2) !
BO|e @ R
RP| I 0
~(2 - A1 A1 1
A oy ||
RY I 0
A(1) A(1)
43 44
L. I—

Finally at the root of the tree we compute the last QR factorization

1 A0 A0
) 9]
R3 31 Q33 0

Which can be written as

~

1) A(0 (0

R T Rt
0 I 0
@] = | A@ (0

R QY & 0
0 I 0

@ is represented implicitly as the product of the intermediate orthogonal matrices.

a)

Let Q € C**b and S € C’*¢ be matrices such that their columns form an orthonormal set.
Show that the columns of Q.S also form an orthonormal set.
Solution: Notice that Q is not a square matrix and hence we can’t talk about its inverse.
What we do know is the following:
Tag: = 5.
q; 45 = 0ij,

where ¢; is the i-th column of Q. We can rewrite this as:
QIQ=1

Then for Q5S:
(@9)' (@) =5"Q'Qs=1.

What are the dimensions of the intermediate orthogonal matrices Q‘fj? Solution: In the first
step, the matrices QZQ e R™/4*"_ for the second step we get that Q}J € R™*" gimilarly on the
third step Q% € Rmx™,

Show that the columns of the resulting Q are orthogonal. How is this matrix computed?
Solution: Each of these sub blocks is an orthogonal matrix since it was obtained from a QR
decomposition. Notice that a diagonal block matrix of orthogonal matrices is orthogonal.
Because of the first exercise we have that the product of these matrices is orthogonal as well.
The resulting @) is obtained by going through the binary tree in a reverse order. This is part
of the project!

Suppose that you are given the implicit representation of) as a product of orthogonal matri-
ces. This representation is a tree of sets of Householder vectors, {Qf i}~ Here, k indicates the
processor number (both where it is computed and where it is stored): and d indicates the level
in the tree. How would you get Q explicitly? We only need the “thin” Q, meaning only its
first n columns. Note that we can do this by applying the intermediate factors {ka} to the
first n columns of the m x m identity matrix. Write a Python script using MPI that does this
(assume you are using 4 processors). (Hint: looking at the graphical representation of parallel
TSQR might help.)

Solution: The code below gives an idea of how to build the final representation of Q.

from mpidpy import MPI

import numpy as np

from numpy.linalg import norm, dr
from math import log, ceil

from scipy.sparse import block_diag

In

comm =

rank
size

itialize MPI (world)
MPI.COMM_WORLD
comm.Get_rank ()
comm.Get_size ()

Assuming we have 4 processors and we load the local

Qk

loca

if r

elif

s matrices

1Qks = None

ank == 0:

Q00 = np.array([[-0.04020151, 0.05148748, -0.48794801, -0.50571448],
[-0.10050378, -0.89895473, 0.31509767, -0.00195979],
[-0.18090681, -0.28214307, -0.76422519, 0.50179491],
[-0.26130983, -0.17916811, -0.1463844 , -0.68430465],
[-0.34171286, -0.07619316, -0.05978922, -0.03687965],
[-0.42211588, 0.02678179, 0.02680597, 0.01877834],
[-0.50251891, 0.12975674, 0.11340116, 0.07443633],
[-0.58292193, 0.2327317 , 0.19999634, 0.13009432]11)

Q01 = np.array([[-3.44792388e-01, -5.30143546e-01, -3.18019926e-01,
-1.75412956e-011,

[0.00000000e+00, -7.95057345e-01, 2.76598659e-01,
1.52190162e-011],

[0.00000000e+00, 0.00000000e+00, -8.89957752e-01,
1.28586166e-017,

[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

-9.59425146e-011,

[-9.38678970e-01, 1.94730536e-01, 1.16814005e-01,
6.44320942e-02],

[0.00000000e+00, -2.21159801e-01, -1.29175059e-01,

-6.98995180e-021,

[0.00000000e+00, 0.00000000e+00, —-3.18403475e-14,

-6.66256004e-157,

[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
4.27020805e-1511)

Q02 = np.array([[-3.49273257e-01, -5.53256366e-01, -2.34955891e-01,
-1.17622003e-017,

[-0.00000000e+00, —-7.70590564e-01, 2.23490598e-01,
1.11731916e-017,

[-0.00000000e+00, -0.00000000e+00, —-9.36499697e-01,
6.56458092e-02],

[-0.00000000e+00, -0.00000000e+00, 0.00000000e+00,

-9.82321345e-017,

[-9.37020913e-01, 2.06225550e-01, 8.75794853e-02,
4.38434399%9e-02],

[-0.00000000e+00, -2.39934571e-01, -1.00726527e-01,

-4.99419515e-02],

[-0.00000000e+00, -0.00000000e+00, 2.87692119e-14,

-5.48659862e-157,

[-0.00000000e+00, -0.00000000e+00, -0.00000000e+00,
5.21093862e-1411)

localQks = [Q00, Q01, Q02]

rank ==

Q10 = np.array([[-0.24365028, -0.59774677, 0.74934607, -0.048020357,
[-0.27318365, -0.44629611, -0.40471424, 0.7018256],
[-0.30271702, -0.29484544, -0.35703775, -0.59017753],
[-0.33225039, -0.14339478, -0.10355031, -0.17789222],
[-0.36178375, 0.00805589, -0.16647782, 0.05840092],

[-0.39131712, 0.15950655, -0
[-0.42085049, 0.31095722, O
[-0.45038386, 0.46240788, O
localQks = [Q10]
elif rank == 2:

Q20 = np.array([[-0.28896025, -0
[-0.30674241, -0.42393232, -0
[-0.32452458, -0.27065702, -0
[-0.34230675, -0.11738172, O
[-0.36008892, 0.03589358, O
[-0.37787109, 0.18916889, O
[-0.39565326, 0.34244419, -0
[-0.41343543, 0.49571949, -0

Q021 = np.array([[-0.58111405, -0
[O. , —0.42767003, O
[O. , 0. , —0.
[O. , 0. , —0.
[-0.81382213, 0.49440525, -0
[O. , —0.30538007, -0
[O. , 0. , 0.
[O. , 0. , —0.

localQks = [Q20, Q21]

else:

Q30 = np.array([[-0.30791323, -0
[-0.32061069, -0.4135436 , -0
[-0.33330814, -0.25976357, -0
[-0.34600559, -0.10598354, O
[-0.35870305, 0.0477965 , -0
[-0.3714005 , 0.20157653, -0
[-0.38409795, 0.35535656, O
[-0.39679541, 0.5091366 , -0.

localQks = [Q30]

def getQexplicitly(localQks, comm) :
rank = comm.Get_rank ()

size = comm.Get_size ()

m = localQks[0].shape[0]*size

n = localQks[0].shape[l]

Q = None

if rank ==
Q = np.eye(n, n)

Q = localQks[-1]@Q

localQks.pop ()
Start iterating through the tr

for k in range(ceil (log(size))-1
print ("k: ", k)
color = rank% (2x+*k)

key rank// (2+xk)
comm_branch comm.Split (col
rank_branch
print ("Rank: ",
1f(== 0):

rank, colo

color

.12395086, -0
.1295881 , O
.2767968 , O
.57720763, O
.10403036, -0
.44733808, -0
.06829868, -0
.15636688, -0
.67210808, -0
.52326045, 0
.00751925, O
.69239065, O
.28401417, 0
5112658 , -0
, 0.
.02090665, O
.4979796 , O
63926928, -0
, -0
.56732363, O
.14240074, -0.
.3541964 , -0.
.46022571, -0.
.43596128,
.30561576,
.5086393 , -0.
0442565 , O

ee backwards

comm_branch.Get_rank ()

0.
0.

.2642144¢6]7,
.140871497,
.1792065411)

.1853745

.44320608
.12684962
.15861903

]I
]V
]I
.3914781 1,
.047478021,
245414947,
.2147964611)
.02927876,
.52490052],
.12163304],
4044181 1,
.2134814 1,
.28838292]
.08516055]
]

.56635344]1])

’

.31356566,
43464687]
10517748]
366661147,
001084027,
]
]
]

’

’

04499375
216218667,
.4018560511])

I

’ 71! 71):
or = color, key = key)
r: ", color, " new rank:

We scatter the columns of the Q we have

Qrows np.empty ((n,n),
comm_branch.Scatterv (Q,
Local multiplication
print ("size of Qrows: ",
Qlocal localQks[-1]@Qr

print ("size of Qlocal: "

dtype
Qrows,

ldl)
root

Qrows.shape)
ows

0)

, Qlocal.shape)

0.707419447,

-0.29897038]7,

0.67477033]1,

", rank_branch)

localQks.pop ()

Gather
Q = comm_branch.gather (Qlocal, root = 0)
if rank ==

Q = np.concatenate(Q, axis = 0)

print (Q.shape)
comm_branch.Free ()

getQexplicitly (localQks, comm)

