EPFL

HPC for numerical methods and data analysis
Fall Semester 202
Prof. Laura Grigori

Assistant: Mariana Martinez Aguilar

Session 4 — October 1st, 2024

QR Factorization

Exercise I Splitting communicators

In the previous exercise we splat the matrix in either columns or rows. But we can split such matrix
into blocks as well using the comm.sp1it function on MPI. It splits the communicator by color and
key.

Every process gets a color (a parameter) depending on which communicator they will be. Same
color process will end up on the same communicator. In other words, color controls the subset
assignment, processes with the same color belong to the same new communicator.

The key parameter is an indication of the rank each process will get on the new communicator. The
process with the lowest key value will get rank 0, the process with the second lowest will get rank
1, and so on. By default, if you don’t care about the order of the processes, you can simply pass
their rank in the original communicator as key, this way, the processes will retain the same order.
In other words, key controls the rank assignment.

Run the following script on 4 processors, how is the communicator being split? What is the difference
between new_comm0, new_comml and new_comm2? In this case, what is key doing?

-
from mpid4py import MPI

import numpy as np
Testing what comm.Split () does

Initialize MPI (world)
comm = MPI.COMM_WORLD
rank = comm.Get_rank ()
size = comm.Get_size ()

Defining the subset assignment
if rank == 0:

color0 = 0
else:

color0 1
if rank%2 == 0:
colorl = 0
else:
colorl =1
if int (rank/2) == O0:
color2 = 0
else:
color2 =1
new_commO = comm.Split (color = color0)
new_rank0 = new_commO.Get_rank ()
new_size0 = new_commO.Get_size ()
new_comml = comm.Split (color = colorl, key
new_rankl = new_comml.Get_rank ()
new_sizel = new_comml.Get_size ()
new_comm?2 = comm.Split (color = color2, key
new_rank?2 = new_comm2.Get_rank ()
new_size2 = new_comm2.Get_size ()
print ("Original rank: ", rank,
" colorO: ", coloroO,
" new rankO: ", new_rankO,
" colorl: ", colorl,
" new rankl: ", new_rankl,
" color2: ", color2,
" new rank2: ", new_rank2)

rank)

rank)

Solution:

The following diagrams might be helpful to understand how the splitting is done.

Fank cutsos group: 1 Rank cutsaa group: 1

Fank cutsde group: 2 Fank cutsde groug: 3

(a) Splitting done in new comm1

(b) Splitting done in new comm?2

Exercise II Getting submatrices

Suppose that you are given a matrix A € R?"*?"_for n € N:

(40 Ay
=l)

where Ay € R™*". Write a Python script using MPI such that:

e In the root process it defines a matrix A € R?®*?? with n the number of processors.

e Using comm.Split and comm.Scatter distributes the matrix into 4 square sub-blocks by first
splitting the matrix into columns and then splitting those columns into rows.

e Prints the sub-blocks in the correct sub-communicator.

Hint: if we want to distribute a matrix A € R™*™ first by columns and then by rows, we would need
to split the communicator twice. Is there another way of doing this?

Solution: the code that does what was described is the following. Notice that there might be a lot
of different ways to obtain the same result.

-
from mpidpy import MPI

import numpy as np
Testing what comm.Split () does

Initialize MPI (world)
comm = MPI.COMM_WORLD
rank = comm.Get_rank ()
size = comm.Get_size ()

Define the matrix
n_blocks = 2

n = size

npr = 2

matrix = None
matrix_transpose = None

if rank%npr == 0:
matrix = np.arange(l, n*n + 1, 1, dtype=int)
matrix = np.reshape (matrix, (n,n))
arrs = np.split(matrix, n, axis=1)
raveled = [np.ravel (arr) for arr in arrs]
matrix_transpose = np.concatenate (raveled)

print (matrix)

comm_cols = comm.Split (color = rank/npr, key = rank%npr)
comm_rows = comm.Split (color = rank%npr, key = rank/npr)

Get ranks of subcommunicator
rank_cols = comm_cols.Get_rank ()
rank_rows

comm_rows .Get_rank ()

Select columns
submatrix = np.empty((n-blocks, n), dtype = 'int')

Then we scatter the columns and put them in the right order
receiveMat = np.empty((n.blocksxn), dtype = 'int')
comm_cols.Scatterv(matrix_transpose, receiveMat, root = 0)
subArrs = np.split (receiveMat, n-blocks)

raveled = [np.ravel (arr, order='F') for arr in subArrs]
submatrix = np.ravel (raveled, order = 'F')

Then we scatter the rows

blockMatrix = np.empty((n-blocks, n_blocks), dtype = 'int')
comm_rows.Scatterv (submatrix, blockMatrix, root = 0)
print ("Original rank: ", rank,
" rank in splitrows: ", rank_rows, " rank in splitcols: ", rank_cols,
"submatrix after scattering columns: ", submatrix,

"block matrix: ", blockMatrix, "\n\n")

The following diagram explains what the code is doing.

Al.?

AZ.?

Rank cutsde group: 0

Rank cutsde group: 2

J

Rank cutsde group: 0

Rank cutsde group: 2

0

Al.?

Rank cutsde group: 1

' Rankcusdegroup:3 |

Group split
rows B

|
Rank cutsde group: 0

0

Group split
cols A

(0 1

Rank cutsde group: |

T Rank cutsde group: 0

Rank cutsde group: 3

Rank cutsde group: 2

0

Rank cutsde group: 1

Rank cutsde group: 3

Rank cutsde group: 2

Rank cutsde group: 1

—i

Fank cutsde group: 3

Exercise III 2D distribution for matrix vector multiplication

Consider a matrix A € R"*". We can write this matrix as blocks:

AlJ AJQ e <A1m

1411 1412 e jizp
- ;

Ap,l Ap,2 s Ap,p

where p < n. With this notation, not all blocks necessarily have the same dimensions. Then we
can write the block version of the matrix-vector multiplication:

Arp Arg ..o Al [b A1,
Ap1 Ago ... Agp| |2 > b1 A2 gk
y=Ax=| . .) L= .
P
Ap1i Ap2 . Appl Lzp Zk:l Ap kT

First let p = 2n where n is the number of processors being used. With your answer from the
previous exercise, write a Python script such that:

e In the root process defines the matrix A and the vector z

e Using comm.split distributes the blocks of both the matrix and the vector accordingly, the
matrix should be split first by columns and then into rows (like on the previous exercise)

e Computes the matrix-vector multiplication using broadcast, scatter, and/or reduction, both
on a subset of processors (this is a 2D blocked layout for matrix-vector multiplication)

Solution: the following code solves the problem (even though there are different ways of achieving
this). Notice that we also compare our result to the one given by numpy.

from mpidpy import MPI
import numpy as np

2D distribution for matrix-vector multiplication

Initialize MPI (world)
comm = MPI.COMM_WORLD
rank = comm.Get_rank ()
size = comm.Get_size ()

Define the matrix
n_blocks = 4

n = sizex2

npr = 2

matrix = None
matrix_transpose = None
x = None

y = None

sol = None

if rank%npr ==

matrix = np.arange(l, nxn + 1, 1, dtype=int)
matrix = np.reshape (matrix, (n,n))

arrs = np.split(matrix, n, axis=1)

raveled = [np.ravel (arr) for arr in arrs]

matrix_transpose = np.concatenate (raveled)
x = np.arange(l, n+l, 1, dtype = int)

x = np.reshape(x, (n,1))

sol = np.empty((n,1l), dtype = int)

comm_cols = comm.Split (color = rank/npr, key = rank%npr)
comm_rows = comm.Split (color = rank%npr, key = rank/npr)

Get ranks of subcommunicator
rank_cols = comm_cols.Get_rank ()
rank_rows = comm.rows.Get_rank ()

DISTRIBUTE THE MATRIX
Select columns
submatrix = np.empty((n-blocks, n), dtype = 'int")

Then we scatter the columns and put them in the right order
receiveMat = np.empty((n.blocksxn), dtype = 'int')
comm_cols.Scatterv (matrix_transpose, receiveMat, root = 0)
subArrs = np.split (receiveMat, n_blocks)

raveled = [np.ravel (arr, order='F') for arr in subArrs]
submatrix = np.ravel (raveled, order = 'F'")

Then we scatter the rows
blockMatrix = np.empty((n-blocks, n-blocks), dtype = 'int')
comm_rows.Scatterv (submatrix, blockMatrix, root = 0)

DISTRIBUTE X USING COLUMNS
x_pblock = np.empty((nblocks, 1), dtype = 'int'")
comm_cols.Scatterv(x, x_block, root = 0)

Multiply in place each block matrix with each x_block
localmult = blockMatrix@x_block

Now sum those local multiplications along rows
rowmult = np.empty((n.blocks, 1), dtype = 'int')
comm_cols.Reduce(localmult, rowmult, op = MPI.SUM, root = 0)

Now we gather all of this on the root process of the original comm
if rank_cols == 0:

comm_rows .Gather (rowmult, sol, root = 0)

Print in the root process

if (rank == 0):
print ("Solution with MPI: ", np.transpose(sol),
"Solution with Python: ", np.transpose (matrix@x))

Exercise IV: Reminder of QR

If we recall what a QR factorization is, given a matrix W € R™*" with m > n, its QR factorization
is

w=qr=[a Q[j] - ok

where @@ € R™*" orthogonal and R € R™*™ upper triangular. Note that W can be seen as a map
W :R" - R™.

a)

Using this factorization, state an orthonormal basis for the span of W and one for the nullspace
of W. Solution: an orthonormal basis is given by the columns of () while an orthonormal
basis is given by the columns of Q).

Consider the code below, it computes Q without using MPI. Try running the code with the
two matrices defined. Do you notice any problems with CGS here? What could be improved
when building the projector P? Compute ||[I — QT Q|, (W), and x(Q). State the time it
takes for this code to run. Compare this implementation with numpy’s QR function. What
would happen if we just use Python’s built in matrix-matrix/vector multiply e instead of the
user-defined matrixvVectorMultiply and matrixMatrixMultiply?

import numpy as np

from numpy.linalg import norm
import time

import matplotlib.pyplot as plt

Non paralell implementation of QR algorithm (just get Q)
def matrixVectorMultiply (A, x):

Serial implementation of matrix vector multiply

T

m = A.shape[0]

y = np.zeros((m,), dtype = 'd'")
for 1 in range(m) :
y[i] = A[i, :]@x

return y

def matrixMatrixMultiply (A, B):
L]
Computes the product C = A@B with outer
product summation
L]
m = A.shape[0]
n = A.shape[l]
p = B.shapel[l]

C = np.zeros((m, p), dtype = 'd'")
for i in range(n):
C += Al:, 1]@B[i, :]

return C
wt = time.time () # We are going to time this

Define the matrix
TEST1: MATRIX1

size = 4

m = 50xsize

n = 20xsize

W = np.arange(l, m*n + 1, 1, dtype = 'd'")
W = np.reshape (W, (m, n))

W =W + np.eye(m, n) # Make this full rank
TEST2: MATRIX2

m =4

n =3

ep = le-12

W = np.array([[1, 1, 01, [0,
= np.eye(m, m, dtype =

np.zeros ((m,n), dtype =

11, T[ep, O,
le)
ldv)

ep,

0O H
|

First column
gk = W[:, 0]

gk = gk/norm(gk)
Ql:, 0] = gk

Start itarating through the columns of W

for k in range(l, n):
Build the projector
Is there a better way of defining this projector?
P =1 - Q@Q.T
gk = matrixVectorMultiply (P,
gk = gk/norm(gk) # Normalize
Ql:, k] = gk

Wl:, k]) # project

wt = time.time () - wt
#print (Q)

print ("Time taken: ", wt)
wt = time.time ()
QO_true, R_true = np.linalg.gr (W)
wt = time.time () - wt

print ("Time with numpy's QR: ", wt)

We see the loss in orthogonality

loss_orth = np.empty((n,))

for k in range(l,n+1l):
loss_orth[k-1] = norm(np.eye(k) - Q[:, 0:k].T@Q[:, 0:k], 'fro'

plt.figure()

plt.loglog(range(l,n+l), loss_orth)

plt.title("Loss in orthogonality, Frobenius norm")

plt.xlabel ("k")

plt.ylabel("$\| I - o_{k} " {T}o_{k} \|-{F}s")

plt.show ()

)

J

Solution: What could be improved when building the projector P is not using the whole
() matrix on each iteration. Notice that before reaching the last iteration, the last columns
of this matrix are just zeros. We could just use the non zero columns when computing the
projector. Python’s built-in matrix-matrix/vector multiply will make our code faster since it

uses optimized run times.

Exercise V: CGS and MPI

Pio1=1-Q;1Q/ ;.

Consider the script given above. Which parts could benefit from using MPI? Which information
do you need to scatter/broadcast? In this section we are going to implement CGS, this means that
for every g we need to define the following projector:

Notice that because of this, every time we want to project a column of W, W} we need one syn-
chronization. Take this into consideration for your code. There are different ways of implementing
this, below is a rough sketch you could use to guide yourself. Using different values for m and n,
compute ||[I — QT Q|, x(W), and x(Q). State the time it takes for this code to run. Compute the
speedup and compare the computation time with numpy’s QR function.

Solution: the script would be the following. Notice that it is still slower than numpy’s QR
decomposition. What could be improved?

e
from mpidpy import MPI

import numpy as np
from numpy.linalg import norm

CSG

Initialize MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank ()

size = comm.Get_size ()

wt = MPI.Wtime () # We are going to time this

m = 50xsize
n = 10xsize
local_size = int (m/size)
Define
W = None
Q = None
R = None
Qkreceived = None
QT = None
P = None
if rank == 0:
W = np.arange(l, m*n + 1, 1, dtype = 'd'")

W = np.reshape (W, (m, n))
W =W + np.eye(m, n) # Make this full rank

Q = np.zeros((m,n), dtype = 'd")

QT = np.zeros((n,m), dtype = 'd'")
Qkreceived = np.zeros((m, 1), dtype = 'd'")
R = np.zeros((n,n), dtype = 'd'")

P = np.eye(m, m, dtype = 'd")

In here: we first build Q and then we build R

W_-local = np.zeros((local_size, n), dtype = 'd'")
g-local = np.zeros((local_size, 1), dtype = 'd")
QT_local = np.zeros((local_size, m), dtype = 'd')
P_local = np.zeros((local_size, m), dtype = 'd'")
W_local = comm.bcast (W, root = 0)
comm.Scatterv (P, P_local, root = 0)

For the first column
g-local = P_local@W_-locall[:, 0]

Normalize
comm.Gather (g-local, Qkreceived, root = 0)

10

if(rank == 0):
col = Qkreceived[:, 0]/norm(Qkreceived)
Ql[:, 0] = col
QT[0, :] = col
comm.Barrier ()
comm.Scatterv (QT, QT_local, root = 0) # We have COLUMNS of Q (or rows of Qt)
Start interating in the columns

for k in range(l, n):
We've already built column 0 so we move to column 1
First: we must build the projector P, using SUMMA
localMult = 1/size*np.eye(m,m) — np.transpose (QT_local)@QT_local
comm.Reduce (localMult, P, op = MPI.SUM, root = 0) # Projector
comm.Scatterv (P, P_local, root = 0) # scatter rows of projector
g-local = P_local@W_locall:, k]
Normalize

comm.Gather (g-local, Qkreceived, root = 0)
if (rank == 0):
col = Qkreceived[:, 0]/norm(Qkreceived)
Ql[:, k] = col

QT [k, :] = col
comm.Barrier ()
comm.Scatterv (QT, QT_local, root = 0)

Compute R as R = QtA

W_rows = np.zeros((local_size, n), dtype = 'd'")
Q-local = np.zeros((local_size, n), dtype = 'd")
comm.Scatterv (W, W_rows, root = 0)
comm.Scatterv(Q, Q_local, root = 0)

localMult_ R = np.transpose(Q_-local)@W_rows
comm.Reduce (localMult_R, R, op = MPI.SUM, root = 0)

Print in rank = 0
if(rank == 0):
wt = MPI.Wtime () - wt
print ("Size of W: ", W.shape)

(
print ("Orthogonality of Q: ", norm(np.eye(n) — np.transpose (Q)Q@Q))
print ("Q: \n", Q.shape)
print ("R: \n", R.shape)

(

print ("Time taken: ", wt)

11

