
HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Mart́ınez Aguilar

Session 4 – October 1st, 2024

QR Factorization

Exercise I Splitting communicators

In the previous exercise we splat the matrix in either columns or rows. But we can split such matrix
into blocks as well using the comm.Split function on MPI. It splits the communicator by color and
key.

Every process gets a color (a parameter) depending on which communicator they will be. Same
color process will end up on the same communicator. In other words, color controls the subset
assignment, processes with the same color belong to the same new communicator.

The key parameter is an indication of the rank each process will get on the new communicator. The
process with the lowest key value will get rank 0, the process with the second lowest will get rank
1, and so on. By default, if you don’t care about the order of the processes, you can simply pass
their rank in the original communicator as key, this way, the processes will retain the same order.
In other words, key controls the rank assignment.

Run the following script on 4 processors, how is the communicator being split? What is the difference
between new comm0, new comm1 and new comm2? In this case, what is key doing?

�
from mpi4py import MPI
import numpy as np

# Testing what comm.Split() does

# Initialize MPI (world)
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

# Defining the subset assignment
if rank == 0:

color0 = 0
else:
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color0 = 1
if rank%2 == 0:

color1 = 0
else:

color1 = 1
if int(rank/2) == 0:

color2 = 0
else:

color2 = 1

new comm0 = comm.Split(color = color0)
new rank0 = new comm0.Get rank()
new size0 = new comm0.Get size()

new comm1 = comm.Split(color = color1, key = rank)
new rank1 = new comm1.Get rank()
new size1 = new comm1.Get size()

new comm2 = comm.Split(color = color2, key = rank)
new rank2 = new comm2.Get rank()
new size2 = new comm2.Get size()

print("Original rank: ", rank,
" color0: ", color0,
" new rank0: ", new rank0,
" color1: ", color1,
" new rank1: ", new rank1,
" color2: ", color2,
" new rank2: ", new rank2)� �

Solution: The following diagrams might be helpful to understand how the splitting is done.
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(a) Splitting done in new comm1

(b) Splitting done in new comm2

Exercise II Getting submatrices

Suppose that you are given a matrix A ∈ R2n×2n, for n ∈ N:

A =

[
A0 A1

A2 A3

]
,

where Ak ∈ Rn×n. Write a Python script using MPI such that:

• In the root process it defines a matrix A ∈ R2n×2n, with n the number of processors.

• Using comm.Split and comm.Scatter distributes the matrix into 4 square sub-blocks by first
splitting the matrix into columns and then splitting those columns into rows.

• Prints the sub-blocks in the correct sub-communicator.

Hint: if we want to distribute a matrix A ∈ Rm×n first by columns and then by rows, we would need
to split the communicator twice. Is there another way of doing this?

Solution: the code that does what was described is the following. Notice that there might be a lot
of different ways to obtain the same result.
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�
from mpi4py import MPI
import numpy as np

# Testing what comm.Split() does

# Initialize MPI (world)
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

# Define the matrix
n blocks = 2
n = size
npr = 2

matrix = None
matrix transpose = None

if rank%npr == 0:
matrix = np.arange(1, n*n + 1, 1, dtype=int)
matrix = np.reshape(matrix, (n,n))
arrs = np.split(matrix, n, axis=1)
raveled = [np.ravel(arr) for arr in arrs]
matrix transpose = np.concatenate(raveled)
print(matrix)

comm cols = comm.Split(color = rank/npr, key = rank%npr)
comm rows = comm.Split(color = rank%npr, key = rank/npr)

# Get ranks of subcommunicator
rank cols = comm cols.Get rank()
rank rows = comm rows.Get rank()

# Select columns
submatrix = np.empty((n blocks, n), dtype = 'int')

# Then we scatter the columns and put them in the right order
receiveMat = np.empty((n blocks*n), dtype = 'int')
comm cols.Scatterv(matrix transpose, receiveMat, root = 0)
subArrs = np.split(receiveMat, n blocks)
raveled = [np.ravel(arr, order='F') for arr in subArrs]
submatrix = np.ravel(raveled, order = 'F')

# Then we scatter the rows
blockMatrix = np.empty((n blocks, n blocks), dtype = 'int')
comm rows.Scatterv(submatrix, blockMatrix, root = 0)

print("Original rank: ", rank,
" rank in splitrows: ", rank rows, " rank in splitcols: ", rank cols,
"submatrix after scattering columns: ", submatrix,
"block matrix: ", blockMatrix, "\n\n")� �

The following diagram explains what the code is doing.
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Exercise III 2D distribution for matrix vector multiplication
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Consider a matrix A ∈ Rn×n. We can write this matrix as blocks:

A =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
...

. . .
...

Ap,1 Ap,2 . . . Ap,p

 ,

where p ≤ n. With this notation, not all blocks necessarily have the same dimensions. Then we
can write the block version of the matrix-vector multiplication:

y = Ax =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
...

. . .
...

Ap,1 Ap,2 . . . Ap,p



x1
x2
...
xp

 =


∑p

k=1A1,kxk∑p
k=1A2,kxk

...∑p
k=1Ap,kxk

 .

First let p = 2n where n is the number of processors being used. With your answer from the
previous exercise, write a Python script such that:

• In the root process defines the matrix A and the vector x

• Using comm.Split distributes the blocks of both the matrix and the vector accordingly, the
matrix should be split first by columns and then into rows (like on the previous exercise)

• Computes the matrix-vector multiplication using broadcast, scatter, and/or reduction, both
on a subset of processors (this is a 2D blocked layout for matrix-vector multiplication)

Solution: the following code solves the problem (even though there are different ways of achieving
this). Notice that we also compare our result to the one given by numpy.

�
from mpi4py import MPI
import numpy as np

# 2D distribution for matrix−vector multiplication

# Initialize MPI (world)
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

# Define the matrix
n blocks = 4
n = size*2
npr = 2
matrix = None
matrix transpose = None
x = None
y = None
sol = None

if rank%npr == 0:
matrix = np.arange(1, n*n + 1, 1, dtype=int)
matrix = np.reshape(matrix, (n,n))
arrs = np.split(matrix, n, axis=1)
raveled = [np.ravel(arr) for arr in arrs]
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matrix transpose = np.concatenate(raveled)
x = np.arange(1, n+1, 1, dtype = int)
x = np.reshape(x, (n,1) )
sol = np.empty((n,1), dtype = int)

comm cols = comm.Split(color = rank/npr, key = rank%npr)
comm rows = comm.Split(color = rank%npr, key = rank/npr)

# Get ranks of subcommunicator
rank cols = comm cols.Get rank()
rank rows = comm rows.Get rank()

### DISTRIBUTE THE MATRIX
# Select columns
submatrix = np.empty((n blocks, n), dtype = 'int')

# Then we scatter the columns and put them in the right order
receiveMat = np.empty((n blocks*n), dtype = 'int')
comm cols.Scatterv(matrix transpose, receiveMat, root = 0)
subArrs = np.split(receiveMat, n blocks)
raveled = [np.ravel(arr, order='F') for arr in subArrs]
submatrix = np.ravel(raveled, order = 'F')

# Then we scatter the rows
blockMatrix = np.empty((n blocks, n blocks), dtype = 'int')
comm rows.Scatterv(submatrix, blockMatrix, root = 0)

### DISTRIBUTE X USING COLUMNS
x block = np.empty((n blocks, 1), dtype = 'int')
comm cols.Scatterv(x, x block, root = 0)

# Multiply in place each block matrix with each x block
local mult = blockMatrix@x block

# Now sum those local multiplications along rows
rowmult = np.empty((n blocks, 1), dtype = 'int')
comm cols.Reduce(local mult, rowmult, op = MPI.SUM, root = 0)

# # Now we gather all of this on the root process of the original comm
if rank cols == 0:

comm rows.Gather(rowmult, sol, root = 0)

# Print in the root process
if(rank == 0):

print("Solution with MPI: ", np.transpose(sol),
"Solution with Python: ", np.transpose(matrix@x))� �

Exercise IV: Reminder of QR

If we recall what a QR factorization is, given a matrix W ∈ Rm×n, with m ≥ n, its QR factorization
is

W = QR =
[
Q̃ Q̄

] [R̃
0

]
= Q̃R̃,

where Q ∈ Rm×n orthogonal and R ∈ Rm×n upper triangular. Note that W can be seen as a map
W : Rn → Rm.
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a) Using this factorization, state an orthonormal basis for the span ofW and one for the nullspace
of W . Solution: an orthonormal basis is given by the columns of Q̃ while an orthonormal
basis is given by the columns of Q̄.

b) Consider the code below, it computes Q̃ without using MPI. Try running the code with the
two matrices defined. Do you notice any problems with CGS here? What could be improved
when building the projector P? Compute ∥I − Q̃⊤Q̃∥, κ(W ), and κ(Q̃). State the time it
takes for this code to run. Compare this implementation with numpy’s QR function. What
would happen if we just use Python’s built in matrix-matrix/vector multiply @ instead of the
user-defined matrixVectorMultiply and matrixMatrixMultiply?

�
import numpy as np
from numpy.linalg import norm
import time
import matplotlib.pyplot as plt

# Non paralell implementation of QR algorithm (just get Q)

def matrixVectorMultiply(A, x):
'''
Serial implementation of matrix vector multiply
'''
m = A.shape[0]
y = np.zeros((m,), dtype = 'd')
for i in range(m):

y[i] = A[i, :]@x
return y

def matrixMatrixMultiply(A, B):
'''
Computes the product C = A@B with outer
product summation
'''
m = A.shape[0]
n = A.shape[1]
p = B.shape[1]
C = np.zeros((m, p), dtype = 'd')
for i in range(n):

C += A[:, i]@B[i, :]
return C

wt = time.time() # We are going to time this

# Define the matrix
## TEST1: MATRIX1
size = 4
m = 50*size
n = 20*size
W = np.arange(1, m*n + 1, 1, dtype = 'd')
W = np.reshape(W, (m, n))
W = W + np.eye(m, n) # Make this full rank
# ## TEST2: MATRIX2
# m = 4
# n = 3
# ep = 1e−12
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# W = np.array([[1, 1, 1], [ep, 0, 0], [0, ep, 0], [0, 0, ep]])
I = np.eye(m, m, dtype = 'd')
Q = np.zeros((m,n), dtype = 'd')

# First column
qk = W[:, 0]
qk = qk/norm(qk)
Q[:, 0] = qk

# Start itarating through the columns of W
for k in range(1, n):

## Build the projector
# Is there a better way of defining this projector?
P = I − Q@Q.T
qk = matrixVectorMultiply(P, W[:, k]) # project
qk = qk/norm(qk) # Normalize
Q[:, k] = qk

wt = time.time() − wt
#print(Q)
print("Time taken: ", wt)

wt = time.time()
Q true, R true = np.linalg.qr(W)
wt = time.time() − wt
print("Time with numpy's QR: ", wt)

# We see the loss in orthogonality
loss orth = np.empty((n, ))
for k in range(1,n+1):

loss orth[k−1] = norm( np.eye(k) − Q[:, 0:k].T@Q[:, 0:k], 'fro' )

plt.figure()
plt.loglog(range(1,n+1), loss orth)
plt.title("Loss in orthogonality, Frobenius norm")
plt.xlabel("k")
plt.ylabel("$\ | I − Q {k}ˆ{T}Q {k} \ | {F}$")

plt.show()� �
Solution: What could be improved when building the projector P is not using the whole
Q matrix on each iteration. Notice that before reaching the last iteration, the last columns
of this matrix are just zeros. We could just use the non zero columns when computing the
projector. Python’s built-in matrix-matrix/vector multiply will make our code faster since it
uses optimized run times.

Exercise V: CGS and MPI

Consider the script given above. Which parts could benefit from using MPI? Which information
do you need to scatter/broadcast? In this section we are going to implement CGS, this means that
for every qk we need to define the following projector:

Pj−1 = I − Q̃j−1Q̃
⊤
j−1.
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Notice that because of this, every time we want to project a column of W , Wk we need one syn-
chronization. Take this into consideration for your code. There are different ways of implementing
this, below is a rough sketch you could use to guide yourself. Using different values for m and n,
compute ∥I − Q̃⊤Q̃∥, κ(W ), and κ(Q̃). State the time it takes for this code to run. Compute the
speedup and compare the computation time with numpy’s QR function.

Solution: the script would be the following. Notice that it is still slower than numpy’s QR
decomposition. What could be improved?

�
from mpi4py import MPI
import numpy as np
from numpy.linalg import norm

# CSG

# Initialize MPI
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

wt = MPI.Wtime() # We are going to time this

m = 50*size
n = 10*size
local size = int(m/size)

# Define
W = None
Q = None
R = None
Qkreceived = None
QT = None
P = None
if rank == 0:

W = np.arange(1, m*n + 1, 1, dtype = 'd')
W = np.reshape(W, (m, n))
W = W + np.eye(m, n) # Make this full rank
Q = np.zeros((m,n), dtype = 'd')
QT = np.zeros((n,m), dtype = 'd')
Qkreceived = np.zeros((m, 1), dtype = 'd')
R = np.zeros((n,n), dtype = 'd')
P = np.eye( m, m, dtype = 'd')

# In here: we first build Q and then we build R
W local = np.zeros((local size, n), dtype = 'd')
q local = np.zeros((local size, 1), dtype = 'd')
QT local = np.zeros((local size, m), dtype = 'd')
P local = np.zeros((local size, m), dtype = 'd')
W local = comm.bcast(W, root = 0)
comm.Scatterv(P, P local, root = 0)

# For the first column
q local = P local@W local[:, 0]

# Normalize
comm.Gather(q local, Qkreceived, root = 0)
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if( rank == 0):
col = Qkreceived[:, 0]/norm(Qkreceived)
Q[:, 0] = col
QT[0, :] = col

comm.Barrier()
comm.Scatterv(QT, QT local, root = 0) # We have COLUMNS of Q (or rows of Qt)
# Start interating in the columns

for k in range(1, n):
# We've already built column 0 so we move to column 1
# First: we must build the projector P, using SUMMA
localMult = 1/size*np.eye(m,m) − np.transpose(QT local)@QT local
comm.Reduce(localMult, P, op = MPI.SUM, root = 0) # Projector
comm.Scatterv(P, P local, root = 0) # scatter rows of projector
q local = P local@W local[:, k]
# Normalize
comm.Gather(q local, Qkreceived, root = 0)
if(rank == 0):

col = Qkreceived[:, 0]/norm(Qkreceived)
Q[:, k] = col
QT[k, :] = col

comm.Barrier()
comm.Scatterv(QT, QT local, root = 0)

# Compute R as R = QtA
W rows = np.zeros((local size, n), dtype = 'd')
Q local = np.zeros((local size, n), dtype = 'd')
comm.Scatterv(W, W rows, root = 0)
comm.Scatterv(Q, Q local, root = 0)
localMult R = np.transpose(Q local)@W rows
comm.Reduce(localMult R, R, op = MPI.SUM, root = 0)

# Print in rank = 0
if( rank == 0):

wt = MPI.Wtime() − wt
print("Size of W: ", W.shape)
print("Orthogonality of Q: ", norm(np.eye(n) − np.transpose(Q)@Q))
print("Q: \n", Q.shape)
print("R: \n", R.shape)
print("Time taken: ", wt)� �
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