=PrL

HPC for numerical methods and data analysis
Fall Semester 2024
Prof. Laura Grigori

Assistant: Mariana Martinez Aguilar

Session 3 — October 3, 2023

Dense linear algebra and MPI

Exercise I Collective communication - all-to-all and reduce

e Run the following code on 4 processors:
from mpid4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size ()

rank = comm.Get_rank ()

senddata = rankxnp.ones(size, dtype = int)

recvdata = comm.alltoall (senddata)

print (" process ", rank, " sending ", senddata, " receiving ", recvdata)

e What is comm.alltoall doing? Compare it t0 comm.scatter.
e In this exercise we are going to use reduction operations on MPI. Run the following code on

4 processors:

from mpidpy import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size ()
rank = comm.Get_rank ()
senddata = rankxnp.ones(size, dtype = int)

global_resultl = comm.reduce (senddata, op = MPI.SUM, root = 0)
global_result2 = comm.reduce(rank, op = MPI.MAX, root = 0)

#Print
print (" process ", rank, " sending ", senddata)

#Print the result on the root process
if rank == 0:

print (" Reduction operationl: ", global_resultl,
"\n Reduction operation2: ", global_result2)

What is a reduction operation? What is the difference between this and comm.gather?

e In the previous code, change comm.reduce to comm.allreduce. What is the difference between
the two? (Note, comm.allreduce doesn’t use the argument root).

Solution: this can be found on last week’s solutions.

Exercise II Reminder of matrix vector multiplication in Python

Suppose that we want to compute the matrix-vector multiplication y = Az, where A € R™*" and
z,y € R™. If A® € R1¥™ is the i-th row of A then the entries of y can be written as inner products:

Al Alx

A2 A%y
y=Ax = T =

A" A"y

If A; denotes the i-th column of A then the matrix multiplication can be written as the weighted
sum of A’s columns:

x1

i) n
y:Agj:[Al Ay L. An] : :ZAszz

. i=1

Tn

Note that A; € R"*! and z; € R, thus A4;x; € R?*1L.

If we have p processors then we can distribute the columns/rows of A in such way that each
processor has n/p columns/rows. We call this one dimensional distribution. This is done with
comm. Scatterv. Then we use comm.Gatherv to gather data to one process from all other processes
in a group providing different amount of data and displacements at the receiving sides.

Consider the code below (also note that we are printing the time it takes for the code to execute):

-
from mpid4py import MPI

import numpy as np

Function to perform matrix-vector multiplication
def matrix_.vectormultiplication (matrix, vector):
result = matrix@vector
return result

Initialize MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank ()

size = comm.Get_size ()
wt = MPI.Wtime () # We are going to time this

Define the matrix and vector
cols = 4
rows = 8
num_rows_block = int (rows/size)

matrix = None
vector = None
Try changing dtype below to see what happens!

global_result = np.empty((rows, 1), dtype = 'int')
if rank == 0:
matrix = np.array([[1l, 2, 3, 4],
[5, 6, 7, 81,
[9, 10, 11, 121,
[13, 14, 15, 16],
(17, 18, 19, 201,
[21, 22, 23, 247,
[25, 26, 27, 28],
[29, 30, 31, 32]11])
vector = np.array([7, 8, 9, 10])

Define the buffer where we are going to receive the block of the matrix
submatrix = np.empty((num_.rows_block, cols), dtype='int')

Scatterv: Scatter Vector, scatter data from one process to all other

processes in a group providing different amount of data and displacements
at the sending side

comm.Scatterv (matrix, submatrix, root=0)

vector = comm.bcast (vector, root = 0)

Compute local multiplication
local_result = matrix_vectormultiplication (submatrix, vector)

Gather results on the root process

Gatherv: Gather Vector, gather data to one process from all
other processes in a group providing different amount of

data and displacements at the receiving sides

comm.Gatherv (local_result, global_result, root = 0)

Print the result on the root process

print (global_result)
"Time taken: ")
wt)

print
print

if rank == 0:

wt = MPI.Wtime () - wt
print ("Matrix:")
print (matrix)
print ("Vector:")
print (vector)
print ("Result:")

(

(

(

a) Is this script distributing A’s columns or rows? Solution: It distributes A’s rows.

b) If your previous answer was "rows” then write a Python script to compute the matrix mul-
tiplication Ax but distributing A’s columns on different processors. If your previous answer

was ”columns” then write a Python script to compute the matrix multiplication Az but
distributing A’s rows on different processors. Solution:

from mpidpy import MPI
import numpy as np

Function to perform matrix-vector multiplication
def matrix_.vectormultiplication (matrix, vector):
result = matrix@vector
return result

Initialize MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank ()
size = comm.Get_size ()

wt = MPI.Wtime () # We are going to time this

Define the matrix and vector

cols = 4
rows = 8
num_rows_block = int (rows/size)
num_cols_block = int (cols/size)
matrix = None
matrix_to_send = None
vector = None
Try changing dtype below to see what happens!
global_result = np.empty((rows, 1), dtype = 'int'")
if rank == 0:
matrix = np.array([[1, 2, 3, 4],

[
5 6, 7, 81,
9, 10, 11, 127,
13, 14, 15, 1le6],
17, 18, 19, 20],
21, 22, 23, 241,
25, 26, 27, 28],

[29, 30, 31, 3211)
There are several ways of sending the matrix in the
order you want. This is very important since Python
is row major!
arrs = np.split (matrix, size, axis=1)
raveled = [np.ravel (arr) for arr in arrs]
matrix_to_send = np.concatenate (raveled)
vector = np.array([7, 8, 9, 10])

Define the buffer where we are going to receive the block of the matrix
submatrix = np.empty((num_.cols_-block, rows), dtype = 'int')

local_vector = np.empty((num_.cols_block, 1), dtype = 'int')

Scatterv: Scatter Vector, scatter data from one process to all other

processes in a group providing different amount of data and displacements

at the sending side

comm.Scatterv (matrix_to_send, submatrix, root=0)

comm.Scatterv (vector, local_vector, root=0)

submatrix = np.transpose (submatrix)

print ("rank: ", rank, "submatrix: ", submatrix, " local vector: ", local_vector)

Compute local multiplication
local_result = matrix_vectormultiplication (submatrix, local_vector)

Gather results on the root process

Gatherv: Gather Vector, gather data to one process from all
other processes in a group providing different amount of
data and displacements at the receiving sides

comm.Reduce (local_result, global_result, op=MPI.SUM, root = 0)

4 oH o

Print the result on the root process

if rank ==
wt = MPI.Wtime () - wt
print ("Matrix:")
print (matrix_to_send)
print ("Vector:")
print (vector)
print ("Result:")
print (global_result)
print ("Result with numpy: ")
print (matrix@vector)
print ("Time taken to compute matrix vector multiplication: ")
print (wt)

Exercise III Deciding what to use - Mid point rule

Numerical integration describes a family of algorithms for calculating the value of definite integrals.
One of the simplest algorithms to do so is called the Mid Point Rule. Assume that f(x) is continous
on [a,b]. Let n be a positive integer and h = (b — a)/n. If [a,b] is divided into n subintervals,
{zo, 21, ..., Tp—_1}, then if m; = (z; + x;+1)/2 is the midpoint of the i-th subinterval, set:

M, =" f(mi)h.
=1

Then:

Thus, for a fixed n, we can approximate this integral as:

b n
/ fl@)dz =~ > f(mi)h
a i=1

Set n = s %500, f(x) = cos(z), a =0, b =m/2. Write a Python script such that:

e Defines a function that given z;, h,n first calculates 500 mid points on a subinterval [x;, z;11]
and returns the approximation of the integral on this subinterval.

e Using MPI approximates the integral of f on [a, b]
e Run your script on s processors

to approximate the integral of f.
Solution: this can be found on last week’s solutions.

