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Motivation: the communication wall

= Runtime of an algorithm is the sum of:

0 #flops x time_per_flop
U # words_moved / bandwidth
01 # messages x latency

® Time to move data >> time per flop
11 Gap steadily and exponentially growing over time
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The communication wall: compelling numbers

Time/flop 59% annual improvement up to 2004!
2008 Intel Nehalem 3.2GHzx4 cores (51.2 GFlops/socket) 1x
2020 A64FX 2.2GHzx 48 cores (3.37 TFlops/socket DP)?  66x in 12 years

DRAM latency: 5.5% annual improvement up to 2004*

DDR2 (2007) 120 ns 1x
DDR4 (2014) 45 ns 2.6x in 7 years
Stacked memory similar to DDR4

Network latency: 15% annual improvement up to 2004}

Interconnect: a few us MPI latency

1 “Getting up to speed, The future of supercomputing” 2004, data from 1995-2004
2 Fugaku supercomputer https://www.top500.org/systen/179807/
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Matrix distributions

Suppose each processor has enough memory to store 1/P-th of the data,
M = ©(n?/P)

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

b
3) 1D Column Block Cyclic Layout

0 1

Generalizes others

2 3

E
E

6) 2D Row and Column
Block Cyclic Layout

5) 2D Row and Column Blocked Layout
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Communication lower bounds

Problem:

= Given a machine with two levels of memory, a fast memory of size M and
a slow memory of infinite size

= Compute C = C + AB, where A € R™*" B € R"™", for each element,
C(i,Jj (i,J) + ZA B(k,J), (1)

= What is the lower bound on the number of transfers between the slow
and fast memory (number of reads and writes) ?
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Communication lower bounds

!

[U U vVwh-wl-hl = whl
I

A }LD | — Rectangular prism most efficient
shape for maximizing volume

(a) One lattice point and its projections  (b) Rectangular prism and its projections

Lemma 1 ([Loomis and Whitney, 1949])
V a finite set of lattice points (i, ], k) in R3,
Vi projection of V in x-direction: points (y,z) s.t. 3x’ and (x',y,z) € V

ditto for V), and V. Then:
[V < \/IVal [ Vy | Vel
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Lower bounds for matrix multiplication C = AB

mAc ]Rmxn7 Bc Rnxr,c € RmXr
L ]1U B |nstruction stream broken into segments
A hD [ m Each segment contains x loads and stores
w B M fast memory size
(a) One lattice point and its projections ~ (b) Rectangular prism and its projections

Using Lemma 1 and AM-GM inequality, bound total scalar multiplications per segment:

|vA\+|vB|+|vc|)3/2 < (M+X)3/2
3 - 3

V| < v/VallVal[Ve] s(

mnr mnr
= #loads/stores > x

()" (45)"

Fsegments >

or

—2M

mnr J 2mnr
>

#£loads/stores > 2M {W T
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Lower bounds for matrix multiplication C = AB

.(IL]) .............. b (i
=\l
I

(a) One lattice point and its projections  (b) Rectangular prism and its projections

Lower bound for volume of communication:

—2M

mnr 2mnr
|z

#loads /stores > 2M {7
M3/2 VM

® Bound attained by a block algorithm if min{m,n, k} > VM +1—1

® For square matrices, algorithm uses b x 1 blocks of A, 1 x b blocks of B
and b x b blocks of C, with b<vV/M+1-1

8of 16 1



Lower bounds for parallel algorithms

Memory dependent lower bounds
Compute C = AB on P processors, assume m = n = k:

3

2
PVM

W = #words_moved >

= 2D algorithms: M = ©(n?/P) — W = Q(n?/P/?)
= 3D algorithms: M = ©(n?/P?/3) — W = Q(n?/P?/3)
= 2.5D algorithms: M = ©(cn?/P) = W = Q(nz/(cP)1/2)
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SUMMA matrix multiplication

\/ 5 Cost of communication:
> —_— )
TR | ! | n n
| -0 —= -0 (—logP
( IB so(7)reo(ieer)
A B C

Require: A, B, C are n X n matrices in identical 2D block distribution across processors
Require: Processors arranged in v/P x /P grid where n; = n/\/P is an integer
Require: Proc (/,J) owns ny X ng submatrix My = M((I—=1)ng+1 : Ing, (J—1)ng+1 : Jny)
1: function C = SUMMA(C, A, B, b)

2: (1,J) = MyProclD()

3 for K =1 to vP do

4 for k =1to £ do

5: Proc (/, K) broadcasts Ak (:, (k—1)b+1:kb) to proc(l,:), store in Atmp
6: Proc (K, J) broadcasts By ((k—1)b+1:kb,:) to proc(:,J), store in Bimp
7 Ciy = Ciy + Atmp - Bimp

8: end for

9: end for
10: end function

Presentation from van de Geijn and Watts '96
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3D Parallel Matrix Multiplication

e K J I J JK
( m
1 A I K | I
K A B C
Figure: Proc(1,2,3) Figure: Initial distribution of A and B

Processors arranged in VP x VP x VP grid
A, B are n x n matrices in 2D block distribution across vP x (\3/ﬁ)2 processor grid where

ng = n/v/P and n, = n/(/P)? are integers
Processor (I, J, K) owns ng X np, submatrices

Ay = A (s, (J=1)np+1 : Jny)

By = Bky(:, (I=1)np+1: Inp)
Cuk = Cuy(:, (K=1)np+1: Knp)
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3D Parallel Matrix Multiplication

f A | T T
I A I K n y ] I
K ‘ A B C

Figure: Proc(1,2,3) Figure: All-gathers and local computation
Assert: C = C + AB is n x n matrix in 2D block distribution across processors so that
processor (1, J, K) owns Cjx
1: function C = 3D-MarmuL(C, A, B)
(1,4, K) = MyProcID()
All-gather A, across Proc(l,:, K), store in Ak
All-gather By across Proc(:, J, K), store in By,
Cuy=A Bk
Reduce-scatter C; across Proc(/,J,:), combine result with Cpk
end function

Nogkwdn
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3D Parallel Matrix Multiplication

v K i: . - T .
, A ) I K I ] i
P “ A T B C
Figure: Proc(1,2,3) Figure: Reduce-scatter to obtain final distribution of C

Assert: C = C + AB is n X n matrix in 2D block distribution across processors so that
processor (I, J, K) owns Cjjx
1: function C = 3D-MaTMUL(C, A, B)
2 (1,J,K) = MyProcID()
3 All-gather Ak across Proc(l,:, K), store in A
4 All-gather By across Proc(:, J, K), store in Bk
5: Cy=A Bk
6 Reduce-scatter C; across Proc(l,J,:), combine result with Cpyk
7: end function
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3D Parallel Matrix Multiplication

Communication cost

pP2/3

1 A n?
B~O(—) +a-O(logP)

K
Figure: Proc(1,2,3)

Assert: C = C + AB is n X n matrix in 2D block distribution across processors so that
processor (1, J, K) owns Cjk
1: function C = 3D-MATMUL(C, A, B)
2 (1,4, K) = MyProclD()
3 All-gather A, across Proc(l,:, K), store in Ak
4 All-gather By across Proc(:, J, K), store in Bk,
5: Cy=A Bky_
6 Reduce-scatter Cj; across Proc(l, J,:), combine result with Cjjx
7: end function

120f 16 1



Communication Complexity of Dense Linear Algebra

Matrix multiply, using 2n° flops (sequential or parallel)
® Hong-Kung (1981), Irony/Tishkin/Toledo (2004)

= Lower bound on Bandwidth = Q(# flops/M?/?)

= Lower bound on Latency = Q(#flops/M?3/?)

Same lower bounds apply to LU using reduction

= Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012

/ -B / / -B
A =|A | I AB
/ / /
And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]

also extended to fast linear algebra

13 of 16 1



2D Parallel algorithms and communication bounds

Memory per processor = ©(n?/P), lower bounds on communication:

#words_moved > Q(n?/V'P), #messages > Q(VP)

Most classical algorithms (ScaLAPACK) attain N R
lower bounds on #words_moved

but do not attain lower bounds on #messages
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lower bounds on #words_moved

but do not attain lower bounds on #messages

ScaLAPACK CA algorithms
LU partial pivoting tournament pivoting (TP)
[LG, Demmel, Xiang, 08]
QR column based reduction based Householder
Householder [Demmel, LG, Hoemmen, Langou, 08]
[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]
RRQR column pivoting tournament pivoting (TP)

[Demmel, LG, Gu, Xiang 13]
randomized QRCP +TP
[Martinsson, Voronin 15], [Duersch, Gu 15]
Eig(A) Hessenberg/QR alg [Ballard, Demmel, Dumitriu 10]

Only several references shown
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Conclusions

= Some of the methods discussed available in libraries

o LAPACK, ScalLAPACK, SLATE, Spark, GNU Scientific library, Cray
scientific library

= Material based on upcoming book on Communication-Avoiding
Algorithms, with G. Ballard, E. Carson, J. Demmel
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