Parallel matrix-matrix multiplication

HPC for numerical methods and data analysis Laura Grigori

EPFL and PSI

October 8, 2024

Plan

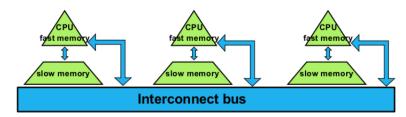
Motivation for reducing communication

Minimizing communication in dense linear algebra

Communication lower bounds with tight constants Rectangular matrix multiplication

Motivation: the communication wall

- Runtime of an algorithm is the sum of:
 - #flops x time_per_flop
 - # words_moved / bandwidth
 - □ # messages x latency
- Time to move data ≫ time per flop
 - $\hfill \Box$ Gap steadily and exponentially growing over time



The communication wall: compelling numbers

Time/flop 59% annual improvement up to 2004¹

2008 Intel Nehalem 3.2GHz \times 4 cores (51.2 GFlops/socket) 1x 2020 A64FX 2.2GHz \times 48 cores (3.37 TFlops/socket DP)² 66x in 12 years

DRAM latency: 5.5% annual improvement up to 2004¹

DDR2 (2007) 120 ns 1x
DDR4 (2014) 45 ns 2.6x in 7 years

Stacked memory similar to DDR4

Network latency: 15% annual improvement up to 2004¹

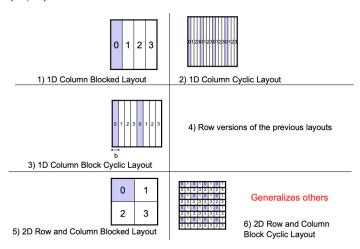
Interconnect: a few μs MPI latency

¹ "Getting up to speed, The future of supercomputing" 2004, data from 1995-2004

² Fugaku supercomputer https://www.top500.org/system/179807/

Matrix distributions

Suppose each processor has enough memory to store 1/P-th of the data, $M = \Theta(n^2/P)$



Communication lower bounds

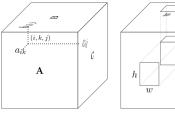
Problem:

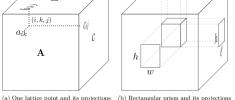
- Given a machine with two levels of memory, a fast memory of size M and a slow memory of infinite size
- Compute $\mathbf{C} = \mathbf{C} + \mathbf{A}\mathbf{B}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times r}$, for each element,

$$\mathbf{C}(i,j) = \mathbf{C}(i,j) + \sum_{k=1}^{n} \mathbf{A}(i,k) \cdot \mathbf{B}(k,j), \tag{1}$$

What is the lower bound on the number of transfers between the slow and fast memory (number of reads and writes)?

Communication lower bounds





$$\sqrt{wh \cdot w\ell \cdot h\ell} = wh\ell$$

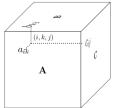
→ Rectangular prism most efficient shape for maximizing volume

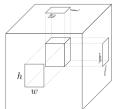
Lemma 1 ([Loomis and Whitney, 1949])

V a finite set of lattice points (i, j, k) in \mathbb{R}^3 , V_x projection of V in x-direction: points (y,z) s.t. $\exists x'$ and $(x',y,z) \in V$ ditto for V_v and V_z . Then:

$$|V| \leq \sqrt{|V_x||V_y||V_z|}.$$

Lower bounds for matrix multiplication C = AB





- $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times r}, \mathbf{C} \in \mathbb{R}^{m \times r}$
- Instruction stream broken into segments
- Each segment contains x loads and stores
- M fast memory size

(a) One lattice point and its projections $\;$ (b) Rectangular prism and its projections

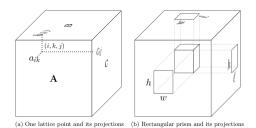
Using Lemma 1 and AM-GM inequality, bound total scalar multiplications per segment:

$$\begin{split} |V| & \leq \sqrt{|V_{\mathbf{A}}||V_{\mathbf{B}}||V_{\mathbf{C}}|} \leq \left(\frac{|V_{\mathbf{A}}| + |V_{\mathbf{B}}| + |V_{\mathbf{C}}|}{3}\right)^{3/2} \leq \left(\frac{M + x}{3}\right)^{3/2} \\ \# \textit{segments} & \geq \left\lfloor \frac{\textit{mnr}}{\left(\frac{M + x}{3}\right)^{3/2}} \right\rfloor \implies \# \textit{loads/stores} \geq x \left\lfloor \frac{\textit{mnr}}{\left(\frac{M + x}{3}\right)^{3/2}} \right\rfloor \end{split}$$

or

$$\#loads/stores \ge 2M \left\lfloor \frac{mnr}{M^{3/2}} \right\rfloor \ge \frac{2mnr}{\sqrt{M}} - 2M$$

Lower bounds for matrix multiplication C = AB



Lower bound for volume of communication:

$$\#loads/stores \ge 2M \left\lfloor \frac{mnr}{M^{3/2}} \right\rfloor \ge \frac{2mnr}{\sqrt{M}} - 2M$$

- Bound attained by a block algorithm if $\min\{m,n,k\} \geq \sqrt{M+1}-1$
- For square matrices, algorithm uses $b \times 1$ blocks of A, $1 \times b$ blocks of B and $b \times b$ blocks of C, with $b \le \sqrt{M+1}-1$

Lower bounds for parallel algorithms

Memory dependent lower bounds

Compute C = AB on P processors, assume m = n = k:

$$W = \#words_moved \ge \frac{2n^3}{P\sqrt{M}} - M$$

- 2D algorithms: $M = \Theta(n^2/P) \implies W = \Omega(n^2/P^{1/2})$
- 3D algorithms: $M = \Theta(n^2/P^{2/3}) \implies W = \Omega(n^2/P^{2/3})$
- 2.5D algorithms: $M = \Theta(cn^2/P) \implies W = \Omega(n^2/(cP)^{1/2})$

Lower bounds for parallel algorithms

Memory dependent lower bounds

Compute C = AB on P processors, assume m = n = k:

$$W = \#words_moved \ge \frac{2n^3}{P\sqrt{M}} - M$$

- 2D algorithms: $M = \Theta(n^2/P) \implies W = \Omega(n^2/P^{1/2})$
- 3D algorithms: $M = \Theta(n^2/P^{2/3}) \implies W = \Omega(n^2/P^{2/3})$
- 2.5D algorithms: $M = \Theta(cn^2/P) \implies W = \Omega(n^2/(cP)^{1/2})$

SUMMA matrix multiplication

Cost of communication:

$$\beta \cdot O\left(\frac{n^2}{\sqrt{P}}\right) + \alpha \cdot O\left(\frac{n}{b}\log P\right)$$

```
Require: A, B, C are n \times n matrices in identical 2D block distribution across processors
Require: Processors arranged in \sqrt{P} \times \sqrt{P} grid where n_{\ell} = n/\sqrt{P} is an integer
Require: Proc (I, J) owns n_{\ell} \times n_{\ell} submatrix M_{II} = M((I-1)n_{\ell}+1:In_{\ell},(J-1)n_{\ell}+1:Jn_{\ell})
1: function C = SUMMA(C, A, B, b)
2:
        (I, J) = MyProcID()
       for K=1 to \sqrt{P} do
              for k=1 to \frac{n_\ell}{k} do
4.
5.
                   Proc (I, K) broadcasts A_{IK}(:, (k-1)b+1:kb) to proc(I,:), store in A_{tmp}
6:
                   Proc (K, J) broadcasts B_{KJ}((k-1)b+1:kb, :) to proc(:, J), store in B_{tmp}
7:
                   C_{II} = C_{II} + A_{tmp} \cdot B_{tmp}
              end for
9:
         end for
10 end function
```

Presentation from van de Geijn and Watts '96

Figure: Proc(1,2,3)

Figure: Initial distribution of A and B

Processors arranged in $\sqrt[3]{P} \times \sqrt[3]{P} \times \sqrt[3]{P}$ grid A,B are $n \times n$ matrices in 2D block distribution across $\sqrt[3]{P} \times (\sqrt[3]{P})^2$ processor grid where $n_\ell = n/\sqrt[3]{P}$ and $n_b = n/(\sqrt[3]{P})^2$ are integers Processor (I,J,K) owns $n_\ell \times n_b$ submatrices

$$A_{IKJ} = A_{IK}(:, (J-1)n_b+1 : Jn_b)$$

$$B_{KJI} = B_{KJ}(:, (I-1)n_b+1 : In_b)$$

$$C_{IJK} = C_{IJ}(:, (K-1)n_b+1 : Kn_b)$$

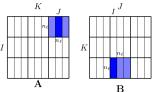


Figure: Proc(1,2,3)

Figure: All-gathers and local computation

Assert: C = C + AB is $n \times n$ matrix in 2D block distribution across processors so that processor (I, J, K) owns C_{IJK}

- 1: function C = 3D-MATMUL(C, A, B)
- 2: (I, J, K) = MyProcID()
- 3: All-gather A_{IKJ} across Proc(I, :, K), store in A_{IK}
- 4: All-gather B_{KJI} across Proc(:, J, K), store in B_{KJ}
- 5: $\overline{C}_{IJ} = A_{IK} \cdot B_{KJ}$
- 6: Reduce-scatter \overline{C}_{IJ} across Proc(I, J, :), combine result with C_{IJK}
- 7: end function

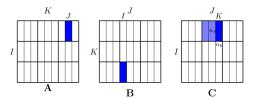


Figure: Proc(1,2,3)

Figure: Reduce-scatter to obtain final distribution of C

Assert: C = C + AB is $n \times n$ matrix in 2D block distribution across processors so that processor (I, J, K) owns C_{IJK}

- 1: function C = 3D-MATMUL(C, A, B)
- 2: (I, J, K) = MyProcID()
- 3: All-gather A_{IKJ} across Proc(I, :, K), store in A_{IK}
- 4: All-gather B_{KJI} across Proc(:, J, K), store in B_{KJ}
- 5: $\overline{C}_{IJ} = A_{IK} \cdot B_{KJ}$
- 6: Reduce-scatter \overline{C}_{IJ} across Proc(I, J, :), combine result with C_{IJK}
- 7: end function

Communication cost

$$\beta \cdot O\left(\frac{n^2}{P^{2/3}}\right) + \alpha \cdot O\left(\log P\right)$$

Figure: Proc(1,2,3)

Assert: C = C + AB is $n \times n$ matrix in 2D block distribution across processors so that processor (I, J, K) owns C_{IJK}

- 1: function C = 3D-MATMUL(C, A, B)
- 2: (I, J, K) = MyProcID()
- 3: All-gather A_{IKJ} across Proc(I,:,K), store in A_{IK}
- 4: All-gather B_{KJI} across Proc(:, J, K), store in B_{KJ}
- 5: $\overline{C}_{IJ} = A_{IK} \cdot B_{KJ}$
- 6: Reduce-scatter \overline{C}_{IJ} across Proc(I, J, :), combine result with C_{IJK}
- 7: end function

Communication Complexity of Dense Linear Algebra

Matrix multiply, using $2n^3$ flops (sequential or parallel)

- Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
- Lower bound on Bandwidth = $\Omega(\#flops/M^{1/2})$
- Lower bound on Latency = $\Omega(\#flops/M^{3/2})$

Same lower bounds apply to LU using reduction

Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012

$$\begin{pmatrix} I & -B \\ A & I \\ & I \end{pmatrix} = \begin{pmatrix} I \\ A & I \\ & I \end{pmatrix} \begin{pmatrix} I & -B \\ I & AB \\ & I \end{pmatrix}$$

And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]

also extended to fast linear algebra

2D Parallel algorithms and communication bounds

Memory per processor = $\Theta(n^2/P)$, lower bounds on communication:

$$\#$$
words_moved $\geq \Omega(n^2/\sqrt{P}), \ \#$ messages $\geq \Omega(\sqrt{P})$

Most classical algorithms (ScaLAPACK) attain lower bounds on #words_moved

but do not attain lower bounds on #messages

	ScaLAPACK	CA algorithms
LU		
		[LG, Demmel, Xiang, 08]
QR		
		[Demmel, LG, Hoemmen, Langou, 08]
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]
RRQR		
		[Demmel, LG, Gu, Xiang 13]
		[Martinsson, Voronin 15], [Duersch, Gu 15]
Eig(A)	Hessenberg/QR alg	

Only several references shows

2D Parallel algorithms and communication bounds

Memory per processor = $\Theta(n^2/P)$, lower bounds on communication:

#words_moved
$$\geq \Omega(n^2/\sqrt{P})$$
, #messages $\geq \Omega(\sqrt{P})$

 $\label{lower_bounds} \begin{tabular}{ll} Most classical algorithms (ScaLAPACK) attain \\ lower bounds on $\#$words_moved \\ \end{tabular}$

	ScaLAPACK	CA algorithms
LU	partial pivoting	tournament pivoting (TP)
		[LG, Demmel, Xiang, 08]
QR	column based	reduction based Householder
	Householder	[Demmel, LG, Hoemmen, Langou, 08]
		[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]
RRQR	column pivoting	tournament pivoting (TP)
		[Demmel, LG, Gu, Xiang 13]
		randomized QRCP +TP
		[Martinsson, Voronin 15], [Duersch, Gu 15]
Eig(A)	Hessenberg/QR alg	[Ballard, Demmel, Dumitriu 10]

Only several references shown

Conclusions

- Some of the methods discussed available in libraries
 - LAPACK, ScaLAPACK, SLATE, Spark, GNU Scientific library, Cray scientific library
- Material based on upcoming book on Communication-Avoiding Algorithms, with G. Ballard, E. Carson, J. Demmel

References (1)

Loomis, L. H. and Whitney, H. (1949).

An inequality related to the isoperimetric inequality.

Bulletin of the American Mathematical Society, 55(10):961 - 962.