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Motivation: the communication wall

■ Runtime of an algorithm is the sum of:
□ #flops x time per flop
□ # words moved / bandwidth
□ # messages x latency

■ Time to move data ≫ time per flop
□ Gap steadily and exponentially growing over time
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The communication wall: compelling numbers

Time/flop 59% annual improvement up to 20041

2008 Intel Nehalem 3.2GHz×4 cores (51.2 GFlops/socket) 1x

2020 A64FX 2.2GHz×48 cores (3.37 TFlops/socket DP)2 66x in 12 years

DRAM latency: 5.5% annual improvement up to 20041

DDR2 (2007) 120 ns 1x

DDR4 (2014) 45 ns 2.6x in 7 years

Stacked memory similar to DDR4

Network latency: 15% annual improvement up to 20041

Interconnect: a few µs MPI latency

1 “Getting up to speed, The future of supercomputing” 2004, data from 1995-2004

2 Fugaku supercomputer https://www.top500.org/system/179807/
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Matrix distributions

Suppose each processor has enough memory to store 1/P-th of the data,
M = Θ(n2/P)
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Communication lower bounds

Problem:

■ Given a machine with two levels of memory, a fast memory of size M and
a slow memory of infinite size

■ Compute C = C+ AB, where A ∈ Rm×n, B ∈ Rn×r , for each element,

C(i , j) = C(i , j) +
n∑

k=1

A(i , k) · B(k , j), (1)

■ What is the lower bound on the number of transfers between the slow
and fast memory (number of reads and writes) ?
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Communication lower bounds

√
wh · wℓ · hℓ = whℓ

→ Rectangular prism most efficient

shape for maximizing volume

Lemma 1 ([Loomis and Whitney, 1949])
V a finite set of lattice points (i , j , k) in R3,
Vx projection of V in x-direction: points (y , z) s.t. ∃x ′ and (x ′, y , z) ∈ V
ditto for Vy and Vz . Then:

|V | ≤
√

|Vx ||Vy ||Vz |.
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Lower bounds for matrix multiplication C = AB

■ A ∈ Rm×n,B ∈ Rn×r ,C ∈ Rm×r

■ Instruction stream broken into segments

■ Each segment contains x loads and stores

■ M fast memory size

Using Lemma 1 and AM-GM inequality, bound total scalar multiplications per segment:

|V | ≤
√

|VA||VB||VC| ≤
(
|VA|+ |VB|+ |VC|

3

)3/2

≤
(
M + x

3

)3/2

#segments ≥

 mnr(
M+x
3

)3/2

 =⇒ #loads/stores ≥ x

 mnr(
M+x
3

)3/2


or

#loads/stores ≥ 2M

⌊
mnr

M3/2

⌋
≥

2mnr
√
M

− 2M
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Lower bounds for matrix multiplication C = AB

Lower bound for volume of communication:

#loads/stores ≥ 2M
⌊ mnr

M3/2

⌋
≥ 2mnr√

M
− 2M

■ Bound attained by a block algorithm if min{m, n, k} ≥
√
M + 1− 1

■ For square matrices, algorithm uses b × 1 blocks of A, 1× b blocks of B
and b × b blocks of C , with b ≤

√
M + 1− 1
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Lower bounds for parallel algorithms

Memory dependent lower bounds
Compute C = AB on P processors, assume m = n = k :

W = #words moved ≥ 2n3

P
√
M

−M

■ 2D algorithms: M = Θ(n2/P) =⇒ W = Ω(n2/P1/2)

■ 3D algorithms: M = Θ(n2/P2/3) =⇒ W = Ω(n2/P2/3)

■ 2.5D algorithms: M = Θ(cn2/P) =⇒ W = Ω(n2/(cP)1/2)
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SUMMA matrix multiplication

Cost of communication:

β · O
(

n2
√
P

)
+ α · O

(n

b
logP

)

Require: A,B,C are n × n matrices in identical 2D block distribution across processors
Require: Processors arranged in

√
P ×

√
P grid where nℓ = n/

√
P is an integer

Require: Proc (I , J) owns nℓ × nℓ submatrix MIJ = M((I−1)nℓ+1 : Inℓ, (J−1)nℓ+1 : Jnℓ)
1: function C = SUMMA(C ,A,B, b)
2: (I , J) = MyProcID()

3: for K = 1 to
√
P do

4: for k = 1 to nℓ
b

do
5: Proc (I ,K) broadcasts AIK (:, (k−1)b+1:kb) to proc(I , :), store in Atmp

6: Proc (K , J) broadcasts BKJ((k−1)b+1:kb, :) to proc(:, J), store in Btmp

7: CIJ = CIJ + Atmp · Btmp

8: end for
9: end for
10: end function

Presentation from van de Geijn and Watts ’96
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3D Parallel Matrix Multiplication

Figure: Proc(1,2,3) Figure: Initial distribution of A and B

Processors arranged in 3
√
P × 3

√
P × 3

√
P grid

A,B are n× n matrices in 2D block distribution across 3
√
P × ( 3

√
P)2 processor grid where

nℓ = n/ 3
√
P and nb = n/( 3

√
P)2 are integers

Processor (I , J,K) owns nℓ × nb submatrices

AIKJ = AIK (:, (J−1)nb+1 : Jnb)

BKJI = BKJ(:, (I−1)nb+1 : Inb)

CIJK = CIJ(:, (K−1)nb+1 : Knb)
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3D Parallel Matrix Multiplication

Figure: Proc(1,2,3) Figure: All-gathers and local computation

Assert: C = C + AB is n × n matrix in 2D block distribution across processors so that
processor (I , J,K) owns CIJK

1: function C = 3D-Matmul(C ,A,B)
2: (I , J,K) = MyProcID()
3: All-gather AIKJ across Proc(I , :,K), store in AIK

4: All-gather BKJI across Proc(:, J,K), store in BKJ

5: C IJ = AIK · BKJ

6: Reduce-scatter C IJ across Proc(I , J, :), combine result with CIJK

7: end function
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3D Parallel Matrix Multiplication

Figure: Proc(1,2,3) Figure: Reduce-scatter to obtain final distribution of C

Assert: C = C + AB is n × n matrix in 2D block distribution across processors so that
processor (I , J,K) owns CIJK
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3D Parallel Matrix Multiplication

Figure: Proc(1,2,3)

Communication cost

β · O
(

n2

P2/3

)
+ α · O (logP)
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processor (I , J,K) owns CIJK
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Communication Complexity of Dense Linear Algebra

Matrix multiply, using 2n3 flops (sequential or parallel)

■ Hong-Kung (1981), Irony/Tishkin/Toledo (2004)

■ Lower bound on Bandwidth = Ω(#flops/M1/2)

■ Lower bound on Latency = Ω(#flops/M3/2)

Same lower bounds apply to LU using reduction

■ Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012 I −B
A I

I

 =

 I
A I

I

I −B
I AB

I


And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]

also extended to fast linear algebra
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2D Parallel algorithms and communication bounds

Memory per processor = Θ(n2/P), lower bounds on communication:

#words moved ≥ Ω(n2/
√
P), #messages ≥ Ω(

√
P)

Most classical algorithms (ScaLAPACK) attain
lower bounds on #words moved

but do not attain lower bounds on #messages

ScaLAPACK CA algorithms
LU partial pivoting tournament pivoting (TP)

[LG, Demmel, Xiang, 08]

QR column based reduction based Householder
Householder [Demmel, LG, Hoemmen, Langou, 08]

[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]

RRQR column pivoting tournament pivoting (TP)
[Demmel, LG, Gu, Xiang 13]

randomized QRCP +TP
[Martinsson, Voronin 15], [Duersch, Gu 15]

Eig(A) Hessenberg/QR alg [Ballard, Demmel, Dumitriu 10]

Only several references shown
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Conclusions

■ Some of the methods discussed available in libraries
□ LAPACK, ScaLAPACK, SLATE, Spark, GNU Scientific library, Cray

scientific library

■ Material based on upcoming book on Communication-Avoiding
Algorithms, with G. Ballard, E. Carson, J. Demmel
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