
Parallel matrix-matrix multiplication

HPC for numerical methods and data analysis
Laura Grigori

EPFL and PSI

October 8, 2024

Plan

Motivation for reducing communication

Minimizing communication in dense linear algebra

Communication lower bounds with tight constants
Rectangular matrix multiplication

2 of 16

Motivation: the communication wall

■ Runtime of an algorithm is the sum of:
□ #flops x time per flop
□ # words moved / bandwidth
□ # messages x latency

■ Time to move data ≫ time per flop
□ Gap steadily and exponentially growing over time

3 of 16

The communication wall: compelling numbers

Time/flop 59% annual improvement up to 20041

2008 Intel Nehalem 3.2GHz×4 cores (51.2 GFlops/socket) 1x

2020 A64FX 2.2GHz×48 cores (3.37 TFlops/socket DP)2 66x in 12 years

DRAM latency: 5.5% annual improvement up to 20041

DDR2 (2007) 120 ns 1x

DDR4 (2014) 45 ns 2.6x in 7 years

Stacked memory similar to DDR4

Network latency: 15% annual improvement up to 20041

Interconnect: a few µs MPI latency

1 “Getting up to speed, The future of supercomputing” 2004, data from 1995-2004

2 Fugaku supercomputer https://www.top500.org/system/179807/

4 of 16

https://www.top500.org/system/179807/

Matrix distributions

Suppose each processor has enough memory to store 1/P-th of the data,
M = Θ(n2/P)

5 of 16

Communication lower bounds

Problem:

■ Given a machine with two levels of memory, a fast memory of size M and
a slow memory of infinite size

■ Compute C = C+ AB, where A ∈ Rm×n, B ∈ Rn×r , for each element,

C(i , j) = C(i , j) +
n∑

k=1

A(i , k) · B(k , j), (1)

■ What is the lower bound on the number of transfers between the slow
and fast memory (number of reads and writes) ?

6 of 16

Communication lower bounds

√
wh · wℓ · hℓ = whℓ

→ Rectangular prism most efficient

shape for maximizing volume

Lemma 1 ([Loomis and Whitney, 1949])
V a finite set of lattice points (i , j , k) in R3,
Vx projection of V in x-direction: points (y , z) s.t. ∃x ′ and (x ′, y , z) ∈ V
ditto for Vy and Vz . Then:

|V | ≤
√

|Vx ||Vy ||Vz |.

7 of 16

Lower bounds for matrix multiplication C = AB

■ A ∈ Rm×n,B ∈ Rn×r ,C ∈ Rm×r

■ Instruction stream broken into segments

■ Each segment contains x loads and stores

■ M fast memory size

Using Lemma 1 and AM-GM inequality, bound total scalar multiplications per segment:

|V | ≤
√

|VA||VB||VC| ≤
(
|VA|+ |VB|+ |VC|

3

)3/2

≤
(
M + x

3

)3/2

#segments ≥

 mnr(
M+x
3

)3/2

 =⇒ #loads/stores ≥ x

 mnr(
M+x
3

)3/2


or

#loads/stores ≥ 2M

⌊
mnr

M3/2

⌋
≥

2mnr
√
M

− 2M

8 of 16

Lower bounds for matrix multiplication C = AB

Lower bound for volume of communication:

#loads/stores ≥ 2M
⌊ mnr

M3/2

⌋
≥ 2mnr√

M
− 2M

■ Bound attained by a block algorithm if min{m, n, k} ≥
√
M + 1− 1

■ For square matrices, algorithm uses b × 1 blocks of A, 1× b blocks of B
and b × b blocks of C , with b ≤

√
M + 1− 1

8 of 16

Lower bounds for parallel algorithms

Memory dependent lower bounds
Compute C = AB on P processors, assume m = n = k :

W = #words moved ≥ 2n3

P
√
M

−M

■ 2D algorithms: M = Θ(n2/P) =⇒ W = Ω(n2/P1/2)

■ 3D algorithms: M = Θ(n2/P2/3) =⇒ W = Ω(n2/P2/3)

■ 2.5D algorithms: M = Θ(cn2/P) =⇒ W = Ω(n2/(cP)1/2)

9 of 16

Lower bounds for parallel algorithms

Memory dependent lower bounds
Compute C = AB on P processors, assume m = n = k :

W = #words moved ≥ 2n3

P
√
M

−M

■ 2D algorithms: M = Θ(n2/P) =⇒ W = Ω(n2/P1/2)

■ 3D algorithms: M = Θ(n2/P2/3) =⇒ W = Ω(n2/P2/3)

■ 2.5D algorithms: M = Θ(cn2/P) =⇒ W = Ω(n2/(cP)1/2)

9 of 16

SUMMA matrix multiplication

Cost of communication:

β · O
(

n2
√
P

)
+ α · O

(n

b
logP

)

Require: A,B,C are n × n matrices in identical 2D block distribution across processors
Require: Processors arranged in

√
P ×

√
P grid where nℓ = n/

√
P is an integer

Require: Proc (I , J) owns nℓ × nℓ submatrix MIJ = M((I−1)nℓ+1 : Inℓ, (J−1)nℓ+1 : Jnℓ)
1: function C = SUMMA(C ,A,B, b)
2: (I , J) = MyProcID()

3: for K = 1 to
√
P do

4: for k = 1 to nℓ
b

do
5: Proc (I ,K) broadcasts AIK (:, (k−1)b+1:kb) to proc(I , :), store in Atmp

6: Proc (K , J) broadcasts BKJ((k−1)b+1:kb, :) to proc(:, J), store in Btmp

7: CIJ = CIJ + Atmp · Btmp

8: end for
9: end for
10: end function

Presentation from van de Geijn and Watts ’96

10 of 16

3D Parallel Matrix Multiplication

Figure: Proc(1,2,3) Figure: Initial distribution of A and B

Processors arranged in 3
√
P × 3

√
P × 3

√
P grid

A,B are n× n matrices in 2D block distribution across 3
√
P × (3

√
P)2 processor grid where

nℓ = n/ 3
√
P and nb = n/(3

√
P)2 are integers

Processor (I , J,K) owns nℓ × nb submatrices

AIKJ = AIK (:, (J−1)nb+1 : Jnb)

BKJI = BKJ(:, (I−1)nb+1 : Inb)

CIJK = CIJ(:, (K−1)nb+1 : Knb)

11 of 16

3D Parallel Matrix Multiplication

Figure: Proc(1,2,3) Figure: All-gathers and local computation

Assert: C = C + AB is n × n matrix in 2D block distribution across processors so that
processor (I , J,K) owns CIJK

1: function C = 3D-Matmul(C ,A,B)
2: (I , J,K) = MyProcID()
3: All-gather AIKJ across Proc(I , :,K), store in AIK

4: All-gather BKJI across Proc(:, J,K), store in BKJ

5: C IJ = AIK · BKJ

6: Reduce-scatter C IJ across Proc(I , J, :), combine result with CIJK

7: end function

12 of 16

3D Parallel Matrix Multiplication

Figure: Proc(1,2,3) Figure: Reduce-scatter to obtain final distribution of C

Assert: C = C + AB is n × n matrix in 2D block distribution across processors so that
processor (I , J,K) owns CIJK

1: function C = 3D-Matmul(C ,A,B)
2: (I , J,K) = MyProcID()
3: All-gather AIKJ across Proc(I , :,K), store in AIK

4: All-gather BKJI across Proc(:, J,K), store in BKJ

5: C IJ = AIK · BKJ

6: Reduce-scatter C IJ across Proc(I , J, :), combine result with CIJK

7: end function

12 of 16

3D Parallel Matrix Multiplication

Figure: Proc(1,2,3)

Communication cost

β · O
(

n2

P2/3

)
+ α · O (logP)

Assert: C = C + AB is n × n matrix in 2D block distribution across processors so that
processor (I , J,K) owns CIJK

1: function C = 3D-Matmul(C ,A,B)
2: (I , J,K) = MyProcID()
3: All-gather AIKJ across Proc(I , :,K), store in AIK

4: All-gather BKJI across Proc(:, J,K), store in BKJ

5: C IJ = AIK · BKJ

6: Reduce-scatter C IJ across Proc(I , J, :), combine result with CIJK

7: end function

12 of 16

Communication Complexity of Dense Linear Algebra

Matrix multiply, using 2n3 flops (sequential or parallel)

■ Hong-Kung (1981), Irony/Tishkin/Toledo (2004)

■ Lower bound on Bandwidth = Ω(#flops/M1/2)

■ Lower bound on Latency = Ω(#flops/M3/2)

Same lower bounds apply to LU using reduction

■ Demmel, LG, Hoemmen, Langou, tech report 2008, SISC 2012 I −B
A I

I

 =

 I
A I

I

I −B
I AB

I


And to almost all direct linear algebra

[Ballard, Demmel, Holtz, Schwartz, 09]

also extended to fast linear algebra

13 of 16

2D Parallel algorithms and communication bounds

Memory per processor = Θ(n2/P), lower bounds on communication:

#words moved ≥ Ω(n2/
√
P), #messages ≥ Ω(

√
P)

Most classical algorithms (ScaLAPACK) attain
lower bounds on #words moved

but do not attain lower bounds on #messages

ScaLAPACK CA algorithms
LU partial pivoting tournament pivoting (TP)

[LG, Demmel, Xiang, 08]

QR column based reduction based Householder
Householder [Demmel, LG, Hoemmen, Langou, 08]

[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]

RRQR column pivoting tournament pivoting (TP)
[Demmel, LG, Gu, Xiang 13]

randomized QRCP +TP
[Martinsson, Voronin 15], [Duersch, Gu 15]

Eig(A) Hessenberg/QR alg [Ballard, Demmel, Dumitriu 10]

Only several references shown

14 of 16

2D Parallel algorithms and communication bounds

Memory per processor = Θ(n2/P), lower bounds on communication:

#words moved ≥ Ω(n2/
√
P), #messages ≥ Ω(

√
P)

Most classical algorithms (ScaLAPACK) attain
lower bounds on #words moved

but do not attain lower bounds on #messages

ScaLAPACK CA algorithms
LU partial pivoting tournament pivoting (TP)

[LG, Demmel, Xiang, 08]

QR column based reduction based Householder
Householder [Demmel, LG, Hoemmen, Langou, 08]

[Ballard, Demmel, LG, Jacquelin, Nguyen, Solomonik, 14]

RRQR column pivoting tournament pivoting (TP)
[Demmel, LG, Gu, Xiang 13]

randomized QRCP +TP
[Martinsson, Voronin 15], [Duersch, Gu 15]

Eig(A) Hessenberg/QR alg [Ballard, Demmel, Dumitriu 10]

Only several references shown

14 of 16

Conclusions

■ Some of the methods discussed available in libraries
□ LAPACK, ScaLAPACK, SLATE, Spark, GNU Scientific library, Cray

scientific library

■ Material based on upcoming book on Communication-Avoiding
Algorithms, with G. Ballard, E. Carson, J. Demmel

15 of 16

References (1)

Loomis, L. H. and Whitney, H. (1949).

An inequality related to the isoperimetric inequality.
Bulletin of the American Mathematical Society, 55(10):961 – 962.

16 of 16

	Motivation for reducing communication
	Minimizing communication in dense linear algebra
	Communication lower bounds with tight constants
	Rectangular matrix multiplication

