Randomized algorithms for low rank matrix approximation

Laura Grigori

EPFL and PSI

November 5/12, 2024

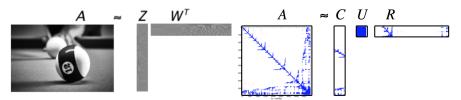
Plan

Low rank matrix approximation

Randomized algorithms for low rank approximation

Low rank matrix approximation

■ Problem: given $A \in \mathbb{R}^{m \times n}$, compute rank-k approximation ZW^T , where Z is $m \times k$ and W^T is $k \times n$.



- Problem with diverse applications
 - $\hfill\Box$ from scientific computing: fast solvers for integral equations, H-matrices
 - □ to data analytics: principal component analysis, image processing, ...

$$Ax \to ZW^T x$$
Flops $2mn \to 2(m+n)k$

Low rank matrix approximation

Best rank-k approximation $[\![A]\!]_{\iota} = U_k \Sigma_k V_{\iota}^T$ is rank-k truncated SVD of A [Eckart and Young, 1936], where U_k, Σ_k, V_k are the first k left singular vectors, leading singular values, right singular vectors respectively,

$$\min_{rank(A_k) \le k} ||A - A_k||_2 = ||A - [A]_k||_2 = \sigma_{k+1}(A)$$
 (1)

$$\min_{rank(A_k) \le k} ||A - A_k||_F = ||A - [A]_k||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)}$$
 (2)

Image, size 1190×1920

Rank-10 approximation, SVD

Rank-50 approximation, SVD

Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Large data sets

Problems to solve

- Compute low rank approximation of A
- Select a subset of columns of A

Constraints

- Matrix A might not exist entirely at a given time, rows or columns are added progressively.
 - Streaming algorithm: can solve an arbitrarily large problem with one pass over the data (a row or a column at a time).
 - $\ \square$ Weakly streaming algorithm: can solve a problem with O(1) passes over the data.
- Matrix A might exist only implicitly, and it is never formed explicitly, e.g.
 A = BC.

Large data sets

Problems to solve

- Compute low rank approximation of A
- Select a subset of columns of A

Constraints

- Matrix A might not exist entirely at a given time, rows or columns are added progressively.
 - Streaming algorithm: can solve an arbitrarily large problem with one pass over the data (a row or a column at a time).
 - $\ \square$ Weakly streaming algorithm: can solve a problem with O(1) passes over the data.
- Matrix A might exist only implicitly, and it is never formed explicitly, e.g. A = BC.

Goal

Compute efficiently a low rank-k approximation A_k of A satisfying

$$||A - A_k||_2 \le \gamma \sigma_{k+1}(A)$$

for some $\gamma \geq$ 1, γ typically a low degree polynomial in k and dimensions of A

Reduce flops and communication

Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2023].

Definition 1

[low-rank approximation] A matrix A_k satisfying $||A - A_k||_2 \le \gamma \sigma_{k+1}(A)$ for some $\gamma \ge 1$ will be said to be a (k, γ) low-rank approximation of A.

Definition 2

[spectrum preserving] If A_k satisfies

$$\sigma_j(A) \geq \sigma_j(A_k) \geq \gamma^{-1}\sigma_j(A)$$

for $j \leq k$ and some $\gamma \geq 1$, it is a (k, γ) spectrum preserving.

Definition 3

[kernel approximation] If A_k satisfies

$$\sigma_{k+j}(A) \leq \sigma_j(A - A_k) \leq \gamma \sigma_{k+j}(A)$$

for $1 \le j \le n-k$ and some $\gamma \ge 1$, it is a (k,γ) kernel approximation of A.

Idea underlying many algorithms

Compute $A_k = \mathcal{P}A$, where $\mathcal{P} = \mathcal{P}^o$ or $\mathcal{P} = \mathcal{P}^{ob}$ is obtained as:

1. Construct a low dimensional subspace $X = range(A\Omega)$, $\Omega \in \mathbb{R}^{n \times l}$ that approximates well the range of A, e.g.

$$||A - \mathcal{P}^{\circ}A||_2 \le \gamma \sigma_{k+1}(A)$$
, for some $\gamma \ge 1$,

where Q is orth. basis of $(A\Omega)$ and orthogonal projector:

$$\mathcal{P}^{\circ}A = A\Omega(A\Omega)^{+}A = QQ^{T}A$$
, or equiv $\mathcal{P}^{\circ}a_{j} := arg\min_{x \in X} \|x - a_{j}\|_{2}$

2. Select a semi-inner product $\langle \Theta \cdot, \Theta \cdot \rangle_2$, $\Theta \in \mathbb{R}^{l' \times m}$ $l' \geq l$, define (oblique projector):

$$\mathcal{P}^{ob}A = A\Omega(\Theta A\Omega)^+\Theta A$$
, or equiv $\mathcal{P}^{ob}a_j := arg \min_{x \in X} \|\Theta(x - a_j)\|_2$

Idea underlying many algorithms

Compute $A_k = \mathcal{P}A$, where $\mathcal{P} = \mathcal{P}^o$ or $\mathcal{P} = \mathcal{P}^{ob}$ is obtained as:

1. Construct a low dimensional subspace $X = range(A\Omega)$, $\Omega \in \mathbb{R}^{n \times l}$ that approximates well the range of A, e.g.

$$||A - \mathcal{P}^{o}A||_{2} \le \gamma \sigma_{k+1}(A)$$
, for some $\gamma \ge 1$,

where Q is orth. basis of $(A\Omega)$ and orthogonal projector:

$$\mathcal{P}^{\circ}A = A\Omega(A\Omega)^{+}A = QQ^{T}A$$
, or equiv $\mathcal{P}^{\circ}a_{j} := arg\min_{x \in X} \|x - a_{j}\|_{2}$

2. Select a semi-inner product $\langle \Theta \cdot, \Theta \cdot \rangle_2$, $\Theta \in \mathbb{R}^{l' \times m}$ $l' \geq l$, define (oblique projector):

$$\mathcal{P}^{ob}A = A\Omega(\Theta A\Omega)^+ \Theta A, \text{ or equiv } \mathcal{P}^{ob}a_j := arg \min_{x \in X} \|\Theta(x - a_j)\|_2$$

Low rank approximation and orthogonal projector

Given $A = U\Sigma V^T$, let U_k, Σ_k, V_k be the first k left singular vectors, leading singular values, right singular vectors respectively. Then the best approximation is when $Q = U_k$:

$$QQ^{T}A = U_{k}U_{k}^{T}U\Sigma V^{T}$$

||A - QQ^{T}A||₂ = ||diag(0,...,0,\sigma_{k+1},...\sigma_{n})||₂ = \sigma_{k+1}

Plan

Low rank matrix approximation

Randomized algorithms for low rank approximation

Randomized SVD

Randomized Nyström and generalized Nyström approximation

Parallelism and numerical experiments

Randomized algorithms - main idea

- Construct a low dimensional subspace that captures the action of *A*.
- Restrict A to the subspace and compute a standard QR or SVD factorization.

Obtained as follows:

1. Compute an approximate basis for the range of A ($m \times n$) find Q ($m \times k$) with orthonormal columns and approximate A by the projection of its columns onto the space spanned by Q:

$$A \approx QQ^T A$$

2. Use Q to compute a standard factorization of A

Good sources for additional information: [Halko et al., 2011, Martinsson and Tropp, 2020]

Typical randomized SVD

- 1. Compute an approximate basis for the range of $A \in \mathbb{R}^{m \times n}$ Sample $\Omega \in \mathbb{R}^{n \times l}$, l = p + k, with independent mean-zero, unit-variance Gaussian entries.
 - Compute $Y = A\Omega$, $Y \in \mathbb{R}^{m \times l}$ expected to span column space of A.
 - □ Cost of multiplying $A\Omega$: 2mnl flops and $O(\log_2 P)$ messages
- 2. With Q being orthonormal basis of Y, approximate A as:

$$A_{\text{RSVD}} = QQ^T A = \mathcal{P}^o A$$

- \square Cost of multiplying Q^TA : 2mnl flops and $O(\log_2 P)$ messages
- randomized SVD relies on an orthogonal projection

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decomposition, SIREV 2011.

Typical randomized SVD

Algorithm

Input: matrix $A \in \mathbb{R}^{m \times n}$, desired rank k, l = p + k, q.

- 1. Sample an $n \times I$ test matrix Ω with independent mean-zero, unit-variance Gaussian entries.
- 2. Compute $Y = (AA^T)^q A\Omega$ /* Y is expected to span the column space of A */
- 3. Construct $Q \in \mathbb{R}^{m \times l}$ with columns forming an orthonormal basis for the range of Y.
- 4. Compute $B = Q^T A$, $B \in \mathbb{R}^{I \times n}$
- 5. Compute the rank-k truncated SVD of B as $\hat{U}\Sigma V^T$, $\hat{U}\in\mathbb{R}^{l\times k}$, $V^T\in\mathbb{R}^{k\times n}$

Return the approximation $[\![A_{RSVD}]\!]_k = Q\hat{U} \cdot \Sigma \cdot V^T$

See e.g. Algorithm 8 (relying on rangefinder with powering described in section 11.6.1) from [Martinsson and Tropp, 2020]

Randomized SVD (q = 0)

Theorem 1.1 from Halko et al. If Ω is chosen to be i.i.d. N(0,1), $k, p \ge 2$, q = 1, then the expectation with respect to the random matrix Ω is

$$\mathbb{E}(||A - QQ^TA||_2) \leq \left(1 + \frac{4\sqrt{k+p}}{p-1}\sqrt{\min(m,n)}\right)\sigma_{k+1}(A)$$

and the probability that the error satisfies

$$||A - QQ^TA||_2 \le \left(1 + 11\sqrt{k + p} \cdot \sqrt{\min(m, n)}\right) \sigma_{k+1}(A)$$

is at least $1 - 6/p^p$.

For p = 6, the probability becomes .99.

Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same hypotheses as Theorem 1.1 from Halko et al.,

$$\mathbb{E}(||A - QQ^TA||_2) \leq \left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1}(A) + \frac{e\sqrt{k+p}}{p}\left(\sum_{j=k+1}^n \sigma_j^2(A)\right)^{1/2}$$

- Fast decay of singular values: If $\left(\sum_{j>k}\sigma_j^2(A)\right)^{1/2} \approx \sigma_{k+1}$ then the approximation should be accurate.
- Slow decay of singular values: If $\left(\sum_{j>k}\sigma_j^2(A)\right)^{1/2}\approx \sqrt{n-k}\sigma_{k+1}$ and n large, then the approximation might not be accurate.

Source: G. Martinsson's talk

Power iteration $q \ge 1$

The matrix $(AA^T)^qA$ has a faster decay in its singular values:

- has the same left singular vectors as A
- its singular values are:

$$\sigma_j((AA^T)^q A) = (\sigma_j(A))^{2q+1}$$

Cost of randomized truncated SVD

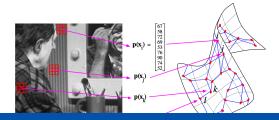
- Randomized SVD requires 2q + 1 passes over the matrix.
- The last 4 steps of the algorithm cost:
 - (2) Compute $Y = (AA^T)^q A\Omega$: $2(2q+1) \cdot mn \cdot (k+p)$
 - (3) Compute QR of Y: $2m(k+p)^2$
 - (4) Compute $B = Q^T A$: $2mn \cdot (k + p)$
 - (5) Compute SVD of B: $O(n(k+p)^2)$
- If $n \ge k + p$ and q = 1, then (2) and (4) dominate (3).
- To have a smaller arithmetic cost than deterministic approaches, the cost of (2) and (4) need to be reduced.
- (2) can be reduced by using a fast Johnson-Lindenstrauss transform
- (4) can be reduced by using an oblique projection

Results from image processing (from Halko et al)

- A matrix A of size 9025×9025 arising from a diffusion geometry approach.
- A is a graph Lapacian on the manifold of 3×3 patches.
- 95×95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095 .
- Vector $x^{(i)} \in \mathbb{R}^9$ gives the intensities of the pixels in a 3 × 3 neighborhood of pixel *i*.
- W reflects similarities between patches, $\sigma = 50$ reflects the level of sensitivity,

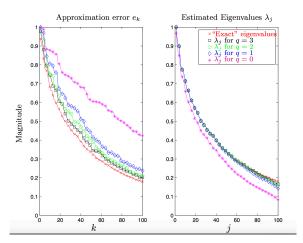
$$w_{ij} = exp\{-||x^{(i)} - x^{(j)}||^2/\sigma^2\},$$

■ Sparsify W, compute dominant eigenvectors of $A = D^{-1/2}WD^{-1/2}$.



Experimental results (from Halko et al)

- Approximation error : $||A QQ^TA||_2$
- Estimated eigenvalues for k = 100

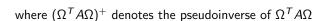


Randomized Nyström approximation

Goal: derive an algorithm that uses one pass over the data

For $A \in \mathbb{R}^{n \times n}$ symmetric positive semidefinite (SPSD), sketching $\Omega \in \mathbb{R}^{n \times l}$, randomized Nyström approximation computes

$$A_{Nyst} = (A\Omega)(\Omega^T A\Omega)^+(\Omega^T A)$$
(3)



Randomized Nyström Algorithm

Two solutions possible for computing a rank-k approximation from equation (3)

- 1. compute a rank-k truncation of the Nyström approximation A_{Nyst}
- 2. compute a rank-k truncation of the matrix $B = \Omega^T A \Omega$

Randomized Nyström Algorithm

- Several solutions possible for computing $B^+ = (\Omega^T A \Omega)^+$ and obtaining a rank-k decomposition
- Since $B = \Omega^T A \Omega$ is SPSD, one can use its truncated eigenvalue decomposition, or Cholesky factorization if B is SPD (symmetric positive definite).
- Special care required if $B = \Omega^T A \Omega$ is badly conditioned or rank deficient, when e.g. A has rank less than I. For one solution see e.g. [Tropp et al., 2017a] or these slides, where the Cholesky factorization of B has to be replaced with a more stable decomposition

Randomized Nyström - rank-k truncation of A_{Nyst}

Let $C = A\Omega$ and $B = \Omega^T A\Omega$, suppose the Cholesky factorization of B exists, then compute:

$$B = \Omega^T A \Omega = L L^T$$
 Cholesky factorization $Z = C L^{-T} = Q R$ QR factorization $R = U_k \Sigma_k V_k^T$ truncated rank-k SVD

We obtain the factorization:

$$\begin{split} (A\Omega)(\Omega^T A\Omega)^+(\Omega^T A) &= CL^{-T}L^{-1}C^T = ZZ^T \\ &= QRR^TQ^T \\ & \llbracket A_{Nyst} \rrbracket_k &= QU_k \Sigma_k \Sigma_k U_k^TQ^T \\ &= \hat{U}_k \Sigma_k^2 \hat{U}_k^T, \text{ where} \\ \hat{U}_k &= QU_k = CL^{-T}R^{-1}U_k = ZV_k \Sigma_k^{-1} \end{split}$$

Remarks:

- \hat{U}_k could be computed more stably as QU_k or more efficiently as $ZV_k\Sigma_k^{-1}$
- If B is rank defficient, replace Cholesky factorization with more stable truncated decomposition (eigenvalue/SVD)

Randomized Nyström (contd)

Using derivations from previous slide, the algorithm becomes:

Algorithm Randomized Nyström with rank-k truncation of A_{Nyst} Input $A \in \mathbb{R}^{n \times n}$, $\Omega \in \mathbb{R}^{n \times l}$:

- 1. Compute $C = A\Omega$, $C \in \mathbb{R}^{n \times l}$
- 2. Compute $B = \Omega^T C$, $B \in \mathbb{R}^{I \times I}$ and its Cholesky factorization $B = LL^T$ (if this fails, one could use the eigenvalue decomposition of B)
- 3. Compute $Z = CL^{-T}$ with substitution (no explicit computation of the inverse of L^{T})
- 4. Compute the QR factorization Z = QR
- 5. Compute truncated rank-k SVD of R as $U_k \Sigma_k V_k^T$
- 6. Compute $\hat{U}_k = QU_k$
- 7. Output factorization $[\![A_{Nyst}]\!]_k = \hat{U}_k \Sigma_k^2 \hat{U}_k^T$

Parallel randomized Nyström

Example of parallelization for computing $C = A\Omega$ and $B = \Omega^T A\Omega$

- Sketching matrix Ω (see previous lecture): consider the case when blocks of Ω can be generated on each processor
- Consider Ω distributed block row-wise over \sqrt{P} processors and A distributed over $\sqrt{P} \times \sqrt{P}$ processors, that is:

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}, \quad \Omega = \begin{pmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix}$$

Compute:

$$C = \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix}, \quad B = \Omega^T A \Omega$$

Parallel randomized Nyström

Compute in parallel $C = A\Omega$, $B = \Omega^T A\Omega$, eg for B

$$B = \Omega^{T} A \Omega = \begin{pmatrix} \Omega_{1}^{T} & \Omega_{2}^{T} & \Omega_{3}^{T} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} \Omega_{1} \\ \Omega_{2} \\ \Omega_{3} \end{pmatrix}$$

Computation of
$$C = A\Omega$$
, $B = \Omega^T A\Omega$

Root processor broadcasts information for generating blocks of Ω Let P_{ij} by my processor number that owns block A_{ii}

for all processors P_{ij} , $i=1:\sqrt{P}, j=1:\sqrt{P}$ in parallel do

Generate blocks Ω_i, Ω_j of Ω

Compute $C_{ij} = A_{ij}\Omega_j$

Sum-reduce to compute $C_i = \sum_{j=1}^{\sqrt{P}} C_{ij}$ among procs in same row Compute $B_{ii} = \Omega_i^T A_{ii} \Omega_i$

end for

Sum-reduce to compute $B = \sum_{i,j=1}^{\sqrt{P},\sqrt{P}} B_{ij}$

Communication cost: $3log_2P\alpha + (l^2 + ln/\sqrt{P})log_2P\beta$

Application to kernel methods

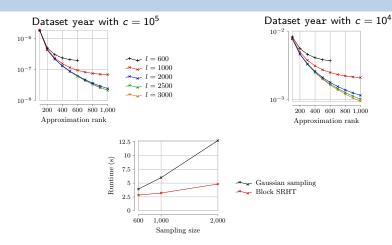
- Consider kernel methods that map data points into a feature space
- Highly used in learning as classification and regression
- Given $X = [x_1, ..., x_n]$, $X \in \mathbb{R}^{m \times n}$, each column $x_i, i = 1 ... m$, is a data point in \mathbb{R}^m
- Kernel based learning maps input data points to a feature space
- Inner products in feature space computed with a nonlinear kernel function $\kappa(\cdot,\cdot)$, used to build a SPSD kernel matrix $K \in \mathbb{R}^{n \times n}$ whose elements are defined as

$$K_{i,j} = \kappa(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle, i, j = 1, \dots, n$$
 (4)

where $\phi: x \to \phi(x)$ is the kernel-induced feature map

• We consider the radial basis function $\kappa(x_i, x_j) = e^{-\|x_i - x_j\|_2^2/c^2}$, c > 0

Experiments and performance of Gaussian vs SRHT



Radial basis function $e^{-\|x_i - x_j\|_2^2/c^2}$ on n rows of input data, n = 65536, 8×8 procs (for more details see [Balabanov et al., 2022]

Top graph: nuclear error $\|A - [\![A_{\mathit{Nyst}}]\!]_k\|_*/\|A\|_*$

Bottom graph: Runtime for computing $\Omega^T A \Omega$ (julia)

References (1)

Balabanov, O., Beaupere, M., Grigori, L., and Lederer, V. (2022).

Block subsampled randomized hadamard transform for low-rank approximation on distributed architectures.

Balabanov, O., Beaupere, M., Grigori, L., and Lederer, V. (2023).

Block subsampled randomized hadamard transform for low-rank approximation on distributed architectures. In ICML'23: Proceedings of the 40th International Conference on Machine Learning, number 66, pages 1564–1576.

Demmel, J., Grigori, L., and Rusciano, A. (2023).

An improved analysis and unified perspective on deterministic and randomized low-rank matrix approximation.

SIAM Journal on Matrix Analysis and Applications, 44(2):559–591.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218.

Gittens, A. (2011).

The spectral norm error of the naive nystrom extension.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288.

Martinsson, P.-G. and Tropp, J. A. (2020).

Randomized numerical linear algebra: Foundations and algorithms.

Acta Numerica, 29:403-572.

Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V. (2017a).

Fixed-rank approximation of a positive-semidefinite matrix from streaming data.

Advances in Neural Information Processing Systems, 30.

References (2)

Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V. (2017b).

Practical sketching algorithms for low-rank matrix approximation.

SIAM Journal on Matrix Analysis and Applications, 38(4):1454–1485.