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Low rank matrix approximation

= Problem: given A € R™*" compute rank-k approximation ZW T, where
Zismx kand WT is k x n.

= Problem with diverse applications

0 from scientific computing: fast solvers for integral equations, H-matrices
U to data analytics: principal component analysis, image processing, ...

Ax — ZW T x
Flops 2mn — 2(m + n)k
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Low rank matrix approximation

= Best rank-k approximation [A], = UxX,V,” is rank-k truncated SVD of
A [Eckart and Young, 1936], where Uy, X, Vi are the first k left singular
vectors, leading singular values, right singular vectors respectively,

SN=

||A Adle = JA=[Alkll2 = ok41(A) (1)
rank(A
- - A= - 2
,ankTA'n) [|A— Adlle [|A — [AlkllF j;lﬂj (A) (2)

Rank-10 approximation, SVD Rank-50 approximation, SVD

Image, size 1190 x 1920

¥ Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Large data sets

Problems to solve
= Compute low rank approximation of A

® Select a subset of columns of A
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Large data sets

Problems to solve
= Compute low rank approximation of A

® Select a subset of columns of A

Constraints

® Matrix A might not exist entirely at a given time, rows or columns are
added progressively.
11 Streaming algorithm: can solve an arbitrarily large problem with one pass
over the data (a row or a column at a time).
U Weakly streaming algorithm: can solve a problem with O(1) passes over the
data.

= Matrix A might exist only implicitly, and it is never formed explicitly, e.g.
A= BC.
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Goal

Compute efficiently a low rank-k approximation A, of A satisfying
A = Acll2 < v0u+1(A)

for some v > 1, v typically a low degree polynomial in k and dimensions of
A

= Reduce flops and communication
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Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2023].

Definition 1
[low-rank approximation] A matrix Ay satisfying ||A — Akll2 < vokt1(A) for
some v > 1 will be said to be a (k,~) low-rank approximation of A.

Definition 2
[spectrum preserving] If Ay satisfies

a;(A) > 0j(Ax) = 7 0;(A)
for j < k and some v > 1, it is a (k,~y) spectrum preserving.

Definition 3
[kernel approximation] If Ay satisfies

oij(A) < 0j(A = Ai) < 7044i(A)
for 1 <j<n-—kandsome~>1,itisa (k,7v) kernel approximation of A.
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Idea underlying many algorithms

Compute Ay = PA, where P = P° or P = P° is obtained as:

1. Construct a low dimensional subspace X = range(AQ), Q € R"*/ that
approximates well the range of A, e.g.

|A —P°A|2 < voks1(A), for some v > 1,
where @ is orth. basis of (AQ) and orthogonal projector:

P°A = AQ(AQ)TA = QQTA, or equiv Paj = arg mel)rg Ix — ajll2
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Idea underlying many algorithms

Compute Ay = PA, where P = P° or P = P° is obtained as:

1. Construct a low dimensional subspace X = range(AQ), Q € R"*/ that
approximates well the range of A, e.g.

|A—=P°All2 < yok11(A), for some v > 1,
where @ is orth. basis of (AQ) and orthogonal projector:
P°A = AQ(AQ)TA = QQTA, or equiv Paj = arg mel)rg Ix — ajll2
2. Select a semi-inner product (©-,0-),, © € R"*™ |’ > |, define (oblique
projector):

PPA = AQ(OAQ)TOA, or equiv Pa; = arg min ©(x — a))]2
PS
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Low rank approximation and orthogonal projector

Given A= UL VT, let Uy, ¥, Vi be the first k left singular vectors, leading
singular values, right singular vectors respectively. Then the best
approximation is when Q@ = U,:

QRTA = UUSuzvT
||A*QQTA||2 = ||dfag(0,...,O,O'k+1,...0,,)”2:O'k+1
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Plan

Randomized algorithms for low rank approximation
Randomized SVD
Randomized Nystrom and generalized Nystrom approximation
Parallelism and numerical experiments
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Randomized algorithms - main idea

= Construct a low dimensional subspace that captures the action of A.

® Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:

1. Compute an approximate basis for the range of A (m x n)
find @ (m x k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q:

A~ QQTA

2. Use @ to compute a standard factorization of A

Good sources for additional information: [Halko et al., 2011, Martinsson and Tropp, 2020]
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Typical randomized SVD

1. Compute an approximate basis for the range of A € R™*”"
Sample Q € R™/, | = p + k, with independent mean-zero, unit-variance
Gaussian entries.
Compute Y = AQ, Y € R™*! expected to span column space of A.

0 Cost of multiplying AQ: 2mnl flops and O(log, P) messages
2. With Q being orthonormal basis of Y, approximate A as:

ARSVD = QQTA = POA

O Cost of multiplying @ A: 2mnl flops and O(log, P) messages
o randomized SVD relies on an orthogonal projection

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for
constructing approximate matrix decomposition, SIREV 2011.
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Typical randomized SVD

Algorithm

Input: matrix A € R™*", desired rank k, | = p+ k, q.

1. Sample an nx [ test matrix Q with independent mean-zero, unit-variance
Gaussian entries.

2. Compute Y = (AAT)IAQ /* Y is expected to span the column space
of A*/

3. Construct Q € R™*! with columns forming an orthonormal basis for the
range of Y.

4. Compute B=QTA, BeR/*"

5. Compute the rank-k truncated SVD of B as UZVT, = R/*k vT ¢
kan

Return the approximation [Arsvp]k = QU-x-vT

See e.g. Algorithm 8 (relying on rangefinder with powering described in section 11.6.1)
from [Martinsson and Tropp, 2020]
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Randomized SVD (g = 0)

Theorem 1.1 from Halko et al. If Q is chosen to be i.i.d. N(0,1), k, p > 2,
g = 1, then the expectation with respect to the random matrix € is

E(]]A - QQTA||,) < (1 + %\/min(m7 n)) ok+1(A)

and the probability that the error satisfies

1A= QQTAll2 < (1+ 11y/k+ p- /min(m, )) 7k1(A)

is at least 1 — 6/p”.
For p = 6, the probability becomes .99.
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Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

1/2

E(|A - QQTA[]2) < <1 + \/Z) ork+1(A) + e\//;—&—ip Zn: UJ?(A)

j=k+1

= Fast decay of singular values:
1/2
If (Zj>k UJ?(A)) ~ o)1 then the approximation should be accurate.

= Slow decay of singular values:

12
If (Zj>k JJ?(A)) ~ v/n — koyy1 and n large, then the approximation
might not be accurate.

Source: G. Martinsson's talk
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Power iteration g > 1

The matrix (AAT)9A has a faster decay in its singular values:
® has the same left singular vectors as A

B its singular values are:

ai((AATYIA) = (0(A))***
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Cost of randomized truncated SVD

= Randomized SVD requires 2q + 1 passes over the matrix.
® The last 4 steps of the algorithm cost:
(2) Compute Y = (AAT)IAQ: 2(2g + 1) - mn- (k + p)
(3) Compute QR of Y: 2m(k + p)?
(4) Compute B = QTA: 2mn - (k + p)
(5) Compute SVD of B: O(n(k + p)?)
m If n> k+pand g=1, then (2) and (4) dominate (3).
® To have a smaller arithmetic cost than deterministic approaches, the cost
of (2) and (4) need to be reduced.
® (2) can be reduced by using a fast Johnson-Lindenstrauss transform
m (4) can be reduced by using an oblique projection
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Results from image processing (from Halko et al)

= A matrix A of size 9025 x 9025 arising from a diffusion geometry
approach.

= A s a graph Lapacian on the manifold of 3 x 3 patches.

® 95 x 95 pixel grayscale image, intensity of each pixel is an integer < 4095.

= Vector x() € RY gives the intensities of the pixels in a 3 x 3
neighborhood of pixel /.

W reflects similarities between patches, o = 50 reflects the level of
sensitivity,

wi = exp{—||x") = xU|12/5%},
Sparsify W, compute dominant eigenvectors of A = D~Y/2WD~1/2,
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Experimental results (from Halko et al)

= Approximation error : ||A— QQTA||
® Estimated eigenvalues for k = 100

Approximation error ey Estimated Eigenvalues \;
1 1
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Randomized Nystrom approximation

Goal: derive an algorithm that uses one pass over the data

For A € R™" symmetric positive semidefinite (SPSD), sketching Q € R"*/,
randomized Nystrom approximation computes

Anyse = (AR)(QTAQ) (@7 A) 3)
|:| O | —

where (Q7 AQ)* denotes the pseudoinverse of Q7 AQ
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Randomized Nystrom Algorithm

Two solutions possible for computing a rank-k approximation from equation

(3)
1. compute a rank-k truncation of the Nystrom approximation Apyst
2. compute a rank-k truncation of the matrix B = Q7 AQ
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Randomized Nystrom Algorithm

= Several solutions possible for computing B¥ = (27 AQ)* and obtaining a
rank-k decomposition

® Since B = Q7T AQ is SPSD, one can use its truncated eigenvalue
decomposition, or Cholesky factorization if B is SPD (symmetric positive
definite).

= Special care required if B = Q7 AQ is badly conditioned or rank deficient,
when e.g. A has rank less than /. For one solution see e.g.
[Tropp et al., 2017a] or these slides, where the Cholesky factorization of
B has to be replaced with a more stable decomposition
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Randomized Nystrom - rank-k truncation of Apys;

Let C = AQ and B = Q7 AQ, suppose the Cholesky factorization of B
exists, then compute:

B = QTAQ=LL" Cholesky factorization
Z = CL T =QR QR factorization
R = UX,V, truncated rank-k SVD

We obtain the factorization:

(AQ)(QTAQ)T(QTA) = cLTLicT =227
= QRRTQT
[Avsl, = QUELZ U/ QT
= UkZ%(UkT, where
O = QUx=CL TRy =2V3x .t
Remarks:

= Uy could be computed more stably as QU or more efficiently as ZV,J:;I
= |f B is rank defficient, replace Cholesky factorization with more stable
truncated decomposition (eigenvalue/SVD)
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Randomized Nystrom (contd)

Using derivations from previous slide, the algorithm becomes:

Algorithm Randomized Nystrom with rank-k truncation of Apy.;
Input A€ R™" Q€ R/

1.
2.

N o o s

Compute C = AQ, C € R"™/

Compute B = QT C, B € R/ and its Cholesky factorization B = LLT (if
this fails, one could use the eigenvalue decomposition of B)

Compute Z = CL™T with substitution (no explicit computation of the
inverse of LT)

Compute the QR factorization Z = QR

Compute truncated rank-k SVD of R as Uy X, V,”
Compute U, = QU

Output factorization [Anyst]x = 02207
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Parallel randomized Nystrom

Example of parallelization for computing C = AQ and B = Q" AQ

m Sketching matrix Q (see previous lecture): consider the case when blocks
of Q can be generated on each processor

= Consider Q distributed block row-wise over v/P processors and A
distributed over v/P x v/P processors, that is:

A A A Q
A=1Ax An Ax]|, Q=D
A1 Az Asz Q3
= Compute:
G A A A Q
C=[G|=1A1 An Ax]| (2], B=QTAQ
G A1 Az Asz) \3
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Parallel randomized Nystrom

Compute in parallel C = AQ, B = Q7T AQ, eg for B

Aun A A Q
B=QTAQ=(Qf Q] Q)|Ax An As||Q
A1 A Asz Q3

Computation of C = AQ, B=QTAQ
Root processor broadcasts information for generating blocks of Q2
Let P; by my processor number that owns block Aj;
for all processors Py, i =1 VP,j=1:+P in parallel do
Generate blocks €2;, Q2; of Q2
Compute Cjj = A;Q;
Sum-reduce to compute C; = Zj\fl Cjj among procs in same row
Compute B; = Q] A;Q;
end for

Sum-reduce to compute B = Zﬁ’ﬁ

ij=1 Bij

Communication cost: 3logaPa + (12 4 In//P) log, P
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Application to kernel methods

= Consider kernel methods that map data points into a feature space

® Highly used in learning as classification and regression

m Given X = [x1,...,Xp], X € R™*" each column x;,i =1...m, is a data
point in R™

® Kernel based learning maps input data points to a feature space

® |nner products in feature space computed with a nonlinear kernel function
k(+,-), used to build a SPSD kernel matrix K € R"*" whose elements are
defined as

K"J = ’%(XIVXJ') = <¢(Xl)a¢(xj)>a’a./ =1...,n (4)

where ¢ : x — ¢(x) is the kernel-induced feature map

. . . . - . 2 2
= We consider the radial basis function k(x;, x;) = e lki=xl2/e” ¢ >0
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Experiments and performance of Gaussian vs SRHT

Dataset year with ¢ = 10° Dataset year with ¢ = 10*
1072
10-¢
e 1= 600
-7 e 1= 1000
e 1= 2000
e 1= 2500
e 1=3000 .
10-8 10-°

200 400 600 800 1,000

200 400 600 800 1,000
Approximation rank

Approximation rank

E —~~¢ Gaussian sampling
) / s Block SRHT

600 1,000 2,000
Sampling size

Radial basis function e~ I%=%13/<* on n rows of input data, n = 65536, 8 x 8 procs (for
more details see [Balabanov et al., 2022]

Top graph: nuclear error [|A — [Anyse]l, |/ 1| All«
Bottom graph: Runtime for computing Q7 AQ (julia)
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