
Randomized algorithms for low rank matrix approximation

Laura Grigori

EPFL and PSI

November 5/12, 2024

Plan

Low rank matrix approximation

Randomized algorithms for low rank approximation

2 of 30

Low rank matrix approximation

■ Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

■ Problem with diverse applications
□ from scientific computing: fast solvers for integral equations, H-matrices
□ to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k

3 of 30

Low rank matrix approximation

■ Best rank-k approximation [[A]]k = UkΣkV
T
k is rank-k truncated SVD of

A [Eckart and Young, 1936], where Uk ,Σk ,Vk are the first k left singular
vectors, leading singular values, right singular vectors respectively,

min
rank(Ak)≤k

||A− Ak ||2 = ||A− [[A]]k ||2 = σk+1(A) (1)

min
rank(Ak)≤k

||A− Ak ||F = ||A− [[A]]k ||F =

√√√√ n∑
j=k+1

σ2
j (A) (2)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

■ Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

4 of 30

https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Large data sets

Problems to solve

■ Compute low rank approximation of A

■ Select a subset of columns of A

Constraints

■ Matrix A might not exist entirely at a given time, rows or columns are
added progressively.
□ Streaming algorithm: can solve an arbitrarily large problem with one pass

over the data (a row or a column at a time).
□ Weakly streaming algorithm: can solve a problem with O(1) passes over the

data.

■ Matrix A might exist only implicitly, and it is never formed explicitly, e.g.
A = BC .

5 of 30

Large data sets

Problems to solve

■ Compute low rank approximation of A

■ Select a subset of columns of A

Constraints

■ Matrix A might not exist entirely at a given time, rows or columns are
added progressively.
□ Streaming algorithm: can solve an arbitrarily large problem with one pass

over the data (a row or a column at a time).
□ Weakly streaming algorithm: can solve a problem with O(1) passes over the

data.

■ Matrix A might exist only implicitly, and it is never formed explicitly, e.g.
A = BC .

5 of 30

Goal

Compute efficiently a low rank-k approximation Ak of A satisfying

∥A− Ak∥2 ≤ γσk+1(A)

for some γ ≥ 1, γ typically a low degree polynomial in k and dimensions of
A

■ Reduce flops and communication

6 of 30

Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2023].

Definition 1
[low-rank approximation] A matrix Ak satisfying ∥A− Ak∥2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k , γ) low-rank approximation of A.

Definition 2
[spectrum preserving] If Ak satisfies

σj(A) ≥ σj(Ak) ≥ γ−1σj(A)

for j ≤ k and some γ ≥ 1, it is a (k , γ) spectrum preserving.

Definition 3
[kernel approximation] If Ak satisfies

σk+j(A) ≤ σj(A− Ak) ≤ γσk+j(A)

for 1 ≤ j ≤ n − k and some γ ≥ 1, it is a (k , γ) kernel approximation of A.

7 of 30

Idea underlying many algorithms

Compute Ak = PA, where P = Po or P = Pob is obtained as:

1. Construct a low dimensional subspace X = range(AΩ), Ω ∈ Rn×l that
approximates well the range of A, e.g.

∥A− PoA∥2 ≤ γσk+1(A), for some γ ≥ 1,

where Q is orth. basis of (AΩ) and orthogonal projector:

PoA = AΩ(AΩ)+A = QQTA, or equiv Poaj := arg min
x∈X

∥x − aj∥2

2. Select a semi-inner product ⟨Θ·,Θ·⟩2, Θ ∈ Rl′×m l ′ ≥ l , define (oblique
projector):

PobA = AΩ(ΘAΩ)+ΘA, or equiv Pobaj := arg min
x∈X

∥Θ(x − aj)∥2

8 of 30

Idea underlying many algorithms

Compute Ak = PA, where P = Po or P = Pob is obtained as:

1. Construct a low dimensional subspace X = range(AΩ), Ω ∈ Rn×l that
approximates well the range of A, e.g.

∥A− PoA∥2 ≤ γσk+1(A), for some γ ≥ 1,

where Q is orth. basis of (AΩ) and orthogonal projector:

PoA = AΩ(AΩ)+A = QQTA, or equiv Poaj := arg min
x∈X

∥x − aj∥2

2. Select a semi-inner product ⟨Θ·,Θ·⟩2, Θ ∈ Rl′×m l ′ ≥ l , define (oblique
projector):

PobA = AΩ(ΘAΩ)+ΘA, or equiv Pobaj := arg min
x∈X

∥Θ(x − aj)∥2

8 of 30

Low rank approximation and orthogonal projector

Given A = UΣV T , let Uk ,Σk ,Vk be the first k left singular vectors, leading
singular values, right singular vectors respectively. Then the best
approximation is when Q = Uk :

QQTA = UkU
T
k UΣV T

||A− QQTA||2 = ||diag(0, . . . , 0, σk+1, . . . σn)||2 = σk+1

9 of 30

Plan

Low rank matrix approximation

Randomized algorithms for low rank approximation
Randomized SVD
Randomized Nyström and generalized Nyström approximation
Parallelism and numerical experiments

10 of 30

Randomized algorithms - main idea

■ Construct a low dimensional subspace that captures the action of A.

■ Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:
1. Compute an approximate basis for the range of A (m × n)

find Q (m × k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q:

A ≈ QQTA

2. Use Q to compute a standard factorization of A

Good sources for additional information: [Halko et al., 2011, Martinsson and Tropp, 2020]

11 of 30

Typical randomized SVD

1. Compute an approximate basis for the range of A ∈ Rm×n

Sample Ω ∈ Rn×l , l = p + k , with independent mean-zero, unit-variance
Gaussian entries.
Compute Y = AΩ, Y ∈ Rm×l expected to span column space of A.
□ Cost of multiplying AΩ: 2mnl flops and O(log2 P) messages

2. With Q being orthonormal basis of Y , approximate A as:

ARSVD = QQTA = PoA

□ Cost of multiplying QTA: 2mnl flops and O(log2 P) messages
□ randomized SVD relies on an orthogonal projection

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.

12 of 30

Typical randomized SVD

Algorithm
Input: matrix A ∈ Rm×n, desired rank k , l = p + k , q.
1. Sample an n×l test matrix Ω with independent mean-zero, unit-variance

Gaussian entries.
2. Compute Y = (AAT)qAΩ /* Y is expected to span the column space

of A */
3. Construct Q ∈ Rm×l with columns forming an orthonormal basis for the

range of Y .
4. Compute B = QTA, B ∈ Rl×n

5. Compute the rank-k truncated SVD of B as ÛΣV T , Û ∈ Rl×k , V T ∈
Rk×n

Return the approximation [[ARSVD]]k = QÛ · Σ · V T

See e.g. Algorithm 8 (relying on rangefinder with powering described in section 11.6.1)

from [Martinsson and Tropp, 2020]

13 of 30

Randomized SVD (q = 0)

Theorem 1.1 from Halko et al. If Ω is chosen to be i.i.d. N(0,1), k, p ≥ 2,
q = 1, then the expectation with respect to the random matrix Ω is

E(||A− QQTA||2) ≤
(
1 +

4
√
k + p

p − 1

√
min(m, n)

)
σk+1(A)

and the probability that the error satisfies

||A− QQTA||2 ≤
(
1 + 11

√
k + p ·

√
min(m, n)

)
σk+1(A)

is at least 1− 6/pp.
For p = 6, the probability becomes .99.

14 of 30

Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A− QQTA||2) ≤

(
1 +

√
k

p − 1

)
σk+1(A) +

e
√
k + p

p

 n∑
j=k+1

σ2
j (A)

1/2

■ Fast decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2
≈ σk+1 then the approximation should be accurate.

■ Slow decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2
≈

√
n − kσk+1 and n large, then the approximation

might not be accurate.

Source: G. Martinsson’s talk

15 of 30

Power iteration q ≥ 1

The matrix (AAT)qA has a faster decay in its singular values:

■ has the same left singular vectors as A

■ its singular values are:

σj((AA
T)qA) = (σj(A))

2q+1

16 of 30

Cost of randomized truncated SVD

■ Randomized SVD requires 2q + 1 passes over the matrix.

■ The last 4 steps of the algorithm cost:
(2) Compute Y = (AAT)qAΩ: 2(2q + 1) ·mn · (k + p)
(3) Compute QR of Y : 2m(k + p)2

(4) Compute B = QTA: 2mn · (k + p)
(5) Compute SVD of B: O(n(k + p)2)

■ If n ≥ k + p and q = 1, then (2) and (4) dominate (3).

■ To have a smaller arithmetic cost than deterministic approaches, the cost
of (2) and (4) need to be reduced.

■ (2) can be reduced by using a fast Johnson-Lindenstrauss transform

■ (4) can be reduced by using an oblique projection

17 of 30

Results from image processing (from Halko et al)

■ A matrix A of size 9025× 9025 arising from a diffusion geometry
approach.

■ A is a graph Lapacian on the manifold of 3× 3 patches.
■ 95× 95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
■ Vector x (i) ∈ R9 gives the intensities of the pixels in a 3× 3

neighborhood of pixel i .
■ W reflects similarities between patches, σ = 50 reflects the level of

sensitivity,

wij = exp{−||x (i) − x (j)||2/σ2},
■ Sparsify W , compute dominant eigenvectors of A = D−1/2WD−1/2.

18 of 30

Experimental results (from Halko et al)

■ Approximation error : ||A− QQTA||2
■ Estimated eigenvalues for k = 100

19 of 30

Randomized Nyström approximation

Goal: derive an algorithm that uses one pass over the data

For A ∈ Rn×n symmetric positive semidefinite (SPSD), sketching Ω ∈ Rn×l ,
randomized Nyström approximation computes

ANyst = (AΩ)(ΩTAΩ)+(ΩTA) (3)

where (ΩTAΩ)+ denotes the pseudoinverse of ΩTAΩ

20 of 30

Randomized Nyström Algorithm

Two solutions possible for computing a rank-k approximation from equation
(3)

1. compute a rank-k truncation of the Nyström approximation ANyst

2. compute a rank-k truncation of the matrix B = ΩTAΩ

21 of 30

Randomized Nyström Algorithm

■ Several solutions possible for computing B+ = (ΩTAΩ)+ and obtaining a
rank-k decomposition

■ Since B = ΩTAΩ is SPSD, one can use its truncated eigenvalue
decomposition, or Cholesky factorization if B is SPD (symmetric positive
definite).

■ Special care required if B = ΩTAΩ is badly conditioned or rank deficient,
when e.g. A has rank less than l . For one solution see e.g.
[Tropp et al., 2017a] or these slides, where the Cholesky factorization of
B has to be replaced with a more stable decomposition

22 of 30

Randomized Nyström - rank-k truncation of ANyst

Let C = AΩ and B = ΩTAΩ, suppose the Cholesky factorization of B
exists, then compute:

B = ΩTAΩ = LLT Cholesky factorization

Z = CL−T = QR QR factorization

R = UkΣkV
T
k truncated rank-k SVD

We obtain the factorization:

(AΩ)(ΩTAΩ)+(ΩTA) = CL−TL−1CT = ZZT

= QRRTQT

[[ANyst]]k = QUkΣkΣkU
T
k QT

= ÛkΣ
2
k Û

T
k , where

Ûk = QUk = CL−TR−1Uk = ZVkΣ
−1
k

Remarks:
■ Ûk could be computed more stably as QUk or more efficiently as ZVkΣ

−1
k

■ If B is rank defficient, replace Cholesky factorization with more stable
truncated decomposition (eigenvalue/SVD)

23 of 30

Randomized Nyström (contd)

Using derivations from previous slide, the algorithm becomes:

Algorithm Randomized Nyström with rank-k truncation of ANyst

Input A ∈ Rn×n, Ω ∈ Rn×l :

1. Compute C = AΩ, C ∈ Rn×l

2. Compute B = ΩTC , B ∈ Rl×l and its Cholesky factorization B = LLT (if
this fails, one could use the eigenvalue decomposition of B)

3. Compute Z = CL−T with substitution (no explicit computation of the
inverse of LT)

4. Compute the QR factorization Z = QR

5. Compute truncated rank-k SVD of R as UkΣkV
T
k

6. Compute Ûk = QUk

7. Output factorization [[ANyst]]k = ÛkΣ
2
k Û

T
k

24 of 30

Parallel randomized Nyström

Example of parallelization for computing C = AΩ and B = ΩTAΩ

■ Sketching matrix Ω (see previous lecture): consider the case when blocks
of Ω can be generated on each processor

■ Consider Ω distributed block row-wise over
√
P processors and A

distributed over
√
P ×

√
P processors, that is:

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Ω =

Ω1

Ω2

Ω3


■ Compute:

C =

C1

C2

C3

 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

Ω1

Ω2

Ω3

 , B = ΩTAΩ

25 of 30

Parallel randomized Nyström

Compute in parallel C = AΩ, B = ΩTAΩ, eg for B

B = ΩTAΩ =
(
ΩT

1 ΩT
2 ΩT

3

)A11 A12 A13

A21 A22 A23

A31 A32 A33

Ω1

Ω2

Ω3


Computation of C = AΩ, B = ΩTAΩ
Root processor broadcasts information for generating blocks of Ω
Let Pij by my processor number that owns block Aij

for all processors Pij , i = 1 :
√
P, j = 1 :

√
P in parallel do

Generate blocks Ωi ,Ωj of Ω
Compute Cij = AijΩj

Sum-reduce to compute Ci =
∑√

P
j=1 Cij among procs in same row

Compute Bij = ΩT
i AijΩj

end for
Sum-reduce to compute B =

∑√
P,

√
P

i,j=1 Bij

Communication cost: 3log2Pα+ (l2 + ln/
√
P) log2 Pβ

26 of 30

Application to kernel methods

■ Consider kernel methods that map data points into a feature space

■ Highly used in learning as classification and regression

■ Given X = [x1, . . . , xn], X ∈ Rm×n, each column xi , i = 1 . . .m, is a data
point in Rm

■ Kernel based learning maps input data points to a feature space

■ Inner products in feature space computed with a nonlinear kernel function
κ(·, ·), used to build a SPSD kernel matrix K ∈ Rn×n whose elements are
defined as

Ki,j = κ(xi , xj) = ⟨ϕ(xi), ϕ(xj)⟩, i , j = 1, . . . , n (4)

where ϕ : x → ϕ(x) is the kernel-induced feature map

■ We consider the radial basis function κ(xi , xj) = e−∥xi−xj∥2
2/c

2

, c > 0

27 of 30

Experiments and performance of Gaussian vs SRHT

Dataset year with c = 105

200 400 600 800 1,000

10−8

10−7

10−6

Approximation rank

l = 600
l = 1000
l = 2000
l = 2500
l = 3000

Dataset year with c = 104

200 400 600 800 1,000

10−3

10−2

Approximation rank

600 1,000 2,000

0

2.5

5

7.5

10

12.5

Sampling size

R
u
n
ti
m
e
(s
)

Gaussian sampling
Block SRHT

Radial basis function e−∥xi−xj∥22/c2 on n rows of input data, n = 65536, 8× 8 procs (for
more details see [Balabanov et al., 2022]
Top graph: nuclear error ∥A− [[ANyst]]k∥∗/∥A∥∗
Bottom graph: Runtime for computing ΩTAΩ (julia)

28 of 30

References (1)

Balabanov, O., Beaupere, M., Grigori, L., and Lederer, V. (2022).

Block subsampled randomized hadamard transform for low-rank approximation on distributed architectures.

Balabanov, O., Beaupere, M., Grigori, L., and Lederer, V. (2023).

Block subsampled randomized hadamard transform for low-rank approximation on distributed architectures.
In ICML’23: Proceedings of the 40th International Conference on Machine Learning, number 66, pages 1564–1576.

Demmel, J., Grigori, L., and Rusciano, A. (2023).

An improved analysis and unified perspective on deterministic and randomized low-rank matrix approximation.
SIAM Journal on Matrix Analysis and Applications, 44(2):559–591.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218.

Gittens, A. (2011).

The spectral norm error of the naive nystrom extension.
arXiv preprint arXiv:1110.5305.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev., 53(2):217–288.

Martinsson, P.-G. and Tropp, J. A. (2020).

Randomized numerical linear algebra: Foundations and algorithms.
Acta Numerica, 29:403–572.

Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V. (2017a).

Fixed-rank approximation of a positive-semidefinite matrix from streaming data.
Advances in Neural Information Processing Systems, 30.

29 of 30

References (2)

Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V. (2017b).

Practical sketching algorithms for low-rank matrix approximation.
SIAM Journal on Matrix Analysis and Applications, 38(4):1454–1485.

30 of 30

	Low rank matrix approximation
	Randomized algorithms for low rank approximation
	Randomized SVD
	Randomized Nyström and generalized Nyström approximation
	Parallelism and numerical experiments

