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Low rank matrix approximation

■ Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

■ Problem with diverse applications
□ from scientific computing: fast solvers for integral equations, H-matrices
□ to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k
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Low rank matrix approximation

■ Best rank-k approximation [[A]]k = UkΣkV
T
k is rank-k truncated SVD of

A [Eckart and Young, 1936], where Uk ,Σk ,Vk are the first k left singular
vectors, leading singular values, right singular vectors respectively,

min
rank(Ak )≤k

||A− Ak ||2 = ||A− [[A]]k ||2 = σk+1(A) (1)

min
rank(Ak )≤k

||A− Ak ||F = ||A− [[A]]k ||F =

√√√√ n∑
j=k+1

σ2
j (A) (2)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

■ Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Large data sets

Problems to solve

■ Compute low rank approximation of A

■ Select a subset of columns of A

Constraints

■ Matrix A might not exist entirely at a given time, rows or columns are
added progressively.
□ Streaming algorithm: can solve an arbitrarily large problem with one pass

over the data (a row or a column at a time).
□ Weakly streaming algorithm: can solve a problem with O(1) passes over the

data.

■ Matrix A might exist only implicitly, and it is never formed explicitly, e.g.
A = BC .

5 of 30



Large data sets

Problems to solve

■ Compute low rank approximation of A

■ Select a subset of columns of A

Constraints

■ Matrix A might not exist entirely at a given time, rows or columns are
added progressively.
□ Streaming algorithm: can solve an arbitrarily large problem with one pass

over the data (a row or a column at a time).
□ Weakly streaming algorithm: can solve a problem with O(1) passes over the

data.

■ Matrix A might exist only implicitly, and it is never formed explicitly, e.g.
A = BC .

5 of 30



Goal

Compute efficiently a low rank-k approximation Ak of A satisfying

∥A− Ak∥2 ≤ γσk+1(A)

for some γ ≥ 1, γ typically a low degree polynomial in k and dimensions of
A

■ Reduce flops and communication
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Properties of the approximations

Definitions and some of the results taken from [Demmel et al., 2023].

Definition 1
[low-rank approximation] A matrix Ak satisfying ∥A− Ak∥2 ≤ γσk+1(A) for
some γ ≥ 1 will be said to be a (k , γ) low-rank approximation of A.

Definition 2
[spectrum preserving] If Ak satisfies

σj(A) ≥ σj(Ak) ≥ γ−1σj(A)

for j ≤ k and some γ ≥ 1, it is a (k , γ) spectrum preserving.

Definition 3
[kernel approximation] If Ak satisfies

σk+j(A) ≤ σj(A− Ak) ≤ γσk+j(A)

for 1 ≤ j ≤ n − k and some γ ≥ 1, it is a (k , γ) kernel approximation of A.
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Idea underlying many algorithms

Compute Ak = PA, where P = Po or P = Pob is obtained as:

1. Construct a low dimensional subspace X = range(AΩ), Ω ∈ Rn×l that
approximates well the range of A, e.g.

∥A− PoA∥2 ≤ γσk+1(A), for some γ ≥ 1,

where Q is orth. basis of (AΩ) and orthogonal projector:

PoA = AΩ(AΩ)+A = QQTA, or equiv Poaj := arg min
x∈X

∥x − aj∥2

2. Select a semi-inner product ⟨Θ·,Θ·⟩2, Θ ∈ Rl′×m l ′ ≥ l , define (oblique
projector):

PobA = AΩ(ΘAΩ)+ΘA, or equiv Pobaj := arg min
x∈X

∥Θ(x − aj)∥2
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Low rank approximation and orthogonal projector

Given A = UΣV T , let Uk ,Σk ,Vk be the first k left singular vectors, leading
singular values, right singular vectors respectively. Then the best
approximation is when Q = Uk :

QQTA = UkU
T
k UΣV T

||A− QQTA||2 = ||diag(0, . . . , 0, σk+1, . . . σn)||2 = σk+1
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Randomized algorithms - main idea

■ Construct a low dimensional subspace that captures the action of A.

■ Restrict A to the subspace and compute a standard QR or SVD
factorization.

Obtained as follows:
1. Compute an approximate basis for the range of A (m × n)

find Q (m × k) with orthonormal columns and approximate A by the
projection of its columns onto the space spanned by Q:

A ≈ QQTA

2. Use Q to compute a standard factorization of A

Good sources for additional information: [Halko et al., 2011, Martinsson and Tropp, 2020]
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Typical randomized SVD

1. Compute an approximate basis for the range of A ∈ Rm×n

Sample Ω ∈ Rn×l , l = p + k , with independent mean-zero, unit-variance
Gaussian entries.
Compute Y = AΩ, Y ∈ Rm×l expected to span column space of A.
□ Cost of multiplying AΩ: 2mnl flops and O(log2 P) messages

2. With Q being orthonormal basis of Y , approximate A as:

ARSVD = QQTA = PoA

□ Cost of multiplying QTA: 2mnl flops and O(log2 P) messages
□ randomized SVD relies on an orthogonal projection

Source: Halko et al, Finding structure with randomness: probabilistic algorithms for

constructing approximate matrix decomposition, SIREV 2011.
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Typical randomized SVD

Algorithm
Input: matrix A ∈ Rm×n, desired rank k , l = p + k , q.
1. Sample an n×l test matrix Ω with independent mean-zero, unit-variance

Gaussian entries.
2. Compute Y = (AAT )qAΩ /* Y is expected to span the column space

of A */
3. Construct Q ∈ Rm×l with columns forming an orthonormal basis for the

range of Y .
4. Compute B = QTA, B ∈ Rl×n

5. Compute the rank-k truncated SVD of B as ÛΣV T , Û ∈ Rl×k , V T ∈
Rk×n

Return the approximation [[ARSVD]]k = QÛ · Σ · V T

See e.g. Algorithm 8 (relying on rangefinder with powering described in section 11.6.1)

from [Martinsson and Tropp, 2020]
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Randomized SVD (q = 0)

Theorem 1.1 from Halko et al. If Ω is chosen to be i.i.d. N(0,1), k, p ≥ 2,
q = 1, then the expectation with respect to the random matrix Ω is

E(||A− QQTA||2) ≤
(
1 +

4
√
k + p

p − 1

√
min(m, n)

)
σk+1(A)

and the probability that the error satisfies

||A− QQTA||2 ≤
(
1 + 11

√
k + p ·

√
min(m, n)

)
σk+1(A)

is at least 1− 6/pp.
For p = 6, the probability becomes .99.
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Randomized SVD

Theorem 10.6, Halko et al. Average spectral norm. Under the same
hypotheses as Theorem 1.1 from Halko et al.,

E(||A− QQTA||2) ≤

(
1 +

√
k

p − 1

)
σk+1(A) +

e
√
k + p

p

 n∑
j=k+1

σ2
j (A)

1/2

■ Fast decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2
≈ σk+1 then the approximation should be accurate.

■ Slow decay of singular values:

If
(∑

j>k σ
2
j (A)

)1/2
≈

√
n − kσk+1 and n large, then the approximation

might not be accurate.

Source: G. Martinsson’s talk
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Power iteration q ≥ 1

The matrix (AAT )qA has a faster decay in its singular values:

■ has the same left singular vectors as A

■ its singular values are:

σj((AA
T )qA) = (σj(A))

2q+1
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Cost of randomized truncated SVD

■ Randomized SVD requires 2q + 1 passes over the matrix.

■ The last 4 steps of the algorithm cost:
(2) Compute Y = (AAT )qAΩ: 2(2q + 1) ·mn · (k + p)
(3) Compute QR of Y : 2m(k + p)2

(4) Compute B = QTA: 2mn · (k + p)
(5) Compute SVD of B: O(n(k + p)2)

■ If n ≥ k + p and q = 1, then (2) and (4) dominate (3).

■ To have a smaller arithmetic cost than deterministic approaches, the cost
of (2) and (4) need to be reduced.

■ (2) can be reduced by using a fast Johnson-Lindenstrauss transform

■ (4) can be reduced by using an oblique projection
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Results from image processing (from Halko et al)

■ A matrix A of size 9025× 9025 arising from a diffusion geometry
approach.

■ A is a graph Lapacian on the manifold of 3× 3 patches.
■ 95× 95 pixel grayscale image, intensity of each pixel is an integer ≤ 4095.
■ Vector x (i) ∈ R9 gives the intensities of the pixels in a 3× 3

neighborhood of pixel i .
■ W reflects similarities between patches, σ = 50 reflects the level of

sensitivity,

wij = exp{−||x (i) − x (j)||2/σ2},
■ Sparsify W , compute dominant eigenvectors of A = D−1/2WD−1/2.
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Experimental results (from Halko et al)

■ Approximation error : ||A− QQTA||2
■ Estimated eigenvalues for k = 100
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Randomized Nyström approximation

Goal: derive an algorithm that uses one pass over the data

For A ∈ Rn×n symmetric positive semidefinite (SPSD), sketching Ω ∈ Rn×l ,
randomized Nyström approximation computes

ANyst = (AΩ)(ΩTAΩ)+(ΩTA) (3)

where (ΩTAΩ)+ denotes the pseudoinverse of ΩTAΩ
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Randomized Nyström Algorithm

Two solutions possible for computing a rank-k approximation from equation
(3)

1. compute a rank-k truncation of the Nyström approximation ANyst

2. compute a rank-k truncation of the matrix B = ΩTAΩ
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Randomized Nyström Algorithm

■ Several solutions possible for computing B+ = (ΩTAΩ)+ and obtaining a
rank-k decomposition

■ Since B = ΩTAΩ is SPSD, one can use its truncated eigenvalue
decomposition, or Cholesky factorization if B is SPD (symmetric positive
definite).

■ Special care required if B = ΩTAΩ is badly conditioned or rank deficient,
when e.g. A has rank less than l . For one solution see e.g.
[Tropp et al., 2017a] or these slides, where the Cholesky factorization of
B has to be replaced with a more stable decomposition
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Randomized Nyström - rank-k truncation of ANyst

Let C = AΩ and B = ΩTAΩ, suppose the Cholesky factorization of B
exists, then compute:

B = ΩTAΩ = LLT Cholesky factorization

Z = CL−T = QR QR factorization

R = UkΣkV
T
k truncated rank-k SVD

We obtain the factorization:

(AΩ)(ΩTAΩ)+(ΩTA) = CL−TL−1CT = ZZT

= QRRTQT

[[ANyst ]]k = QUkΣkΣkU
T
k QT

= ÛkΣ
2
k Û

T
k , where

Ûk = QUk = CL−TR−1Uk = ZVkΣ
−1
k

Remarks:
■ Ûk could be computed more stably as QUk or more efficiently as ZVkΣ

−1
k

■ If B is rank defficient, replace Cholesky factorization with more stable
truncated decomposition (eigenvalue/SVD)
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Randomized Nyström (contd)

Using derivations from previous slide, the algorithm becomes:

Algorithm Randomized Nyström with rank-k truncation of ANyst

Input A ∈ Rn×n, Ω ∈ Rn×l :

1. Compute C = AΩ, C ∈ Rn×l

2. Compute B = ΩTC , B ∈ Rl×l and its Cholesky factorization B = LLT (if
this fails, one could use the eigenvalue decomposition of B)

3. Compute Z = CL−T with substitution (no explicit computation of the
inverse of LT )

4. Compute the QR factorization Z = QR

5. Compute truncated rank-k SVD of R as UkΣkV
T
k

6. Compute Ûk = QUk

7. Output factorization [[ANyst ]]k = ÛkΣ
2
k Û

T
k
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Parallel randomized Nyström

Example of parallelization for computing C = AΩ and B = ΩTAΩ

■ Sketching matrix Ω (see previous lecture): consider the case when blocks
of Ω can be generated on each processor

■ Consider Ω distributed block row-wise over
√
P processors and A

distributed over
√
P ×

√
P processors, that is:

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Ω =

Ω1

Ω2

Ω3


■ Compute:

C =

C1

C2

C3

 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

Ω1

Ω2

Ω3

 , B = ΩTAΩ
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Parallel randomized Nyström

Compute in parallel C = AΩ, B = ΩTAΩ, eg for B

B = ΩTAΩ =
(
ΩT

1 ΩT
2 ΩT

3

)A11 A12 A13

A21 A22 A23

A31 A32 A33

Ω1

Ω2

Ω3


Computation of C = AΩ, B = ΩTAΩ
Root processor broadcasts information for generating blocks of Ω
Let Pij by my processor number that owns block Aij

for all processors Pij , i = 1 :
√
P, j = 1 :

√
P in parallel do

Generate blocks Ωi ,Ωj of Ω
Compute Cij = AijΩj

Sum-reduce to compute Ci =
∑√

P
j=1 Cij among procs in same row

Compute Bij = ΩT
i AijΩj

end for
Sum-reduce to compute B =

∑√
P,

√
P

i,j=1 Bij

Communication cost: 3log2Pα+ (l2 + ln/
√
P) log2 Pβ
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Application to kernel methods

■ Consider kernel methods that map data points into a feature space

■ Highly used in learning as classification and regression

■ Given X = [x1, . . . , xn], X ∈ Rm×n, each column xi , i = 1 . . .m, is a data
point in Rm

■ Kernel based learning maps input data points to a feature space

■ Inner products in feature space computed with a nonlinear kernel function
κ(·, ·), used to build a SPSD kernel matrix K ∈ Rn×n whose elements are
defined as

Ki,j = κ(xi , xj) = ⟨ϕ(xi ), ϕ(xj)⟩, i , j = 1, . . . , n (4)

where ϕ : x → ϕ(x) is the kernel-induced feature map

■ We consider the radial basis function κ(xi , xj) = e−∥xi−xj∥2
2/c

2

, c > 0
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Experiments and performance of Gaussian vs SRHT

Dataset year with c = 105
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Block SRHT

Radial basis function e−∥xi−xj∥22/c2 on n rows of input data, n = 65536, 8× 8 procs (for
more details see [Balabanov et al., 2022]
Top graph: nuclear error ∥A− [[ANyst ]]k∥∗/∥A∥∗
Bottom graph: Runtime for computing ΩTAΩ (julia)
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