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Preconditioned Krylov subspace methods

■ Solve by using iterative methods

Ax = b.

■ Convergence depends on κ(A) and the eigenvalue distribution (for SPD
matrices).

■ To accelerate convergence, solve

M−1Ax = M−1b,

where
□ M approximates well the inverse of A and/or
□ improves κ(A), the condition number of A.

■ Ideally, we would like to bound κ(A), independently of the size of the
matrix A.
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Domain decomposition methods: notations

Solve M−1Ax = M−1b, where A ∈ Rn×n is SPD

For N = {1, . . . , n}, let Ni ⊂ N for i = 1 . . .N be the subset of DOF of
subdomain i , referred to as Ωi , possibly with overlap. We define:

■ The restriction operator Ri ∈ Rni×n, Ri = In (Ni , : ).

■ The prolongation operator, RT
i ∈ Rn×ni

■ The matrix associated to domain i ,
Ai ∈ Rni×ni ,

Ai = RiAR
T
i

■ The algebraic partition of unity (Di )1≤i≤N ,

In =
N∑
i=1

RT
i DiRi
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Direct factorization of a matrix in  
arrow block diagonal form 

1 1 

1 1 1/2 1 1 1/2 
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Additive and Restrictive Additive Schwarz methods

■ Original idea from Schwarz algorithm at the continuous level (Schwarz
1870)

■ Restricted Additive Schwarz (Cai & Sarkis 1999) defined as

M−1
RAS :=

N∑
i=1

RT
i DiA

−1
i Ri

■ Symmetric formulation, Additive Schwarz (1989) defined as

M−1
AS :=

N∑
i=1

RT
i A−1

i Ri

■ In practice, RAS more efficient than AS
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Two level preconditioners

Given a coarse subspace V0 ∈ Rn×n0 and Z its basis, V0 = span Z , let
R0 = ZT , the coarse grid R0AR

T
0 .

The two level AS preconditioner is

M−1
AS,2 := RT

0

(
R0AR

T
0

)−1
R0 +

N∑
i=1

RT
i (Ai )

−1 Ri

Let kc be minimum number of distinct colors so that
(
span{RT

i }
)
1≤i≤N

of

the same color are mutually A-orthogonal. The following holds (e.g. Chan
and Mathew 1994)

λmax(M
−1
AS,2A) ≤ kc + 1
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Convergence theory

Results from e.g. [Chan and Mathew, 1994, Dolean et al., 2015].

M−1
AS,2A :=

N∑
i=0

RT
i (Ai )

−1 RiA =
N∑
i=0

Pi , where Pi = RT
i (Ai )

−1 RiA

Pi are orthogonal projection matrices in the A inner product since

PiPi = RT
i (Ai )

−1 RiAR
T
i (Ai )

−1 RiA = RT
i (Ai )

−1 RiA = Pi

APi = ART
i (Ai )

−1 RiA = PT
i A

Recall that a(u, v) = vTAu and ||Pi || ≤ 1.

λmax(M
−1
AS,2A) = sup

u∈Rn

a(M−1
AS,2Au, u)

a(u, u)

= sup
u∈Rn

N∑
i=0

a(Piu, u)

||u||2a
= sup

u∈Rn

N∑
i=0

a(Piu,Piu)

||u||2a

≤
N∑
i=0

sup
u∈Rn

a(Piu,Piu)

||u||2a
≤ N + 1
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Convergence theory (contd)

If we define a-orthogonal projectors

P̃i =
∑
j∈Θi

Pj , for i = 1, . . . kc

where Θi is a set of indices with the same color (that is the indices denoting
disjoint subdomains). We can apply the same reasoning and obtain

λmax(M
−1
AS,2A) ≤ kc + 1
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The need for two level preconditioners

■ When solving complex linear systems arising, e.g. from large discretized
systems of PDEs with strongly heterogeneous coefficients (high contrast,
multiscale).

□ Flow in porous media

□ Elasticity problems

□ CMB data analysys (no PDE)

■ Most of the existing preconditioners lack robustness
□ wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one

level DDM methods (block Jacobi, RAS), incomplete LU
□ A few small eigenvalues hinder the convergence of iterative methods
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How to compute the coarse subspace V0 = span Z

■ Nicolaides 87 (CG): kernel of the operator (constant vectors) for a
Poisson like problem works well

Z :=
(
RT
i DiRi1

)
i=1:N

Z defined as in (Nicolaides 1987):

Z =


1Ω1

1Ω2

. . .

1ΩN


Courtesy of F. Nataf 
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How to compute the coarse subspace V0 = span Z

■ Nicolaides 87 (CG): kernel of the operator (constant vectors)

Z :=
(
RT
i DiRi1

)
i=1:N

■ Z is formed by estimations of eigenvectors corresponding to smallest
eigenvalues / knowledge from the physics

■ Krylov methods can be used to obtain those estimations
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Example of two level precondiitoner

Consider the matrix [Tang et al., 2009]:

P := I − AZE−1ZT , E := ZTAZ

where
■ Z is the deflation subspace matrix of full rank
■ E is the coarse grid correction, a small dense invertible matrix
■ P is called deflation matrix, PAZ = 0

Example of preconditioner

P−1
2lvl = M−1P + ZE−1ZT ,

where M is the first level preconditioner (eg based on block Jacobi).

■ P−1
2lvlAZ = Z

■ The small eigenvalues are shifted to 1.

■ P2lvl is not SPD, even when A is, better choices available, but more
expensive.
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Two level preconditioners (contd)

Computing the preconditioner requires
■ Deflation subspace Z , which can be formed by

□ Eigenvectors corresponding to smallest eigenvalues - from previous linear
systems solved with different right hand sides, etc.

□ Using knowledge from the physics, partition of the unity, etc.

■ Computing AZ and E = ZTAZ .

Applying the preconditioner at each iteration requires

■ Computing y = ZE−1ZT (Axi ) = ZE−1ZT v
⇒ involves collective communication when computing ZT v ,

⇒ and solving a linear system with E .
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