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Preconditioned Krylov subspace methods

= Solve by using iterative methods
Ax = b.
m Convergence depends on (A) and the eigenvalue distribution (for SPD

matrices).

® To accelerate convergence, solve
M~tAx = M~ 1p,

where
U M approximates well the inverse of A and/or
0 improves x(A), the condition number of A.

u |deally, we would like to bound k(A), independently of the size of the
matrix A.
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Domain decomposition methods: notations

Solve M—1Ax = M~1h, where A € R"™" is SPD

For N =1{1,..., n}, let N; C N fori=1...N be the subset of DOF of
subdomain i, referred to as ;, possibly with overlap. We define:

® The restriction operator R; € R"*", R; = I, (N, :).
= The prolongation operator, R/ € R™*"

® The matrix associated to domain 1,
A; € Rmixni,

A; = RART

® The algebraic partition of unity (D;);<;<p:
1/2

N
I, = Z RTDiR;
i=1
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Additive and Restrictive Additive Schwarz methods

Original idea from Schwarz algorithm at the continuous level (Schwarz
1870)

Restricted Additive Schwarz (Cai & Sarkis 1999) defined as

N
Mzas =Y _ R DAT'R;
i=1

Symmetric formulation, Additive Schwarz (1989) defined as

N
Myl =Y RTA'R
i=1

= In practice, RAS more efficient than AS
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Two level preconditioners

Given a coarse subspace Vy € R"™™ and Z its basis, Vo = span Z, let
Ry = ZT, the coarse grid ROAROT.
The two level AS preconditioner is

N
_ —1 _
Mad, =Ry (RAR]) ™ Ro+ Y _RT(A)'R;
i=1

Let k. be minimum number of distinct colors so that (span{R/}),_,, of

the same color are mutually A-orthogonal. The following holds (e.g. Chan
and Mathew 1994)

Amax(Mpg ,A) < ke +1
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Convergence theory

Results from e.g. [Chan and Mathew, 1994, Dolean et al., 2015].
N N
M, A=Y "RT(A) ' RA=D"P, where P, = RT (A) ' RiA
i=0 i=0
P; are orthogonal projection matrices in the A inner product since
P.Pi = RT(A) 'RART (A) "RA=RT (A) 'RA=P,
AP, = ART(A) 'RA=PTA
Recall that a(u,v) = v Au and ||P;|| < 1.

a(Mz2 Au, u
Amax(M;Sl’gA) = sup M

ueRn (u U)
N
a(Pu, u) a(P;u, Piu)
= sup = sup -
ueR"Z [lul3 uean; [lull3
N a(Pju, Piu)
< sup —————= < N+1
2 S Tl
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Convergence theory (contd)

If we define a-orthogonal projectors

Pi=> P fori=1, .k
J€O;

where ©; is a set of indices with the same color (that is the indices denoting
disjoint subdomains). We can apply the same reasoning and obtain

Amax(Mpg ,A) < ke +1
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The need for two level preconditioners

= When solving complex linear systems arising, e.g. from large discretized
systems of PDEs with strongly heterogeneous coefficients (high contrast,
multiscale).

BOILUD - Caso 230 x 30 x 16
Relative residual vs number of tera

‘‘‘‘‘‘‘

Flow in porous media
o Elasticity problems
CMB data analysys (no PDE)
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= Most of the existing preconditioners lack robustness

O wrt jumps in coefficients / partitioning into irregular subdomains, e.g. one
level DDM methods (block Jacobi, RAS), incomplete LU
0 A few small eigenvalues hinder the convergence of iterative methods
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How to compute the coarse subspace Vy = span Z

® Nicolaides 87 (CG): kernel of the operator (constant vectors) for a
Poisson like problem works well

Z = (RTDRY),

Z defined as in (Nicolaides 1987):

101 10 Py
1,

lq,

100 150
Courtesy of F. Nataf
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How to compute the coarse subspace Vy = span Z

m Nicolaides 87 (CG): kernel of the operator (constant vectors)

7 = (R,.TD,'Ril) i=1:N

m 7 is formed by estimations of eigenvectors corresponding to smallest
eigenvalues / knowledge from the physics

= Krylov methods can be used to obtain those estimations
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Example of two level precondiitoner

Consider the matrix [Tang et al., 2009]:
P.=1—AZE~1ZT, E:=ZTAZ

where

® Z is the deflation subspace matrix of full rank

® F is the coarse grid correction, a small dense invertible matrix
® P is called deflation matrix, PAZ =0
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Example of two level precondiitoner

Consider the matrix [Tang et al., 2009]:
P.=1—AZE~1ZT, E:=ZTAZ

where

® Z is the deflation subspace matrix of full rank

® F is the coarse grid correction, a small dense invertible matrix
® P is called deflation matrix, PAZ =0

Example of preconditioner

Py =M"1P+ZE'ZT,
where M is the first level preconditioner (eg based on block Jacobi).
" PynAZ =27
® The small eigenvalues are shifted to 1.

®m Py, is not SPD, even when A is, better choices available, but more
expensive.
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Two level preconditioners (contd)

Computing the preconditioner requires

= Deflation subspace Z, which can be formed by

0 Eigenvectors corresponding to smallest eigenvalues - from previous linear
systems solved with different right hand sides, etc.
© Using knowledge from the physics, partition of the unity, etc.

= Computing AZ and E = ZTAZ.

z E z (Ax
H N ]

) Z E'(Z'Ax)

14 of 16




Two level preconditioners (contd)

Computing the preconditioner requires

= Deflation subspace Z, which can be formed by

0 Eigenvectors corresponding to smallest eigenvalues - from previous linear
systems solved with different right hand sides, etc.
© Using knowledge from the physics, partition of the unity, etc.

= Computing AZ and E = ZTAZ.
Applying the preconditioner at each iteration requires
= Computing y = ZE"1ZT(Ax) = ZE71ZTv

= involves collective communication when computing Z7 v,

and solving a linear svstem with E.
i Z E'(Z"Ax)

Z-z-q ﬂ-u
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