LU factorization and its communication avoiding

version

Laura Grigori

EPFL and PSI

October 15, 2024

PAUL SCHERRER INSTITUT

=PrL

Plan

LU factorization

Block LU factorization

Communication avoiding LU factorization

2037 1

Norms and other notations

[AlF =

1Al =

[Alle =

1Al = max >]

Inequalities |x| < |y| and |A| < |B] hold componentwise.

30f 37 1

Plan

LU factorization

40f 37 1

Algebra of the LU factorization

LU factorization
Compute the factorization NMA = LU

Example
Given the matrix

1
M= |-2 1 . MA=
-3 1

Let

5 0f 37 1

Algebra of the LU factorization

® In general
le—1
1
AT MkA(k) = —My16 1 A("),where
—Mp k 1
M, = l—mee], M =1+mee]
where e is the k-th unit vector, my = (0,...,0,1, mgy1k,-- -, mmk)T,

eme=0,Yi< k

i

® The factorization can be written as

M, ;...M;A=A" =U

6of 37 1

Algebra of the LU factorization

= We obtain
A = M'..MU
= (I+me/)...(I + my_1e] U

n—1
(I + Z m,-e,-T> u
i=1

1
moy 1
= : : U=LU
mp1r Mp2 1

7of 37 1

The need for pivoting

= For stability, avoid division by small diagonal elements

® For example

0 3 3
A=[3 1 3 (1)
6 2 3
has an LU factorization if we permute the rows of matrix A
6 2 3 1 6 2 3
NMA=[0 3 3| = 1 . 3 3 2
31 3 0.5 1 1.5

m Partial pivoting allows to bound the multipliers m;y < 1 and hence |L| <1

m Factorization referred to as LU with partial pivoting (LUPP) or also
Gaussian elimination with partial pivoting GEPP

8of 37 1

Solving Ax = b by using Gaussian elimination

Composed of 4 steps

1. Factor NA = LU, (2/3)n?) flops

2. Compute Mb to solve LUx = Mb

3. Forward substitution: solve Ly = I x b, n? flops
4

. Backward substitution: solve Ux = y, n® flops

9of 37 1

Wilkinson's backward error stability result

Growth factor gy defined as

max; j |af‘-\

gw =
max; ; |aj|

Note that)
|uz = [a] < gw max|a;

Theorem (Wilkinson's backward error stability result, see also
[N.J.Higham, 2002] for more details)

Let A € R™" and let X be the computed solution of Ax = b obtained by
using GEPP. Then

(A+AAR=b, [AA[s < n*y308w ()| Allso,

where v, = ne/(1 — ne), € is machine precision and assuming ne < 1.

10 of 37 1

The growth factor

= The LU factorization is backward stable if the growth factor is small
(grows linearly with n).

= For partial pivoting, the growth factor g(n) < 2", and this bound is
attainable.

= In practice it is on the order of n?/3 — n'/2

Exponential growth factor for Wilkinson matrix

1 0 0 --- 0 1
-1 1 0 .. 0 1
A = diag(+1) -l
: : i 0 1
-1 -1 -~ -1 1 1
| -1 -1 -~ -1 -1 1|

1 of 37 1

Experimental results for special matrices

Several errror bounds for GEPP

matrix cond(A,2) gw [IL]]1 cond(U,2) %
hadamard 1.0E+40 41E+3 | 4.1E+3 5.3E+5 0.0E+0
randsvd 6.7TE+7 4.7E+0 | 9.9E+42 1.4E+10 5.6E-15
chebvand 3.8E+19 2.0E42 | 2.2E+3 4.8E422 5.1E-14
frank 1.7E+20 1.0E+0 | 2.0E40 1.9E+30 2.2E-18
hilb 8.0E+21 1.0E4+0 | 3.1E+3 2.2E+22 2.2E-16

= Two reasons considered to be important for the average case stability
[Trefethen and Schreiber, 90]:

' the multipliers in L are small
0 the correction introduced at each elimination step is of rank 1

12.f 37 1

Plan

Block LU factorization

130f 37 1

Block formulation of the LU factorization

Partitioning of matrix A of size n x n

A Ap
A =
[Ay Ax }

where Aj; is of size b X b, Ay is of size (m — b) X b, Ay, is of size
b x (n— b) and Ay is of size (m — b) x (n— b).

Block LU algebra

The first iteration computes the factorization:

n7A — Au Ap | _[Lu | U U
! Ay Ay Loy oy Al

The algorithm continues recursively on the trailing matrix Al

14 of 37 1

Block LU factorization - the algorithm

1. Compute the LU factorization with partial pivoting of the first block

column

A\ (Lu
m () = (1)

2. Pivot by applying the permutation matrix I'IlT on the entire matrix,

n A;n Ap }
A=n/A=| 2% =
! [A Ax
3. Solve the triangular system
LiiUp2 = A,

4. Update the trailing matrix,

Al = Ay — LyUp

5. Compute recursively the block LU factorization of A

15 of 37

LU Factorization as in ScaLAPACK

LU factorization on a P = v/PxV/P grid of
processors
Forib =1ton-1stepb
A(ib) = A(ib : n,ib : n)
1. Compute panel factorization
find pivot in each column, swap rows
2. Apply all row permutations

broadcast pivot information along the rows
0 swap rows at left and right

3. Compute block row of U

U broadcast right diagonal block of L of
current panel

4. Update trailing matrix

broadcast right block column of L
broadcast down block row of U

16 of 37

Cost of LU Factorization in ScaLAPACK

LU factorization on a P = v/Px+/P grid of

processors

Forib =1ton-1stepb

A(ib) = A(ib: n,ib: n) . U |

1. Compute panel factorization L ﬁ
N U

" #messages = O(nlog, V/P)
2. Apply all row permutations
" #messages = O(n/b(log, VP + log, V'P))
3. Compute block row of U
#messages = O(n/blog, v/P)
4. Update trailing matrix
#messages = O(n/b(log, v'P + log, v/ P)

17 of 37

Cost of parallel block LU

Consider that we have a v/P x /P grid, block size b

(2/3n3 n2b) n?log P
o +—=)+8-
PP VP

35
- (1.5n|og P+ >0 log P) .

b

18 of 37 1

Plan

Communication avoiding LU factorization

19 of 37 1

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR. Consider first column block,
call it A

()T Dy2)
oo) [er] -wee
A4 (n§2>)rL42>U42>
nhT
B (,-,52) T ng)
= @) @

20 of 37 1

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR. Consider first column block,
call it A

@),7,2)y@
m2hTl2y
AL by b
" A ny7) y'u 2)\T, (2
A= (Ai) ORNCNE) = @@
A,
4 (n§2>)rL42>U42>
nhT
_ o@)T .
a@HT

20 of 37

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR. Consider first column block,
call it A

@),7,2)y@
m2hTl2y
AL by b
" A ny7) y'u 2)\T, (2
A= (Ai) ORNCNE) = @@
A,
4 (n§2))rL42>U42>
nhT
_ o@)T .
a@HT

20 of 37

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR. Consider first column block,
call it A

@),7,2)y@
m2hTl2y
AL by b
A (ny7) ' Ly7u, 2)\T, (2
A= (Ai) ORNCNE) = @@
A,
4 (HZZ))TL42>U42>
nhT
_ o@)T .
a@HT

(A©)TLO)y(©

The final factorization is:

A — (|-|(2))T|_(2)(|-|(1))T|_(1)(|-|(0))TL(O)U(O)

20 of 37

Obvious generalization of TSQR to LU

= Block parallel pivoting:
A1 — U?K‘ (1)
A, — UP TN

= Block pairwise pivoting:
0 uses a flat tree and is optimal in the sequential case
o introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization
used to solve a system with 100 equations on EDSAC 2 computer using an
auxiliary magnetic-tape
used in PLASMA for multicore architectures and FLAME for out-of-core
algorithms and for multicore architectures
A; —UP Uyl -yl
A;
A;
A,

21037 1

Block parallel pivoting

average growth factor

10° P
=& parallel pivoting
~-P=32, b= 1
o P=32, b=2
—+-P=32, b= 4
10| —+P=32,b=8
—+-P=32, b=16
- P=32, b=32
10"}
100 e L L L
10° 10’ 10° 10°

matirx size

= Unstable for large number of processors P

® When P=number rows, it corresponds to parallel pivoting, known to be
unstable (Trefethen and Schreiber, 90)

22 of 37

Block pairwise pivoting

. —¥—pairwise
10 23 3

—=-n

nZ

average growth factor

Il Il L L L L L L
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 15360
matrix size

® Results shown for random matrices

= Will become unstable for large matrices

230f 37 1

Tournament pivoting - the overall idea

® At each iteration of a block algorithm

Ain Ap x A
A= where A =
<A21 A Az
where Ajy is of size b x b, Ay is of size (m — b) x b, Ay is of size
b x (n— b) and Ay, is of size (m — b) x (n— b).
O Preprocess A to find at low communication cost good pivots for the LU
factorization of A, return a permutation matrix My

' Permute the pivots to top, ie compute M1 A
0 Compute LU with no pivoting of first block column M A, update trailing

matrix, obtain
L11 Ull U12
A=
! (L21 |n7b> (Az — L21U12)

2401 37 1

Tournament pivoting

=N ON

-~ o N

'cor~ o

A= ODN

25 of 37

NO &~ o = O O N O+~ b

NODN -

|

24] [4

2 0 2

_—

4 1

2 0

1 4] [4
2 1
e

(4 2

0 2

Tournament pivoting for a tall skinny matrix

Consider the first block of columns distributed across 4 processors,

m At the leaves of the binomial tree
Compute GEPP factorization of each A; € R™/4xb

nPa; = LBPu?,
nPa, = LPu®,
nPa; = LPuP,
nPa, = LPu?.

26 of 37 1

Tournament pivoting for a tall skinny matrix

® Perform log, P times GEPP factorization of selected 2b x b rows
o Two LU factorizations with partial pivoting are computed in parallel to
obtain two new sets of pivot rows,

2
AW HEZ;Al(]. :b,:) B O/NOR OIS
M;"Ax(1:b,:)

(

&) N As(1: b,:) 1) A ()

A’ = NPa(1:b.))" Ny "A;
4 4(1~b>-)

T At the root of the tree:

[OFNO I
AP = ["1 A b")], nPA® = LOY®

Lgl)Ugl)

! nYAM (L b,:

= Permute to leading positions the global pivot rows I'I(IO)A(lo)(l b,)
® Let My € R™" be the matrix that reflects this permutation
® Perform LU factorization with no pivoting of the permuted matrix

Au| _ [Lu
= {Azj N |:|-21:| Ui (3)

2701 37 1

Tournament pivoting

A

n®a,

A;

1 1
n®Ha®

nPa,

Az

nPa,

0 0
n®a®

A,

ndAY

nPa,

28 of 37

Growth factor for binary tree based CALU

P=256 b=32 L
700q -§‘-P:256‘b:16 o B
P=128 =64 - ¥4
600[| =@=p=1285-32 e -~ 7
=P=128p=16 - -
500K P=64, b=128 - e
=H=P=64, b=64

average growth factor

100 " 1 1 1
1024 2048 4096 8192
matrix size

® Random matrices from a normal distribution

® Same behaviour for all matrices in our test, and |L| < 4.2
29 of 37 1

Our “proof of stability” for CALU

= CALU as stable as GEPP in following sense:
In exact arithmetic, CALU process on a matrix A is equivalent to GEPP
process on a larger matrix G whose entries are blocks of A and zeros.

= Example of one step of tournament pivoting:

A Ay,
A Ap Ax
A
A=Ay Axn|, A31> 2
Asz; Az
Ay, A
G=|(Ax Ay
—Asz; Az

B Proof possible by using original rows of A during tournament pivoting
(not the computed rows of U).

30037 1

Outline of “proof of stability”

m After the factorization of first panel by CALU, A3, (the Schur
complement of As;) is not bounded as in GEPP,

My M Ain A Ay Ap L Oy Up
My Ny [Az Ax = Ay Apn | =|La b : 52
1 A1 A As; Az L1 Im—26 A3
® but A3, can be obtained by GEPP on larger matrix G formed from blocks
of A

An A I_-1_1 (V% 012_ _
G = As Ay = A U;ll Loy Uz —L;llAzl Uﬁl Uz
—Asz1 Az =L Im—2 A%

= GEPP on G does not permute and

>

_ _ 1 _ 1 S
L3iLy ' Axn U Up + A3, = Ly UxnUp; U + AL = Ay Uy Upp + A3,
L31Ux + A3, = As

31 0f 37 1

Growth factor in exact arithmetic

m Matrix of size m-by-n, reduction tree of height H = log,(P)

® In practice growth factor for GEPP and CALU is on the order of
n2/3 _ _pl/2

matrix of size m x (b+ 1)
TSLU(b,H) GEPP
upper bound | attained upper bound
|L| obH 2(b72)H7(b71) 1
gw 2b(H+1) 2b ob
matrix of size m x n
CALU(b,H) GEPP
upper bound | attained upper bound
|L| 2bH 2(b—2)H—(b—1) 1
gw on(H+1)—1 on—1 on—1

320f 37 1

Cost of LU with tournament pivoting

LU factorization on a P = v/Px+/P grid of
processors
Forib =1ton-1stepb
A(ib) = A(ib : n,ib : n)
1. Compute panel factorization
" #messages = O(n/blog, V/P)
2. Apply all row permutations
" #messages = O(n/b(log, VP + log, V'P))
3. Compute block row of U
#messages = O(n/blog, v/P)
4. Update trailing matrix
#messages = O(n/b(log, v'P + log, v/ P)

33 of 37

U
L | |Alib)
= |
d B
;

CALU based on TSLU

Cost of CALU vs ScaLAPACK's PDGETRF

® n x n matrix on VP x VP processor grid, block size b

Flops: (2/3)n®/P +3/2n?blogy P/\/P vs (2/3)n®/P + n?b/P/?
Bandwidth: n?log, P/+/P vs same

Latency: 3nlog, P/b vs 1.5nlog, P

Close to optimal (modulo log P factors)

Assume O(n?/P) memory/processor, O(n?) algorithm
Choose b near n/+/P (its upper bound)

Bandwidth lower bound: Q(n?/v/P) — just log, P smaller
Latency lower bound: Q(+/P) — just polylog(P) smaller

3401 37 1

Performance vs ScaLAPACK

® Parallel TSLU (LU on tall-skinny matrix)
o IBM Power 5
Up to 4.37x faster (16 procs, 1M x 150)
0 Cray XT4
Up to 5.52x faster (8 procs, 1M x 150)
® Parallel CALU (LU on general matrices)
0 Intel Xeon (two socket, quad core)
Up to 2.3x faster (8 cores, 10° x 500)
o IBM Power 5
Up to 2.29x faster (64 procs, 1000 x 1000)
o Cray XT4
Up to 1.81x faster (64 procs, 1000 x 1000)

3501 37 1

Acknowledgement

= Figures from upcoming book on communication avoiding algorithms with
G. Ballard, E. Carson, and J. Demmel

3601 37 1

References

8 N.J.Higham (2002).
Accuracy and Stability of Numerical Algorithms.
SIAM, second edition.

37 of 37 1

	LU factorization
	Block LU factorization
	Communication avoiding LU factorization

