LU factorization and its communication avoiding version

Laura Grigori

EPFL and PSI

October 15, 2024

Plan

LU factorization

Block LU factorization

Communication avoiding LU factorization

Norms and other notations

$$\begin{split} \|\mathbf{A}\|_{F} &= \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} \\ \|\mathbf{A}\|_{2} &= \sigma_{max}(A) \\ \|\mathbf{A}\|_{\infty} &= \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \\ \|\mathbf{A}\|_{1} &= \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}| \end{split}$$

Inequalities $|x| \le |y|$ and $|\mathbf{A}| \le |\mathbf{B}|$ hold componentwise.

Plan

LU factorization

Block LU factorization

Communication avoiding LU factorization

Algebra of the LU factorization

LU factorization

Compute the factorization $\Pi A = LU$

Example

Given the matrix

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 6 & 7 & 3 \\ 9 & 12 & 3 \end{pmatrix}$$

Let

$$\mathbf{M}_1 = \begin{pmatrix} 1 & & \\ -2 & 1 & \\ -3 & & 1 \end{pmatrix}, \quad \mathbf{M}_1 \mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 0 & 5 & -3 \\ 0 & 9 & -6 \end{pmatrix}$$

Algebra of the LU factorization

In general

$$\mathbf{A}^{(k+1)} = \mathbf{M}_k \mathbf{A}^{(k)} := egin{pmatrix} \mathbf{I}_{k-1} & 1 & & & \\ & -m_{k+1,k} & 1 & & \\ & & \ddots & & \ddots & \\ & -m_{n,k} & & & 1 \end{pmatrix} \mathbf{A}^{(k)}, ext{where}$$
 $\mathbf{M}_k = \mathbf{I} - m_k e_k^T, \quad \mathbf{M}_k^{-1} = \mathbf{I} + m_k e_k^T$

where e_k is the k-th unit vector, $m_k = (0, \dots, 0, 1, m_{k+1,k}, \dots, m_{n,k})^T$, $e_i^T m_k = 0, \forall i \leq k$

The factorization can be written as

$$M_{n-1}\dots M_1A=A^{(n)}=U$$

Algebra of the LU factorization

We obtain

$$\mathbf{A} = \mathbf{M}_{1}^{-1} \dots \mathbf{M}_{n-1}^{-1} \mathbf{U}$$

$$= (\mathbf{I} + m_{1} e_{1}^{T}) \dots (I + m_{n-1} e_{n-1}^{T}) \mathbf{U}$$

$$= \left(\mathbf{I} + \sum_{i=1}^{n-1} m_{i} e_{i}^{T}\right) \mathbf{U}$$

$$= \begin{pmatrix} 1 \\ m_{21} & 1 \\ \vdots & \vdots & \ddots \\ m_{n1} & m_{n2} & \dots & 1 \end{pmatrix} \mathbf{U} = \mathbf{L} \mathbf{U}$$

The need for pivoting

- For stability, avoid division by small diagonal elements
- For example

$$\mathbf{A} = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 1 & 3 \\ 6 & 2 & 3 \end{pmatrix} \tag{1}$$

has an LU factorization if we permute the rows of matrix A

$$\mathbf{\Pi A} = \begin{pmatrix} 6 & 2 & 3 \\ 0 & 3 & 3 \\ 3 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & 1 & \\ 0.5 & & 1 \end{pmatrix} \cdot \begin{pmatrix} 6 & 2 & 3 \\ & 3 & 3 \\ & & 1.5 \end{pmatrix} \tag{2}$$

- lacksquare Partial pivoting allows to bound the multipliers $m_{ik} \leq 1$ and hence $|L| \leq 1$
- Factorization referred to as LU with partial pivoting (LUPP) or also Gaussian elimination with partial pivoting GEPP

Solving Ax = b by using Gaussian elimination

Composed of 4 steps

- 1. Factor $\Pi A = LU$, $(2/3)n^3$) flops
- 2. Compute Πb to solve $\mathbf{L}\mathbf{U}x = \Pi b$
- 3. Forward substitution: solve $Ly = \Pi * b$, n^2 flops
- 4. Backward substitution: solve $\mathbf{U}x = y$, n^2 flops

Wilkinson's backward error stability result

Growth factor g_W defined as

$$g_W = \frac{\max_{i,j,k} |a_{ij}^k|}{\max_{i,j} |a_{ij}|}$$

Note that

$$|u_{ij}|=|a_{ij}^i|\leq g_W\max_{i,j}|a_{ij}|$$

Theorem (Wilkinson's backward error stability result, see also [N.J.Higham, 2002] for more details)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and let \hat{x} be the computed solution of Ax = b obtained by using GEPP. Then

$$(\mathbf{A} + \Delta \mathbf{A})\hat{x} = b, \qquad \|\Delta \mathbf{A}\|_{\infty} \le n^2 \gamma_{3n} g_W(n) \|\mathbf{A}\|_{\infty},$$

where $\gamma_n = n\epsilon/(1 - n\epsilon)$, ϵ is machine precision and assuming $n\epsilon < 1$.

The growth factor

- The LU factorization is backward stable if the growth factor is small (grows linearly with n).
- For partial pivoting, the growth factor $g(n) \le 2^{n-1}$, and this bound is attainable.
- In practice it is on the order of $n^{2/3} n^{1/2}$

Exponential growth factor for Wilkinson matrix

$$\mathbf{A} = diag(\pm 1) \left[\begin{array}{cccccc} 1 & 0 & 0 & \cdots & 0 & 1 \\ -1 & 1 & 0 & \cdots & 0 & 1 \\ -1 & -1 & 1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & 1 \\ -1 & -1 & \cdots & -1 & 1 & 1 \\ -1 & -1 & \cdots & -1 & -1 & 1 \end{array} \right]$$

Experimental results for special matrices

Several errror bounds for GEPP

matrix	cond(A,2)	gw	$ L _{1}$	cond(U,2)	$\frac{ \Pi A - LU _F}{ A _F}$
hadamard	1.0E+0	4.1E+3	4.1E+3	5.3E+5	0.0E+0
randsvd	6.7E+7	4.7E+0	9.9E+2	1.4E+10	5.6E-15
chebvand	3.8E+19	2.0E+2	2.2E+3	4.8E+22	5.1E-14
frank	1.7E+20	1.0E+0	2.0E+0	1.9E+30	2.2E-18
hilb	8.0E+21	1.0E+0	3.1E+3	2.2E+22	2.2E-16

- Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90]:
 - □ the multipliers in **L** are small
 - $\ \square$ the correction introduced at each elimination step is of rank 1

Plan

LU factorization

Block LU factorization

Communication avoiding LU factorization

Block formulation of the LU factorization

Partitioning of matrix A of size $n \times n$

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right]$$

where \mathbf{A}_{11} is of size $b \times b$, \mathbf{A}_{21} is of size $(m-b) \times b$, \mathbf{A}_{12} is of size $b \times (n-b)$ and \mathbf{A}_{22} is of size $(m-b) \times (n-b)$.

Block LU algebra

The first iteration computes the factorization:

$$\boldsymbol{\Pi}_1^T\boldsymbol{A} = \left[\begin{array}{cc} \boldsymbol{\bar{A}}_{11} & \boldsymbol{\bar{A}}_{12} \\ \boldsymbol{\bar{A}}_{21} & \boldsymbol{\bar{A}}_{22} \end{array} \right] = \left[\begin{array}{cc} \boldsymbol{L}_{11} & \\ \boldsymbol{L}_{21} & \boldsymbol{I}_{n-b} \end{array} \right] \cdot \left[\begin{array}{cc} \boldsymbol{U}_{11} & \boldsymbol{U}_{12} \\ & \boldsymbol{A}^1 \end{array} \right]$$

The algorithm continues recursively on the trailing matrix \mathbf{A}^1 .

Block LU factorization - the algorithm

 Compute the LU factorization with partial pivoting of the first block column

$$\boldsymbol{\mathsf{\Pi}}_1 \begin{pmatrix} \boldsymbol{\mathsf{A}}_{11} \\ \boldsymbol{\mathsf{A}}_{21} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mathsf{L}}_{11} \\ \boldsymbol{\mathsf{L}}_{21} \end{pmatrix} \boldsymbol{\mathsf{U}}_{11}$$

2. Pivot by applying the permutation matrix Π_1^T on the entire matrix,

$$ar{\mathbf{A}} = oldsymbol{\Pi}_1^{\mathcal{T}} \mathbf{A} = \left[egin{array}{ccc} ar{\mathbf{A}}_{11} & ar{\mathbf{A}}_{12} \ ar{\mathbf{A}}_{21} & ar{\mathbf{A}}_{22} \end{array}
ight]$$

3. Solve the triangular system

$$\textbf{L}_{11}\textbf{U}_{12}=\boldsymbol{\bar{\textbf{A}}}_{12}$$

4. Update the trailing matrix,

$$\mathbf{A}^1 = \mathbf{\bar{A}}_{22} - \mathbf{L}_{21} \mathbf{U}_{12}$$

5. Compute recursively the block LU factorization of \mathbf{A}^1 .

LU Factorization as in ScaLAPACK

LU factorization on a $P = \sqrt{P}x\sqrt{P}$ grid of processors

For ib = 1 to n-1 step b

$$A(ib) = \mathbf{A}(ib : n, ib : n)$$

- 1. Compute panel factorization
 - □ find pivot in each column, swap rows
- 2. Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right
- 3. Compute block row of **U**
 - broadcast right diagonal block of L of current panel
- 4. Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

Cost of LU Factorization in ScaLAPACK

LU factorization on a $P = \sqrt{P}x\sqrt{P}$ grid of processors

For ib = 1 to n-1 step b

$$A(ib) = \mathbf{A}(ib : n, ib : n)$$

- 1. Compute panel factorization
- 2. Apply all row permutations
 - $\square \#messages = O(n/b(\log_2 \sqrt{P} + \log_2 \sqrt{P}))$
- 3. Compute block row of **U**
- 4. Update trailing matrix
 - $\square \#messages = O(n/b(\log_2 \sqrt{P} + \log_2 \sqrt{P})$

Cost of parallel block LU

Consider that we have a $\sqrt{P} \times \sqrt{P}$ grid, block size b

$$\gamma \cdot \left(\frac{2/3n^3}{P} + \frac{n^2b}{\sqrt{P}}\right) + \beta \cdot \frac{n^2 \log P}{\sqrt{P}} + \alpha \cdot \left(1.5n \log P + \frac{3.5n}{b} \log P\right).$$

Plan

LU factorization

Block LU factorization

Communication avoiding LU factorization

First try the obvious generalization of TSQR. Consider first column block, call it $\tilde{\mathbf{A}}$

$$\begin{split} \tilde{\mathbf{A}} &= \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \mathbf{A}_4 \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \mathbf{L}_1^{(2)} \mathbf{u}_2^{(2)} \\ (\mathbf{n}_2^{(2)})^T \mathbf{L}_2^{(2)} \mathbf{u}_2^{(2)} \\ (\mathbf{n}_3^{(2)})^T \mathbf{L}_3^{(2)} \mathbf{u}_3^{(2)} \\ (\mathbf{n}_4^{(2)})^T \mathbf{L}_4^{(2)} \mathbf{u}_4^{(2)} \end{pmatrix} = (\mathbf{n}^{(2)})^T \mathbf{L}^{(2)} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ &= \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \\ (\mathbf{n}_2^{(2)})^T \\ (\mathbf{n}_3^{(2)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(2)} \\ \mathbf{L}_2^{(2)} \\ \mathbf{L}_3^{(2)} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{L}_1^{(2)} \\ \mathbf{L}_3^{(2)} \\ \mathbf{L}_4^{(2)} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ &= \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \mathbf{L}_1^{(1)} \mathbf{u}_3^{(3)} \\ (\mathbf{n}_3^{(1)})^T \mathbf{L}_3^{(1)} \mathbf{u}_1^{(3)} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \\ \mathbf{n}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{n}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{L}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \\ &= (\mathbf{n}^{(0)})^T \mathbf{L}^{(0)} \mathbf{u}^{(0)} \end{pmatrix} \end{split}$$

$$\tilde{\mathbf{A}} = (\mathbf{\Pi}^{(2)})^T \mathbf{L}^{(2)} (\mathbf{\Pi}^{(1)})^T \mathbf{L}^{(1)} (\mathbf{\Pi}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)}$$

First try the obvious generalization of TSQR. Consider first column block, call it $\tilde{\mathbf{A}}$

$$\begin{split} \tilde{\mathbf{A}} & = \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \mathbf{A}_4 \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \mathbf{L}_1^{(2)} \mathbf{u}_1^{(2)} \\ (\mathbf{n}_2^{(2)})^T \mathbf{L}_2^{(2)} \mathbf{u}_2^{(2)} \\ (\mathbf{n}_3^{(2)})^T \mathbf{L}_3^{(2)} \mathbf{u}_3^{(2)} \\ (\mathbf{n}_4^{(2)})^T \mathbf{L}_4^{(2)} \mathbf{u}_4^{(2)} \end{pmatrix} = (\mathbf{n}^{(2)})^T \mathbf{L}^{(2)} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ & = \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \\ (\mathbf{n}_2^{(2)})^T \\ (\mathbf{n}_3^{(2)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(2)} \\ \mathbf{L}_2^{(2)} \\ \mathbf{L}_3^{(2)} \end{pmatrix} \\ & \mathbf{L}_4^{(2)} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ & = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \mathbf{L}_1^{(1)} \mathbf{u}_1^{(3)} \\ (\mathbf{n}_3^{(1)})^T \mathbf{L}_3^{(1)} \mathbf{u}_1^{(3)} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \\ \mathbf{n}_3^{(1)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{n}_3^{(1)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{L}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}^{(1)})^T \mathbf{L}_1^{(1)} \mathbf{u}_1^{(3)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_2^{(1)} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}^{(1)})^T \mathbf{L}_1^{(1)} \mathbf{u}_1^{(2)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_2^{(1)} \end{pmatrix} \end{pmatrix} = (\mathbf{n}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)} \end{pmatrix} \end{split}$$

$$\tilde{\mathbf{A}} = (\mathbf{\Pi}^{(2)})^T \mathbf{L}^{(2)} (\mathbf{\Pi}^{(1)})^T \mathbf{L}^{(1)} (\mathbf{\Pi}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)}$$

First try the obvious generalization of TSQR. Consider first column block, call it $\tilde{\mathbf{A}}$

$$\begin{split} \tilde{\mathbf{A}} & = \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \mathbf{A}_4 \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \mathbf{L}_1^{(2)} \mathbf{u}_1^{(2)} \\ (\mathbf{n}_2^{(2)})^T \mathbf{L}_2^{(2)} \mathbf{u}_2^{(2)} \\ (\mathbf{n}_3^{(2)})^T \mathbf{L}_4^{(2)} \mathbf{u}_4^{(2)} \end{pmatrix} = (\mathbf{n}^{(2)})^T \mathbf{L}^{(2)} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \\ \mathbf{u}_4^{(2)} \end{pmatrix} \\ & = \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \\ (\mathbf{n}_2^{(2)})^T \\ (\mathbf{n}_3^{(2)})^T \\ (\mathbf{n}_3^{(2)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(2)} \\ \mathbf{L}_2^{(2)} \\ \mathbf{L}_3^{(2)} \end{pmatrix} \\ & = \begin{pmatrix} \mathbf{L}_1^{(2)} \\ \mathbf{L}_2^{(2)} \\ \mathbf{L}_3^{(2)} \end{pmatrix} \begin{pmatrix} \mathbf{U}_1^{(2)} \\ \mathbf{U}_2^{(2)} \\ \mathbf{U}_3^{(2)} \end{pmatrix} \\ & = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \mathbf{L}_1^{(1)} \mathbf{U}_1^{(3)} \\ (\mathbf{n}_3^{(1)})^T \mathbf{L}_3^{(1)} \mathbf{U}_1^{(3)} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \\ (\mathbf{n}_3^{(1)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{n}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{L}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \\ & \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \end{pmatrix} = (\mathbf{n}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)} \end{split}$$

$$\tilde{\mathbf{A}} = (\mathbf{\Pi}^{(2)})^T \mathbf{L}^{(2)} (\mathbf{\Pi}^{(1)})^T \mathbf{L}^{(1)} (\mathbf{\Pi}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)}$$

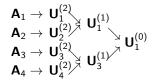
First try the obvious generalization of TSQR. Consider first column block, call it $\tilde{\mathbf{A}}$

$$\begin{split} \tilde{\mathbf{A}} & = & \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \mathbf{A}_3 \\ \mathbf{A}_4 \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \mathbf{L}_1^{(2)} \mathbf{u}_1^{(2)} \\ (\mathbf{n}_2^{(2)})^T \mathbf{L}_2^{(2)} \mathbf{u}_2^{(2)} \\ (\mathbf{n}_3^{(2)})^T \mathbf{L}_3^{(2)} \mathbf{u}_3^{(2)} \\ (\mathbf{n}_4^{(2)})^T \mathbf{L}_4^{(2)} \mathbf{u}_4^{(2)} \end{pmatrix} = (\mathbf{n}^{(2)})^T \mathbf{L}^{(2)} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ & = & \begin{pmatrix} (\mathbf{n}_1^{(2)})^T \\ (\mathbf{n}_2^{(2)})^T \\ (\mathbf{n}_3^{(2)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(2)} \\ \mathbf{L}_2^{(2)} \\ \mathbf{L}_3^{(2)} \end{pmatrix} \\ & = & \mathbf{L}_4^{(2)} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1^{(2)} \\ \mathbf{u}_2^{(2)} \\ \mathbf{u}_3^{(2)} \end{pmatrix} \\ & = & \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \mathbf{L}_1^{(1)} \mathbf{u}_1^{(3)} \\ \mathbf{u}_2^{(1)} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \\ (\mathbf{n}_3^{(1)})^T \mathbf{L}_3^{(1)} \mathbf{u}_1^{(3)} \end{pmatrix} = \begin{pmatrix} (\mathbf{n}_1^{(1)})^T \\ \mathbf{n}_3^{(1)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{n}_3^{(1)})^T \end{pmatrix} \begin{pmatrix} \mathbf{L}_1^{(1)} \\ \mathbf{L}_3^{(1)} \end{pmatrix} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} = (\mathbf{n}^{(1)})^T \mathbf{L}^{(1)} \begin{pmatrix} \mathbf{U}_1^{(1)} \\ \mathbf{U}_3^{(1)} \end{pmatrix} \\ & = & (\mathbf{n}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)} \end{split}$$

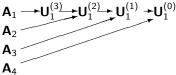
$$\tilde{\mathbf{A}} = (\mathbf{\Pi}^{(2)})^T \mathbf{L}^{(2)} (\mathbf{\Pi}^{(1)})^T \mathbf{L}^{(1)} (\mathbf{\Pi}^{(0)})^T \mathbf{L}^{(0)} \mathbf{U}^{(0)}$$

Obvious generalization of TSQR to LU

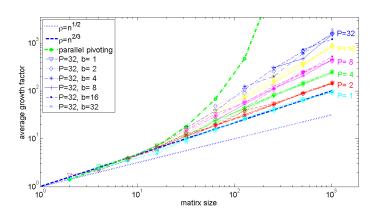
Block parallel pivoting:



- Block pairwise pivoting:
 - uses a flat tree and is optimal in the sequential case
 - introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
 - used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

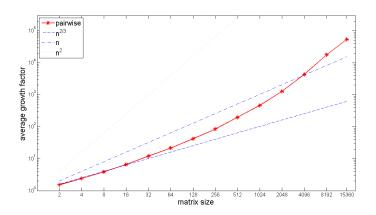


Block parallel pivoting



- Unstable for large number of processors P
- When P=number rows, it corresponds to parallel pivoting, known to be unstable (Trefethen and Schreiber, 90)

Block pairwise pivoting



- Results shown for random matrices
- Will become unstable for large matrices

Tournament pivoting - the overall idea

At each iteration of a block algorithm

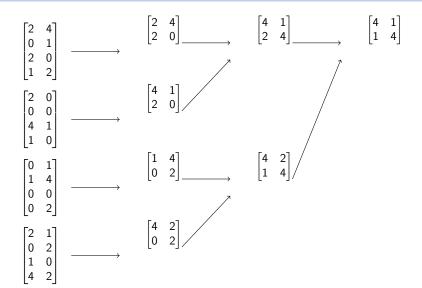
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \quad \text{where } \mathbf{\tilde{A}} = \begin{pmatrix} \mathbf{A}_{11} \\ \mathbf{A}_{21} \end{pmatrix}$$

where \mathbf{A}_{11} is of size $b \times b$, \mathbf{A}_{21} is of size $(m-b) \times b$, \mathbf{A}_{12} is of size $b \times (n-b)$ and \mathbf{A}_{22} is of size $(m-b) \times (n-b)$.

- \square Preprocess $\tilde{\mathbf{A}}$ to find at low communication cost good pivots for the LU factorization of $\tilde{\mathbf{A}}$, return a permutation matrix $\mathbf{\Pi}_1$
- \square Permute the pivots to top, ie compute $\Pi_1 A$
- □ Compute LU with no pivoting of first block column $\Pi_1 \tilde{\mathbf{A}}$, update trailing matrix, obtain

$$\mathbf{\Pi}_{1}\mathbf{A} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{U}_{12} \\ \mathbf{L}_{21} & \mathbf{I}_{n-b} \end{pmatrix} \begin{pmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ & \mathbf{A}_{22} - \mathbf{L}_{21}\mathbf{U}_{12} \end{pmatrix}$$

Tournament pivoting



Tournament pivoting for a tall skinny matrix

Consider the first block of columns distributed across 4 processors,

$$ilde{\mathbf{A}} = egin{bmatrix} \mathbf{A}_1 \ \mathbf{A}_2 \ \mathbf{A}_3 \ \mathbf{A}_4 \end{bmatrix}$$

At the leaves of the binomial tree Compute GEPP factorization of each $\mathbf{A}_I \in \mathbb{R}^{m/4 \times b}$

$$\begin{array}{lcl} \Pi_1^{(2)} \mathbf{A}_1 & = & \mathbf{L}_1^{(2)} \mathbf{U}_1^{(2)}, \\ \Pi_2^{(2)} \mathbf{A}_2 & = & \mathbf{L}_2^{(2)} \mathbf{U}_2^{(2)}, \\ \Pi_3^{(2)} \mathbf{A}_3 & = & \mathbf{L}_3^{(2)} \mathbf{U}_3^{(2)}, \\ \Pi_4^{(2)} \mathbf{A}_4 & = & \mathbf{L}_4^{(2)} \mathbf{U}_4^{(2)}. \end{array}$$

Tournament pivoting for a tall skinny matrix

- Perform $log_2 P$ times GEPP factorization of selected $2b \times b$ rows
 - Two LU factorizations with partial pivoting are computed in parallel to obtain two new sets of pivot rows,

$$\begin{split} \mathbf{A}_1^{(1)} &:= \begin{pmatrix} \mathbf{\Pi}_1^{(2)} \mathbf{A}_1 (1:b,:) \\ \mathbf{\Pi}_2^{(2)} \mathbf{A}_2 (1:b,:) \end{pmatrix}, \quad \mathbf{\Pi}_1^{(1)} \mathbf{A}_1^{(1)} &= \mathbf{L}_1^{(1)} \mathbf{U}_1^{(1)}, \\ \mathbf{A}_3^{(1)} &:= \begin{pmatrix} \mathbf{\Pi}_3^{(2)} \mathbf{A}_3 (1:b,:) \\ \mathbf{\Pi}_4^{(2)} \mathbf{A}_4 (1:b,:) \end{pmatrix}, \quad \mathbf{\Pi}_3^{(1)} \mathbf{A}_3^{(1)} &= \mathbf{L}_3^{(1)} \mathbf{U}_3^{(1)} \end{split}$$

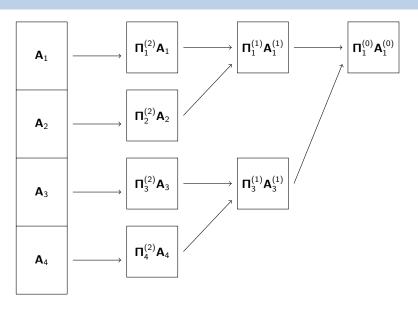
At the root of the tree:

$$\mathbf{A}_1^{(0)} := \begin{bmatrix} \mathbf{\Pi}_1^{(1)} \mathbf{A}_1^{(1)} (1:b,:) \\ \mathbf{\Pi}_3^{(1)} \mathbf{A}_3^{(1)} (1:b,:) \end{bmatrix}, \quad \mathbf{\Pi}_1^{(0)} \mathbf{A}_1^{(0)} = \mathbf{L}_1^{(0)} \mathbf{U}_1^{(0)}$$

- Permute to leading positions the global pivot rows $\Pi_1^{(0)} \mathbf{A}_1^{(0)} (1:b,:)$
- Let $\Pi_1 \in \mathbb{R}^{n \times n}$ be the matrix that reflects this permutation
- Perform LU factorization with no pivoting of the permuted matrix

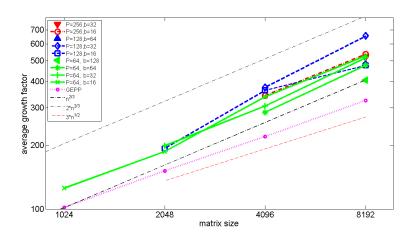
$$\Pi_{1} \begin{bmatrix} \mathbf{A}_{11} \\ \mathbf{A}_{21} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{11} \\ \mathbf{L}_{21} \end{bmatrix} \mathbf{U}_{11}.$$
(3)

Tournament pivoting



28 of 37

Growth factor for binary tree based CALU



- Random matrices from a normal distribution
- Same behaviour for all matrices in our test, and $|\mathbf{L}| \le 4.2$

Our "proof of stability" for CALU

- CALU as stable as GEPP in following sense: In exact arithmetic, CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and zeros.
- Example of one step of tournament pivoting:

$$\label{eq:A} {\bm A} = \begin{pmatrix} {\bm A}_{11} & {\bm A}_{12} \\ {\bm A}_{21} & {\bm A}_{22} \\ {\bm A}_{31} & {\bm A}_{32} \end{pmatrix},$$

$$\begin{array}{c|c} \mathbf{A}_{11} & & \bar{\mathbf{A}}_{11} \\ \mathbf{A}_{21} & & \mathbf{A}_{21} \end{array}$$

$$\textbf{G} = \begin{pmatrix} \bar{\textbf{A}}_{11} & \bar{\textbf{A}}_{12} \\ \textbf{A}_{21} & \textbf{A}_{21} \\ -\textbf{A}_{31} & \textbf{A}_{32} \end{pmatrix}$$

 Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).

Outline of "proof of stability"

• After the factorization of first panel by CALU, \mathbf{A}_{32}^s (the Schur complement of \mathbf{A}_{32}) is not bounded as in GEPP,

$$\begin{pmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{21} & \Pi_{22} \\ \textbf{A}_{31} & \textbf{A}_{32} \end{pmatrix} \quad = \quad \begin{pmatrix} \bar{\textbf{A}}_{11} & \bar{\textbf{A}}_{12} \\ \bar{\textbf{A}}_{21} & \bar{\textbf{A}}_{22} \\ \textbf{A}_{31} & \textbf{A}_{32} \end{pmatrix} \quad = \quad \begin{pmatrix} \bar{\textbf{A}}_{11} & \bar{\textbf{A}}_{12} \\ \bar{\textbf{A}}_{21} & \bar{\textbf{A}}_{22} \\ \bar{\textbf{A}}_{31} & \textbf{A}_{32} \end{pmatrix} = \begin{pmatrix} \bar{\textbf{L}}_{11} & \textbf{I}_{b} \\ \bar{\textbf{L}}_{21} & \textbf{I}_{b} \\ \bar{\textbf{L}}_{31} & \textbf{I}_{b} \\ \end{bmatrix} \cdot \begin{pmatrix} \bar{\textbf{U}}_{11} & \bar{\textbf{U}}_{12} \\ \bar{\textbf{A}}_{22}^{2} & \bar{\textbf{A}}_{32}^{2} \end{pmatrix}$$

• but \mathbf{A}_{32}^s can be obtained by GEPP on larger matrix \mathbf{G} formed from blocks of \mathbf{A}

$$\mathbf{G} = \begin{pmatrix} \bar{\mathbf{A}}_{11} & & \bar{\mathbf{A}}_{12} \\ \mathbf{A}_{21} & & \mathbf{A}_{21} \\ & -\mathbf{A}_{31} & & \mathbf{A}_{32} \end{pmatrix} = \begin{pmatrix} \bar{\mathbf{L}}_{11} & & & & \\ \mathbf{A}_{21}\bar{\mathbf{U}}_{11}^{-1} & & \mathbf{L}_{21} & & \\ & & -\mathbf{L}_{31} & & \mathbf{I}_{m-2b} \end{pmatrix} \begin{pmatrix} \bar{\mathbf{U}}_{11} & & & \bar{\mathbf{U}}_{12} \\ & & \mathbf{U}_{21} & & -\mathbf{L}_{21}^{-1}\bar{\mathbf{A}}_{21}\bar{\mathbf{U}}_{11}^{-1}\bar{\mathbf{U}}_{12} \\ & & \mathbf{A}_{32}^{*} \end{pmatrix}$$

GEPP on G does not permute and

$$\begin{array}{lll} \textbf{L}_{31} \textbf{L}_{21}^{-1} \textbf{A}_{21} \bar{\textbf{U}}_{11}^{-1} \bar{\textbf{U}}_{12} + \textbf{A}_{32}^{s} & = & \textbf{L}_{31} \textbf{U}_{21} \bar{\textbf{U}}_{11}^{-1} \bar{\textbf{U}}_{12} + \textbf{A}_{32}^{s} = \textbf{A}_{31} \bar{\textbf{U}}_{11}^{-1} \bar{\textbf{U}}_{12} + \textbf{A}_{32}^{s} \\ & = & \bar{\textbf{L}}_{31} \bar{\textbf{U}}_{12} + \textbf{A}_{32}^{s} = \textbf{A}_{32} \end{array}$$

Growth factor in exact arithmetic

- Matrix of size m-by-n, reduction tree of height $H = log_2(P)$
- In practice growth factor for GEPP and CALU is on the order of $n^{2/3} -n^{1/2}$

	matrix of size $m imes (b+1)$					
	TSLU	GEPP				
	upper bound	attained	upper bound			
L	2 ^{bH}	$2^{(b-2)H-(b-1)}$	1			
gw	$2^{b(H+1)}$	2 ^b	2 ^b			
	matrix of size $m \times n$					
	CALU(b,H)		GEPP			
	upper bound	attained	upper bound			
L	2 ^{bH}	$2^{(b-2)H-(b-1)}$	1			
gw	$2^{n(H+1)-1}$	2^{n-1}	2^{n-1}			

Cost of LU with tournament pivoting

LU factorization on a $P = \sqrt{P}x\sqrt{P}$ grid of processors

For ib = 1 to n-1 step b

$$A(ib) = A(ib : n, ib : n)$$

- 1. Compute panel factorization
- 2. Apply all row permutations
 - $\square \#messages = O(n/b(\log_2 \sqrt{P} + \log_2 \sqrt{P}))$
- 3. Compute block row of U
 - $\square \# messages = O(n/b \log_2 \sqrt{P})$
- 4. Update trailing matrix
 - $\square \#messages = O(n/b(\log_2 \sqrt{P} + \log_2 \sqrt{P})$

CALU based on TSLU

Cost of CALU vs ScaLAPACK's PDGETRF

- $n \times n$ matrix on $\sqrt{P} \times \sqrt{P}$ processor grid, block size b
- Flops: $(2/3)n^3/P + 3/2n^2b\log_2 P/\sqrt{P}$ vs $(2/3)n^3/P + n^2b/P^{1/2}$
- Bandwidth: $n^2 \log_2 P / \sqrt{P}$ vs same
- Latency: $3n \log_2 P/b$ vs $1.5n \log_2 P$

Close to optimal (modulo log P factors)

- Assume $O(n^2/P)$ memory/processor, $O(n^3)$ algorithm
- Choose b near n/\sqrt{P} (its upper bound)
- Bandwidth lower bound: $\Omega(n^2/\sqrt{P})$ just $\log_2 P$ smaller
- Latency lower bound: $\Omega(\sqrt{P})$ just polylog(P) smaller

Performance vs ScaLAPACK

- Parallel TSLU (LU on tall-skinny matrix)IBM Power 5
 - Up to 4.37 \times faster (16 procs, $1M \times 150$)
 - □ Cray XT4 Up to 5.52x faster (8 procs, $1M \times 150$)
- Parallel CALU (LU on general matrices)
 - □ Intel Xeon (two socket, quad core) Up to 2.3x faster (8 cores, $10^6 \times 500$)
 - □ IBM Power 5 Up to 2.29x faster (64 procs, 1000×1000)
 - □ Cray XT4 Up to 1.81x faster (64 procs, 1000×1000)

Acknowledgement

• Figures from upcoming book on communication avoiding algorithms with G. Ballard, E. Carson, and J. Demmel

References (1)

N.J.Higham (2002).

Accuracy and Stability of Numerical Algorithms.

SIAM, second edition.