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Historical Perspective

Early distributed memory machines were:
« Collection of microprocessors.

« Communication was performed using bi-directional queues
between nearest neighbors.

Messages were forwarded by processors on path.
- “Store and forward” networking

" There was a strong emphasis on topolo%
algorithms, in order to minimize the number of hops
= minimize time

=Ty

[T

1 1
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Performance Properties of a Network: Latency

Diameter: the maximum (over all pairs of nodes) of the
shortest path between a given pair of nodes.
Latency: delay between send and receive times
- Latency tends to vary widely across architectures

* Vendors often report hardware latencies (wire time)

« Application programmers care about software latencies (user
program to user program)

° Observations:
« Latencies differ by 1-2 orders across network designs

Latency is key for programs with many small messages
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End to End Latency (1/2 roundtrip) Over Time
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Performance Properties of a Network: Bandwidth

° The bandwidth of a link = # wires / time-per-bit

° Bandwidth typically in Gigabytes/sec (GB/s),
i.e., 8* 220 bitg per s)e,condg Y (

° Effective bandwidth is usually lower than
physical link bandwidth due to packet overhead.

Routing
and control

» Bandwidth is important for applications header

with mostly large messages

Data
payload

Error code

Trailer
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Performance Properties of a Network: Bisection Bandwidth

° Bisection bandwidth: bandwidth across smallest
cut that divides network into two equal halves

° Bandwidth across “narrowest” part of the network

bisection
cut=—

bisection bw= link bw

not a

. bisection

cut

bisection bw = sqrt(p) * link bw

* Bisection bandwidth is important for algorithms in which
all processors need to communicate with all others
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Linear and Ring Topologies

° Linear array
O—O—O——O—O——0

 Diameter = n-1; average distance ~n/3.

 Bisection bandwidth = 1 (in units of link
bandwidth).

° Torus or Ring
¢ ¢ o —— — — —
r = = = oJ —a— >
* Diameter = n/2; average distance ~ n/4.

* Bisection bandwidth = 2.

* Natural for algorithms that work with 1D arrays.
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Meshes and Tori — used in Hopper

Two dimensional mesh Two dimensional torus
* Diameter=2 * (sqrt(n ) —1) - Diameter = sqrt( n)
 Bisection bandwidth = sqrt(n) » Bisection bandwidth = 2* sqrt(n)
>—o—0—0 0o CDQ )~
o900 0 0 ° 971000100
o900 0 0 ° FHOT0—0—0—070—
o900 0 0 ° FOT0—0—0—070—-
o900 0 0 ° FO—T0—T0—0—0—0—
oo o oo s Sl aL

* Generalizes to higher dimensions
* Cray XT (eg Hopper@NERSC) uses 3D Torus

« Natural for algorithms that work with 2D and/or 3D arrays (matmul)
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Hypercubes

Number of nodes n =29 for dimension d.
 Diameter=d

* Bisection bandwidth = n/2.
O o—0 o)—.? @

0d 1d 2d 3d 4d

Popular in early machines (Intel iPSC, NCUBE).

* Lots of clever algorithms.

 See 1996 online CS267 notes. 10 111
010 11

Greycode addressing: 0

« Each node connected to
d others with 1 bit different. 000 001
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Trees

Easy layout as planar graph.

* More (or wider) links near top.

Many tree algorithms (e.g., summation).

Fat trees avoid bisection bandwidth problem:

« Example: Thinking Machines CM-5. ® O ® O
CINE CINE
LK LK
® O e O
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Butterflies

« Really an unfolded version of hypercube.

« A d-dimensional butterfly has (d+1) 24 "switching nodes” (not to
be confused with processors, which is n = 29)

« Butterfly was invented because hypercube required increasing
radix of switches as the network got larger; prohibitive at the time

« Diameter = log n. Bisection bandwidth = n

« No path diversity: bad with adversarial traffic T N

A row of butterfly is a O 1 |0 1
o node in hypercube —T T
011 W LS

butterfly switch

101D/M\“\/ﬁ/\v:| <:> OOO/D lﬂ.
L/AW o | Ex: to get from proc 101 to 110,
,”D/ \:/\:>< . o —on Compare bit-by-bit and

Switch if they disagree, else not
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Dragonflies — used in Edison and Cori

° Motivation: Exploit gap in cost and performance between optical
interconnects (which go between cabinets in a machine room) and electrical
networks (inside cabinet)

 Optical (fiber) more expensive but higher bandwidth when long
» Electrical (copper) networks cheaper, faster when short

° Combine in hierarchy:

» Several groups are connected together using all to all links, i.e. each group has at
least one link directly to each other group.

* The topology inside each group can be any topology.

° Uses a randomized routing algorithm

° Qutcome: programmer can (usually) ignore topology, get good performance
 Important in virtualized, dynamic environment

» Drawback: variable performance

“Technology-Drive, Highly-Scalable Dragonfly Topology,” ISCA 2008
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Dragonfly in practice

Aries interconnect for an 8 cabinet Cray XC40

A\

X

Chassis
Containing 16 blades.
Each blade connects
to every other in the

chassis

Electrical Group
Containing 2 cabinets,
each with three chassis.
Each chassis is connected
to every other chassis.

Optical interconnect
Every electrical group
is connected to every
other electrical group.

Source: European Centre for Medium-Range Weather Forecasts

Source of image on the right (and more info):
https://docs.nersc.qgov/systems/cori/interconnect/
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http://www.nersc.gov/users/computational-systems/edison/configuration/interconnect/
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Latency and Bandwidth Model
° Time to send message of length n is roughly

Time = latency + n*cost_per_word
= latency + n/bandwidth

o

Topology is assumed irrelevant.

o

Often called “a—B model” and written
Time =a + n*p

Usually a >> 3 >> time per flop.
* One long message is cheaper than many short ones.
« Can do hundreds or thousands of flops for cost of one message.

o+ n*B << n¥*(a + 1*B)

Lesson: Need large computation-to-communication ratio
to be efficient.

LogP — more detailed model (Latency/overhead/gap/Proc.)
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Programming
Distributed Memory Machines
with
Message Passing

Slides by
Aydin Buluc, Jonathan Carter, Jim Demmel,
Bill Gropp, Kathy Yelick
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Message Passing Libraries

° All communication, synchronization require subroutine calls
* No shared variables
* Program run on a single processor just like any uniprocessor program,
except for calls to message passing library
° Subroutines for
« Communication
- Pairwise or point-to-point: Send and Receive
- Collectives all processor get together to
— Move data: Broadcast, Scatter/gather

— Compute and move: sum, product, max, prefix sum, ... of data on many
processors

« Synchronization
- Barrier

- Initial version: no locks because there are no shared variables to
protect

« Enquiries
2773 HOW many processes? Which one am I? Any messages waiting?



Novel Features of MPI

> Communicators encapsulate communication
spaces for library safety

° Datatypes reduce copying costs and permit
heterogeneity

° Multiple communication modes allow precise buffer
management

" Extensive collective operations for scalable global
communication

" Process topologies permit efficient process
placement, user views of process layout

° Profiling interface encourages portable tools
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MPI References

° The Standard itself:

 at http://www.mpi-forum.org

 All MPI official releases, in both postscript and HTML
» Latest version MPI 4.0, released June 2021

° Other information on Web:

e at
http://www.mcs.anl.gov/research/projects/mpi/index.ht

m

* pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages
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Finding Out About the Environment

Two important questions that arise early in a
parallel program are:

 How many processes are participating in
this computation?

* Which one am 1?

MPI provides functions to answer these
questions:

MPI Comm _ size reports the number of processes.

MPI Comm_rank reports the rank, a number
between 0 and size-1, identifying the calling
process

2/7/23 22



Hello (C)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
int rank, size;
MPI Init( &argc, &argv );
MPI Comm rank( MPI COMM WORLD, &rank );
MPI Comm size( MPI COMM WORLD, &size );
printf( "I am %d of %d\n", rank, size );
MPI Finalize();

return O;

2/7/23
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Notes on Hello World

° All MPI programs begin with MPI_Init and end with
MPI_Finalize

> MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in
the MPI “job”

(o]

Each statement executes independently in each
process

* including the printf/print statements

° The MPI-1 Standard does not specify how to run an
MPI program, but many implementations provide
mpirun —-np 4 a.out
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MPI Basic Send/Receive

° We need to fill in the details in

Process O Process 1

Send (data) ——

\

Receive (data)

° Things that need specifying:
- How will “data” be described?
 How will processes be identified?
 How will the receiver recognize/screen messages?
 What will it mean for these operations to complete?
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Some Basic Concepts

* Processes can be collected into groups

» Each message is sent in a context, and must be
received in the same context

» Provides necessary support for libraries

* A group and context together form a communicator

= A process is identified by its rank in the group
associated with a communicator

* There is a default communicator whose group contains
all initial processes, called MPT COMM WORLD

2/7/23 26



MPI Datatypes

* The data in a message to send or receive is described
by a triple (address, count, datatype), where

* An MPI datatype is recursively defined as:

» predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE)

a contiguous array of MPI datatypes

a strided block of datatypes

an indexed array of blocks of datatypes

an arbitrary structure of datatypes

* There are MPI functions to construct custom datatypes,
In particular ones for subarrays

» May hurt performance if datatypes are complex
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MPI Tags

» Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

» Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPl_ ANY_ TAG as the tag in a
receive

» Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes
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MPI Basic (Blocking) Send

AT ——

1 Be) |

MPI_Recv( B, 20, MPI DOUBLE, 0, ...)

MPI SEND (start, count, datatype, dest, tag,
comm)

MPI_Send( A, 10, MPI DOUBLE, 1, ...)

* The message buffer is described by (start, count,
datatype).

» The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

 When this function returns, the data has been delivered to
the system and the buffer can be reused. The message

may not have been received by the target process.
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MPI Basic (Blocking) Receive

AT ——

1 Be) |

MPI_Send( A, 1(), MPI_DOUBLE, 1, .. ) MPI_RCCV( B, 20) MPI_DOUBLE, O, o )

MPI RECV (start, count, datatype, source, tag,
comm, status)

» Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

* source Iis rank in communicator specified by comm, or
MPI ANY SOURCE

" tag is atag to be matched or MPI ANY TAG

» receiving fewer than count occurrences of datatype is OK, but
receiving more is an error

" status contains further information (e.g. size of message) ,,



A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main( int argc, char *argv([])
{
int rank, buf;
MPI Status status;
MPI Init(&argv, &argc);
MPI Comm rank( MPI COMM WORLD, &rank );

/* Process 0 sends and Process 1 receives */
if (rank == 0) {
buf = 123456;
MPI_Send( &buf, 1, MPI_INT, 1, O, MPI_COMM_WORLD);
}
else if (rank == 1) {
MPI Recv( &buf, 1, MPI_INT, 0, O, MPI COMM WORLD,
&status ) ;
printf( “Received %d\n”, buf );
}

MPI Finalize();
return 0O;

}

2/7/23
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Retrieving Further Information

° Status is a data structure allocated in the user’s
program.

" InC:
int recvd tag, recvd from, recvd count;

MPI_Status status;
MPI_Recv( ey MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )

recvd tag = status.MPI TAG;
recvd from = status.MPI SOURCE;
MPI Get count( &status, datatype, &recvd count );
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MPI can be simple

° Claim: most MPI applications can be written with
only 6 functions (although which 6 may differ)

 Using point-to-point:  Using collectives:
e MPI INIT « MPI INIT
« MPI_FINALIZE « MPI_ FINALIZE
« MPI_COMM SIZE « MPI_COMM SIZE
« MPI_COMM RANK « MPI_COMM RANK
« MPI_SEND « MPI_BCAST
« MPI_RECEIVE « MPI_REDUCE

° You may use more for convenience or performance
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Pl redux: Numerical integration

4.0/(1+x2)

F(x)

2/7/23
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0.0

1.0

Mathematically, we know that:

1

j‘ 4.0
(14x2) dx =TT

0

We can approximate the integral as a
sum of rectangles:

N
Z F(X)AX = TT

i=0

Where each rectangle has width Ax and
height F(x;) at the middle of interval i.
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Example: Calculating Pi

E.g., in a 4-process run, each
process gets every 4t interval.
Process 0 slices are in red.

I\ﬁolarlnple program written in a data parallel style In

- E.g., for a reduction (recall “data parallelism” lecture), each

process will first reduce (sum) its own values, then call a
collective to combine them

Estimates ]Pl by approximating the area of the
quadrant of a unit circle

(o]

Each process gets 1/p of the intervals (mapped

round robin, i.e., a cyclic mapping)
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Example: Plin C —1/2

#include "mpi.h”
#include <math.h>
#include <stdio.h>

int main(int argc, char *argv|[])

{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI Init(&argc, &argv);
MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPT Comm rank(MPI COMM WORLD, &myid) ;

while ('done) {
if (myid == 0) ({
printf ("Enter the number of intervals: (0 quits) "),
scanf ("%d4d", &n) ;

}
MPI Bcast(&n, 1, MPI INT, 0, MPI COMM WORLD) ;

if (n == 0) break;
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Example: Plin C — 2/2

h = 0 / (double) n;

sum = O 0

for (1 myid + 1; 1 <= n; i += numprocs) {
X = h * ((double)1 - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI Reduce (&mypi, &pi, 1, MPI_DOUBLE MPI SuUM, O,

MPI COMM WORLD)
if (myid == O)

printf("pi is approximately %.16f, Error is .16f\n",

pi, fabs(pi - PI25DT))
}
MPI Finalize();

return 0;

2/7/23
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Buffers

° When you send data, where does it go? One possibility is:

Process 0 Process 1

2/7/23 Slide source: Bill Gropp, ANL g3g



Avoiding Buffering

° Avoiding copies uses less memory

May use more or less time

Process 0

*

Process 1

ey

G

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,

and we wait later.

2/7/23
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Blocking and Non-blocking Communication

" So far we have been using blocking
communication:

- MPI_Recv does not complete until the buffer is full (available for
use).

- MPI_Send does not complete until the buffer is empty (available
for use).

° Completion depends on size of message and
amount of system buffering.
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Sources of Deadlocks

° Send a large message from process 0 to process 1

« If there is insufficient storage at the destination, the send must
wait for the user to provide the memory space (through a
receive)

° What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This is called “unsafe” because it depends on the
availability of system buffers in which to store the data
sent until it can be received
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Some Solutions to the “unsafe” Problem

° Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

« Supply receive buffer at same time as send:

Process 0 Process 1

Sendrecv (1) Sendrecv (0)
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More Solutions to the “unsafe” Problem

Supply own space as buffer for send

Process 0 Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

Use non-blocking operations:

Process 0 Process 1
Isend (1) Isend (0)
Irecv(l) Irecv (0)

Waitall Waitall

2/7/23
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MPI’ s Non-blocking Operations

Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

MPI Request request;
MPI Status status;

MPI Isend(start, count, datatype,
dest, tag, comm, &request);

MPI Irecv(start, count, datatype,
dest, tag, comm, &request);

MPI Wait (&request, &status);

(each request must be Waited on)

One can also test without waiting:

MPI Test (&request, &flag, &status);

° Accessing the data buffer without waiting is undefined
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Multiple Completions

It is sometimes desirable to wait on multiple
requests:

MPI Waitall (count, array of requests,
array of statuses)

MPI Waitany(count, array of requests,
&index, &status)

MPI Waitsome (count, array of requests,
array of indices, array of statuses)

° There are corresponding versions of test for
each of these.
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Communication Modes

(o]

MPI provides multiple modes for sending
messages:

« Synchronous mode (MPI_Ssend): the send does not complete
until a matching receive has begun. (Unsafe programs deadlock.)

- Buffered mode (MPI Bsend): the user supplies a buffer to the
system for its use. (User allocates enough memory to make an
unsafe program safe.

- Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted.

- Allows access to fast protocols
- undefined behavior if matching receive not posted

Non-blocking versions (MPI Issend, etc.)

(o]

MPI Recv receives messages sent in any mode.

" See www.mpi-forum.org for summary of all flavors
of send/receive
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