
1

Distributed Memory
Machines and Programming

2/7/23

https://sites.google.com/lbl.gov/cs267-spr2023/
Slides from the CS267 collection

https://sites.google.com/lbl.gov/cs267-spr2023/

2

Outline

°Distributed Memory Architectures
• Properties of communication networks
• Topologies
• Performance models

°Programming Distributed Memory Machines
using Message Passing

• Overview of MPI
• Basic send/receive use
• Non-blocking communication
• Collectives

2/7/23

3

Historical Perspective

°Early distributed memory machines were:
• Collection of microprocessors.
• Communication was performed using bi-directional queues

between nearest neighbors.

°Messages were forwarded by processors on path.
• “Store and forward” networking

°There was a strong emphasis on topology in
algorithms, in order to minimize the number of hops
= minimize time

2/7/23

4

Performance Properties of a Network: Latency

°Diameter: the maximum (over all pairs of nodes) of the
shortest path between a given pair of nodes.
°Latency: delay between send and receive times

• Latency tends to vary widely across architectures
• Vendors often report hardware latencies (wire time)
• Application programmers care about software latencies (user

program to user program)
°Observations:

• Latencies differ by 1-2 orders across network designs

°Latency is key for programs with many small messages

2/7/23

5

End to End Latency (1/2 roundtrip) Over Time

• Latency has not improved significantly, unlike Moore’s Law
2/7/23

6

Performance Properties of a Network: Bandwidth

°The bandwidth of a link = # wires / time-per-bit
°Bandwidth typically in Gigabytes/sec (GB/s),

i.e., 8* 220 bits per second
°Effective bandwidth is usually lower than

physical link bandwidth due to packet overhead.

Routing
and control
header

Data
payload

Error code

Trailer

• Bandwidth is important for applications
with mostly large messages

2/7/23

7

Bandwidth Chart

0

50

100

150

200

250

300

350

400

2048 4096 8192 16384 32768 65536 131072
Message Size (Bytes)

Ba
nd

w
id

th
 (M

B/
se

c)

T3E/MPI
T3E/Shmem
IBM/MPI
IBM/LAPI
Compaq/Put
Compaq/Get
M2K/MPI
M2K/GM
Dolphin/MPI
Giganet/VIPL
SysKonnect

Data from Mike Welcome, NERSC

Note: bandwidth depends on SW, not just HW

2/7/23

8

Performance Properties of a Network: Bisection Bandwidth

°Bisection bandwidth: bandwidth across smallest
cut that divides network into two equal halves
°Bandwidth across “narrowest” part of the network

bisection
cut

not a
bisection
cut

bisection bw= link bw bisection bw = sqrt(p) * link bw

• Bisection bandwidth is important for algorithms in which
all processors need to communicate with all others
2/7/23

9

Linear and Ring Topologies

°Linear array

• Diameter = n-1; average distance ~n/3.
• Bisection bandwidth = 1 (in units of link

bandwidth).
°Torus or Ring

• Diameter = n/2; average distance ~ n/4.
• Bisection bandwidth = 2.
• Natural for algorithms that work with 1D arrays.

2/7/23

10

Meshes and Tori – used in Hopper

Two dimensional mesh
• Diameter = 2 * (sqrt(n) – 1)
• Bisection bandwidth = sqrt(n)

• Generalizes to higher dimensions
• Cray XT (eg Hopper@NERSC) uses 3D Torus

• Natural for algorithms that work with 2D and/or 3D arrays (matmul)

Two dimensional torus
• Diameter = sqrt(n)
• Bisection bandwidth = 2* sqrt(n)

2/7/23

11

Hypercubes

°Number of nodes n = 2d for dimension d.
• Diameter = d.
• Bisection bandwidth = n/2.

 0d 1d 2d 3d 4d
°Popular in early machines (Intel iPSC, NCUBE).

• Lots of clever algorithms.
• See 1996 online CS267 notes.

°Greycode addressing:
• Each node connected to

d others with 1 bit different. 001000

100

010 011

111

101

110

2/7/23

12

Trees

°Diameter = log n.
°Bisection bandwidth = 1.
°Easy layout as planar graph.
°Many tree algorithms (e.g., summation).
°Fat trees avoid bisection bandwidth problem:

• More (or wider) links near top.
• Example: Thinking Machines CM-5.

2/7/23

13

Butterflies

2/7/23

• Really an unfolded version of hypercube.
• A d-dimensional butterfly has (d+1) 2d ”switching nodes” (not to

be confused with processors, which is n = 2d)
• Butterfly was invented because hypercube required increasing

radix of switches as the network got larger; prohibitive at the time
• Diameter = log n. Bisection bandwidth = n
• No path diversity: bad with adversarial traffic

O 1O 1

O 1 O 1

butterfly switch

Ex: to get from proc 101 to 110,
Compare bit-by-bit and
Switch if they disagree, else not

A row of butterfly is a
node in hypercube

14

Dragonflies – used in Edison and Cori

°Motivation: Exploit gap in cost and performance between optical
interconnects (which go between cabinets in a machine room) and electrical
networks (inside cabinet)

• Optical (fiber) more expensive but higher bandwidth when long
• Electrical (copper) networks cheaper, faster when short

°Combine in hierarchy:
• Several groups are connected together using all to all links, i.e. each group has at

least one link directly to each other group.
• The topology inside each group can be any topology.

°Uses a randomized routing algorithm

°Outcome: programmer can (usually) ignore topology, get good performance
• Important in virtualized, dynamic environment
• Drawback: variable performance

“Technology-Drive, Highly-Scalable Dragonfly Topology,” ISCA 2008

2/7/23

15

Dragonfly in practice

2/7/23

Source: European Centre for Medium-Range Weather Forecasts

Source of image on the right (and more info):
https://docs.nersc.gov/systems/cori/interconnect/

http://www.nersc.gov/users/computational-systems/edison/configuration/interconnect/

16

Performance Models

2/7/23

17

Latency and Bandwidth Model
°Time to send message of length n is roughly

°Topology is assumed irrelevant.
°Often called “a-b model” and written

°Usually a >> b >> time per flop.
• One long message is cheaper than many short ones.
• Can do hundreds or thousands of flops for cost of one message.

°Lesson: Need large computation-to-communication ratio
to be efficient.
°LogP – more detailed model (Latency/overhead/gap/Proc.)

Time = latency + n*cost_per_word
 = latency + n/bandwidth

Time = a + n*b

a + n*b << n*(a + 1*b)

2/7/23

18

Slides by
Aydin Buluc, Jonathan Carter, Jim Demmel,

Bill Gropp, Kathy Yelick

Programming
Distributed Memory Machines

with
Message Passing

2/7/23

19

Message Passing Libraries
°All communication, synchronization require subroutine calls

• No shared variables
• Program run on a single processor just like any uniprocessor program,

except for calls to message passing library

°Subroutines for
• Communication

- Pairwise or point-to-point: Send and Receive
- Collectives all processor get together to

– Move data: Broadcast, Scatter/gather
– Compute and move: sum, product, max, prefix sum, … of data on many

processors
• Synchronization

- Barrier
- Initial version: no locks because there are no shared variables to

protect
• Enquiries

- How many processes? Which one am I? Any messages waiting?2/7/23

20

Novel Features of MPI

°Communicators encapsulate communication
spaces for library safety
°Datatypes reduce copying costs and permit

heterogeneity
°Multiple communication modes allow precise buffer

management
°Extensive collective operations for scalable global

communication
°Process topologies permit efficient process

placement, user views of process layout
°Profiling interface encourages portable tools

2/7/23

21

MPI References

°The Standard itself:
• at http://www.mpi-forum.org
• All MPI official releases, in both postscript and HTML
• Latest version MPI 4.0, released June 2021

°Other information on Web:
• at

http://www.mcs.anl.gov/research/projects/mpi/index.ht
m

• pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages

2/7/23

http://www.mpi-forum.org/
http://www.mcs.anl.gov/research/projects/mpi/index.htm
http://www.mcs.anl.gov/research/projects/mpi/index.htm

22

Finding Out About the Environment

°Two important questions that arise early in a
parallel program are:

• How many processes are participating in
this computation?

• Which one am I?

°MPI provides functions to answer these
questions:
•MPI_Comm_size reports the number of processes.
•MPI_Comm_rank reports the rank, a number

between 0 and size-1, identifying the calling
process

2/7/23

23

Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);

 MPI_Finalize();

 return 0;
}

2/7/23

24

Notes on Hello World

°All MPI programs begin with MPI_Init and end with
MPI_Finalize

°MPI_COMM_WORLD is defined by mpi.h (in C) or
mpif.h (in Fortran) and designates all processes in
the MPI “job”

°Each statement executes independently in each
process

• including the printf/print statements

°The MPI-1 Standard does not specify how to run an
MPI program, but many implementations provide
mpirun –np 4 a.out

2/7/23

25

MPI Basic Send/Receive

°We need to fill in the details in

°Things that need specifying:
• How will “data” be described?
• How will processes be identified?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)
Receive(data)

2/7/23

26

Some Basic Concepts

§ Processes can be collected into groups

§ Each message is sent in a context, and must be
received in the same context
§Provides necessary support for libraries

§ A group and context together form a communicator

§ A process is identified by its rank in the group
associated with a communicator

§ There is a default communicator whose group contains
all initial processes, called MPI_COMM_WORLD

2/7/23

27

MPI Datatypes

§ The data in a message to send or receive is described
by a triple (address, count, datatype), where

§ An MPI datatype is recursively defined as:
§ predefined, corresponding to a data type from the language (e.g.,

MPI_INT, MPI_DOUBLE)
§ a contiguous array of MPI datatypes
§ a strided block of datatypes
§ an indexed array of blocks of datatypes

§ an arbitrary structure of datatypes

§ There are MPI functions to construct custom datatypes,
in particular ones for subarrays

§ May hurt performance if datatypes are complex
2/7/23

28

MPI Tags

§Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

§Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive

§Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

2/7/23

29

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag,
comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to
the system and the buffer can be reused. The message
may not have been received by the target process.

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

2/7/23

30

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,
comm, status)

§ Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

§ source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

§ tag is a tag to be matched or MPI_ANY_TAG

§ receiving fewer than count occurrences of datatype is OK, but
receiving more is an error

§ status contains further information (e.g. size of message)

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

2/7/23

31

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
}

2/7/23

32

Retrieving Further Information

°Status is a data structure allocated in the user’s
program.
°In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

2/7/23

33

MPI can be simple

°Claim: most MPI applications can be written with
only 6 functions (although which 6 may differ)

°You may use more for convenience or performance

• Using point-to-point:
•MPI_INIT

•MPI_FINALIZE

•MPI_COMM_SIZE
•MPI_COMM_RANK
•MPI_SEND

•MPI_RECEIVE

• Using collectives:
•MPI_INIT
•MPI_FINALIZE

•MPI_COMM_SIZE

•MPI_COMM_RANK
•MPI_BCAST
•MPI_REDUCE

2/7/23

34

PI redux: Numerical integration

2/7/23

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Dx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

35

Example: Calculating Pi

°Simple program written in a data parallel style in
MPI

• E.g., for a reduction (recall “data parallelism” lecture), each
process will first reduce (sum) its own values, then call a
collective to combine them

°Estimates pi by approximating the area of the
quadrant of a unit circle
°Each process gets 1/p of the intervals (mapped

round robin, i.e., a cyclic mapping)

E.g., in a 4-process run, each
process gets every 4th interval.
Process 0 slices are in red.

2/7/23

36

Example: PI in C – 1/2

#include "mpi.h”
#include <math.h>
#include <stdio.h>

int main(int argc, char *argv[])

{
int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

2/7/23

37

Example: PI in C – 2/2

h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is .16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;

}

2/7/23

38

Buffers

°When you send data, where does it go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

Slide source: Bill Gropp, ANL2/7/23

39

Avoiding Buffering

°Avoiding copies uses less memory
°May use more or less time

This requires that MPI_Send wait on delivery, or
that MPI_Send return before transfer is complete,
and we wait later.

Process 0 Process 1

User data

User data

the network

Slide source: Bill Gropp, ANL2/7/23

40

Blocking and Non-blocking Communication

°So far we have been using blocking
communication:

• MPI_Recv does not complete until the buffer is full (available for
use).

• MPI_Send does not complete until the buffer is empty (available
for use).

°Completion depends on size of message and
amount of system buffering.

2/7/23

41

°Send a large message from process 0 to process 1
• If there is insufficient storage at the destination, the send must

wait for the user to provide the memory space (through a
receive)

°What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• This is called “unsafe” because it depends on the
availability of system buffers in which to store the data
sent until it can be received

2/7/23

42

Some Solutions to the “unsafe” Problem

°Order the operations more carefully:

• Supply receive buffer at same time as send:

Process 0

Send(1)
Recv(1)

Process 1

Recv(0)
Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)

2/7/23

43

More Solutions to the “unsafe” Problem

°Supply own space as buffer for send

• Use non-blocking operations:

Process 0

Bsend(1)
Recv(1)

Process 1

Bsend(0)
Recv(0)

Process 0

Isend(1)
Irecv(1)
Waitall

Process 1

Isend(0)
Irecv(0)
Waitall

2/7/23

44

MPI’s Non-blocking Operations

°Non-blocking operations return (immediately) “request
handles” that can be tested and waited on:

 MPI_Request request;

 MPI_Status status;

 MPI_Isend(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Wait(&request, &status);

 (each request must be Waited on)

°One can also test without waiting:
 MPI_Test(&request, &flag, &status);

°Accessing the data buffer without waiting is undefined
2/7/23

45

Multiple Completions

°It is sometimes desirable to wait on multiple
requests:

 MPI_Waitall(count, array_of_requests,
 array_of_statuses)

 MPI_Waitany(count, array_of_requests,
 &index, &status)

 MPI_Waitsome(count, array_of_requests,
 array_of indices, array_of_statuses)

°There are corresponding versions of test for
each of these.

2/7/23

46

Communication Modes

°MPI provides multiple modes for sending
messages:

• Synchronous mode (MPI_Ssend): the send does not complete
until a matching receive has begun. (Unsafe programs deadlock.)

• Buffered mode (MPI_Bsend): the user supplies a buffer to the
system for its use. (User allocates enough memory to make an
unsafe program safe.

• Ready mode (MPI_Rsend): user guarantees that a matching
receive has been posted.

- Allows access to fast protocols
- undefined behavior if matching receive not posted

°Non-blocking versions (MPI_Issend, etc.)
°MPI_Recv receives messages sent in any mode.
°See www.mpi-forum.org for summary of all flavors

of send/receive

2/7/23

http://www.mpi-forum.org/

