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Krylov subspace methods for solving Ax = b

Finds a sequence xi, x, ..., X, that minimizes some measure of error over
the spaces xg + Ki(A, rp), i =1,..., m, by satisfying two conditions:

1. Subspace condition: x, € xo + Km(A, ro)

2. Petrov-Galerkin condition: rp, L % <= (rm)'y =0, V y € %n

where
- xp initial iterate, ry initial residual, .2, well-defined subspace of dimension m

- Km(A, ro) = span{ry, Arg, A%rg, ..., A""1rg} is the Krylov subspace of dimension m.
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Finds a sequence xi, x, ..., X, that minimizes some measure of error over
the spaces xg + Ki(A, rp), i =1,..., m, by satisfying two conditions:

1. Subspace condition: x, € xo + Km(A, ro)

2. Petrov-Galerkin condition: rp, L % <= (rm)'y =0, V y € %n

where
- xp initial iterate, ry initial residual, .2, well-defined subspace of dimension m

- Km(A, ro) = span{ry, Arg, A%rg, ..., A""1rg} is the Krylov subspace of dimension m.

Two instances of Krylov projection method:

Conjugate gradient [Hestenes, Stieffel, 52], A is SPD, %, = Kn(A, n),

® finds x, by minimizing ||x — x|l over xo + Km(A, ro)

GMRES [Saad, Schultz, 86], A is unsymmetric, % = AKn(A, r),
® finds x, by minimizing ||Ax — b||2 over xg + Km(A, ro).
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Orthogonal Projection Methods (OPM)

Finds a sequence xi, x, ..., X, that minimizes some measure of error over
the spaces xg + Ki(A, rp), i =1,...,m, by satisfying two conditions:
1. Subspace condition: x, € xo + Km(A, ro)

2. Sketched Petrov-Galerkin condition:
fm L Km <= (rm)ty=0, V yeKkpn
where
- xp initial iterate, ry initial residual
- Km(A, ) = span{ry, Arg, A%rg, ..., A"~1ro} is the Krylov subspace of dimension m.
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Optimality result for Orthogonal Projection Methods

Proposition Assume A is Symmetric Positive Definite. Then X is the result
of an (orthogonal) projection method onto K with the starting vector xg if
and only if it minimizes the A-norm of the error over xp + KC, i.e.,

FR) = LB,

where x* = A~ 1b and
E(x) = [Ix" — xlla = (<" = x)TAK" = x)) "% = (Ax" = x), x* — x)/2,

Proof. For X to be the minimizer of E(X), it is necessary and sufficient that
x* — X be A-orthogonal to all vectors in I, i.e., iff

(x* —x)TAv =0, VYveKk,

or equivalently
(b—A%)"v=0, VYvek,
which is the Galerkin condition.
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Orthogonal Projection Methods

Given the Krylov subspace K,,(A, rp), we seek an approximate solution x,
from xo + Km(A, ro) such that

b— Axm L Km(A, ro) (1)

By Arnoldi process and given g1 = o/, 8 = ||r]|, we obtain:

QrAQm = Hnm (2)
Qno = Qn(Ba1) = fer (3)
The approximate solution is obtained as
Xm = Xo + Qm)/mv where (4)
Ym = Hy' (Ber) (5)

since 0= Q[ rm=QF(b— Axm) = QT ro — QLAQmYm
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Symmetric matrices and Lanczos algorithm

Given the Arnoldi process, A € R™*", H,, and H,, € R™*™ formed from H,,
by deleting its last row, we have:

QuAQm = Hnm (6)

= If Ais symmetric, then H,, is tridiagonal, this leads to:
11 Lanczos process: mainly used for eigenvalue computation
0 Conjugate Gradient: most used algorithm for solving linear systems when A
is symmetric positive definite
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Symmetric Lanczos algorithm

Let a; = h; ;= hj-1,

Bm—l Om—1 ,Bm

Bm  Qm

Symmetric Lanczos uses a three-term recurrence:

Bir1j+1 = Aqj — o;q; — Bqj-1,

Algorithm 1 Symmetric Lanczos for linear systems
1:rp=b—Ax,p = lnll2, q1 = n/B

2 for j=1:mdo

wit1 = Agj — Biqi—1  (If j =1 set f1go = 0)
aj = (W1, Gj

Wit1 = Wjt1 — Q;qj

Bﬁ»l = HW]+1H2 |f /BJ+1 = 0 then Stop

gjr1 = Wis1/ B
8: end for

9: Set Hp, = tridiag(B;, oj, Bj+1) and Qm = [q1, - - - , qm]
10: Compute ym = H,,*(Ber) and xm = x0 + Qmym

NookwiN
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Conjugate gradient (Hestenes, Stieffel, 52)

m A Krylov projection method for SPD matrices where % = Kk(A, r).
® Finds x* = A~!b by minimizing the quadratic function

1
o(x) = E(x)tAx — b'x
Vo(x) = Ax—b=0

= After j iterations of CG,

* . X**X H(A)_l !
[1x* = xjlla < 2| olla <m+1> ; (8)

where xo is starting vector, ||x||a = VxTAx and k(A) = |Amax(A)|/|Amin(A)].
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Conjugate gradient

= Computes A-orthogonal search directions by conjugation of the residuals

{ pr = nn=—-V ¢(X0) (9)

Pk = rk—1+ BrPrk-1

= At k-th iteration,
Pk = rk—1+ Bkpr-1 (10)
Xk = Xk—1 -+ QPx = ArgMiNy e, i, (Ar) P(X) (11)
ryk = Fgk—1— OzkApk (12)

where « is the step along px.

= CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

0,for all i # k,

0, for all i # k.

rkTr,-

P/Z— Api
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CG derivation

Since we have xx = xx—1 + axpx we obtain

re = re—1 — axApk and (rg, rk—1) = 0 hence

. (rk—1, rk—1
s = ourlaAp =0 = ay = b
e
Since we have px = ri—1 + BuPr—1,
(=1, 1)

(Apk; rk—1) = (APx; Pk = Brpi—1) = (Apk, px) == o = (Ap, Pi)

Since px = rk—1 + Brpk—1 is A-orthogonal to px_; we obtain

1 Ape e
(1 AP1) g ape = L () = By = (enfet)

Bk =—
(Pk—1, APk—1) Ou—1 (rk—2, re—2)

12.0f 26 1



CG algorithm

Algorithm 2 The CG Algorithm
1. rp=b— Axp, pPo = HI‘()H%, p1 = o, k=1
2: while ( /px > €||b||2 and k < kpmax ) do
if (k # 1) then
Bk = (rk—1, re—1)/(rk—2, rk—2)
Pk = rk—1 + BrPr—1
end if
ak = (rk—1, re—1)/(Apx, Px)
Xk = Xk—1 + 0Pk
Mk = rk—1 — ouApx
10 pe=|IndB
11: k=k+1
12: end while

w

© ® N O R
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Properties of CG

= The directions p1, ... px are A-conjugate, the following properties are
satisfied:

(Ap,py) = O, forall k,j.k # j
(r,rj) = 0, forall k,j,k#j
(px, ;) = 0, forall k,j, k<j

B The Krylov subspace is spanned by the residuals and the search
directions:

Ki(A, ro) =span{ry, r, ..., rk—1} = span{po, p1, ..., Pk—1}

Adviced exercice: prove the above relations, e.g. by using recurrence on
equations (10), (11), (12).
We do not prove (11) and (8), the proofs can be found in [Saad, 2003]
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Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

® Partition the matrix into N domains

® Split the residual ry into t vectors corresponding to the N domains,
obtain R,

) Rf

(AL ELHL

= Generate t new basis vectors, obtain an enlarged Krylov subspace
K:k(A, r) = span{R¢, ARS, A’RS, ..., AKTIRSY

m Search for the solution of the system Ax = b in KC; (A, ro)
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Properties of enlarged Krylov subspaces

m The Krylov subspace KCx(A, rp) is a subset of the enlarged one
’Ck(A, ro) (- ICt’k(A7 ro)

® For all k < kmax the dimensions of K, and Kt 41 are stricltly increasing
by some number i and i,y respectively, where

t> ik = iks1 = 1.
= The enlarged subspaces are increasing subspaces, yet bounded.
Ki1(A10) S oo © Kt ke —1(A 10) S Kt ko (A 10) = Kt kpet-q (A 10), Vg > 0

® The solution of the system Ax = b belongs to the subspace xg + Ky «

max ©
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Enlarged Krylov subspace methods based on CG

Defined by the subspace K; x and the following two conditions:
1. Subspace condition: xx € xp + Itk
2. Orthogonality condition: rx L K«

= At each iteration, the new approximate solution xi is found by
minimizing ¢(x) = 3(x)*Ax — bx over xo + K¢ x:

d(xk) = min{p(x),Vx € xo + K¢ (A, o) }
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Enlarged Krylov subspace methods based on CG

Defined by the subspace K; x and the following two conditions:
1. Subspace condition: xx € xp + Itk
2. Orthogonality condition: rx L K«

= At each iteration, the new approximate solution xi is found by
minimizing ¢(x) = 3(x)*Ax — bx over xo + K¢ x:

d(xk) = min{p(x),Vx € xo + K¢ (A, o) }

® Can be seen as a particular case of a block Krylov method
0 AX = S(b), such that S(b)ones(t,1) = b; RS = AXy — S(b)
& Orthogonality condition involves the block residual Ry L Ky «
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Convergence analysis

Given

® A is an SPD matrix, x* is the solution of Ax = b
" ||x* — Xk||a is the k" error of CG

" ||x* — xk||a is the k™ error of ECG

Result
CG ECG
K
* * - ]- k — — \/Ii»ti L
[Ix* — Xkl|la < 2||x" — xol|a (%) [1x* — xk||a < Cl|x X0||A< 1
— Amax(A)
where Kk = ’)\\’:f:((:)) where K, = Ae(A)

C is a const indpdt. of k, dpdt. of t
Proof of convergence of ECG can be found in [Grigori and Tissot, 2019].
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Classical CG vs. Enlarged CG derived from Block CG

Algorithm 3 Classical CG Algorithm 4 ECG
1: p1 = ro(ry Arp)~/? 1: Py = R§(RSTARS)™Y/?
2: while [|re—1]l2 > €[|bllz do 2: while || 0, RY|l2 < ||b]]2 do
3: Xk = Pr Tk—1 3: ax =P R_1 >t X t matrix
4: Xk = Xk—1 + prk 4: X, = Xx_1 + Peous
5 k=1~ Apra 5 Re=Ri_1— AP
si Zky1 = 1k — ka(p;rArk) e 6:  Construct Z;; st. Z AP, = 0, Vi < k
8 end zi:irlle_ Zk“(ZkHAZHl) 273 end “”Jﬁ:rlé - Zk+1(ZII+1AZk+1)71/2

9 x=3"1 Xk'.)
Cost per iteration Cost per iteration
# flops = O(5) <~ BLAS 1 & 2 # flops = O(“s) <= BLAS 3
# words = O(1) # words = O(t”) « Fit in the buffer
# messages = O(1) from SpMV + # messages = O(1) from SpMV +
O(logP) from dot prod + norm O(logP) from A-ortho
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Test cases: boundary value problem

2D and 3D Skyscraper Problem - SKY2D,3D

—div(k(x)Vu) = finQ
u = 0ondp
du
n = 0 on 0Qy

discretized on a 3D grid , where

) = {107 ([0 %] 1), if [105x] = Omod(2), i =1,2.3,
Xy = 1, otherwise.
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Test cases (contd)

Linear elasticity 3D problem

div(o(u))+f =0 on £,
u =up on 0Qp,
o(u)-n =g on 0Qy, Figure: The distribution of

Young's modulus

® u € R? is the unknown displacement field, f is some body force.

® Young's modulus E and Poisson’s ratio v take two values,
(E1,v1) = (2-10'%,0.25), and (E,,1») = (107,0.45).
m Cauchy stress tensor o(u) is given by Hooke's law, defined by E and v.

Matrices Generated with FreeFem++ (F. Hecht, Sorbonne Université)
Linear Elasticity discretized using P; FE, 1600 x Y x Y grid
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Enlarged CG: numerical results

B Block Jacobi preconditioner (1024 blocks) matrix n(A) nnz(A)
B Stopping criterion 107°, initial block size 32 SKY2D 10,000 491600

B BRRHS-CG: block method with t — 1 random Ela3D100 || 36,663 | 1,231,497

rhs Ela2D200 || 80,802 | 964,800
PCG BRRHS-CG ECG
red. size iter iter  dim(KCs2.4) iter  dim(fCsp.4)
SKY2D X 655 61 1952 57 1824
v 655 61 1739 59 1546
Ela3D100 X 955 102 3264 109 3488
v 955 102 3093 116 2384
Ela2D200 X 4551 255 8160 253 8096
v 4551 258 7331 266 6553
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Enlarged CG: parallel performance

B Stopping criterion 10>, blocks ECG(Ka24) cG
Jacobi = #MPI # MPI  # iter res # iter res
¥ Performance study on: 252 513  13E4 13626 13E-4
— Kebnekaise (Suede), Intel Xeon 504 531 LOE-4 15810 1.9E4
(Broadwell), 28 MPI process/node 1008 606 26E4 17023 27E.4
— Cori NERSC, Intel KNL, 68 cores ' el ' i
cach 2,016 696 2.6E-4 19,047 2.7E-4
Ela_30 (n = 4,615,683 ; nnz = 165,388,197) = 1 OpenMP = 4 OpenMP
500 - W 20penMP  mEE 8 OpenMP
2504 [Ty W ECG D-Odir(24)
100{ s B T T _PETSe
so4 1 B Fven B TR
z ® =
g 10 b
s £

504 1008
# MPI processes
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