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Krylov subspace methods for solving Ax = b

Finds a sequence x1, x2, ..., xm that minimizes some measure of error over
the spaces x0 +Ki (A, r0), i = 1, ...,m, by satisfying two conditions:

1. Subspace condition: xm ∈ x0 +Km(A, r0)

2. Petrov-Galerkin condition: rm ⊥ Lm ⇐⇒ (rm)
ty = 0, ∀ y ∈ Lm

where
- x0 initial iterate, r0 initial residual, Lm well-defined subspace of dimension m

- Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0} is the Krylov subspace of dimension m.

Two instances of Krylov projection method:

Conjugate gradient [Hestenes, Stieffel, 52], A is SPD, Lm = Km(A, r0),

■ finds xm by minimizing ∥x − xm∥A over x0 +Km(A, r0)

GMRES [Saad, Schultz, 86], A is unsymmetric, Lm = AKm(A, r0),

■ finds xm by minimizing ∥Ax − b∥2 over x0 +Km(A, r0).
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Orthogonal Projection Methods (OPM)

Finds a sequence x1, x2, ..., xm that minimizes some measure of error over
the spaces x0 +Ki (A, r0), i = 1, ...,m, by satisfying two conditions:

1. Subspace condition: xm ∈ x0 +Km(A, r0)

2. Sketched Petrov-Galerkin condition:
rm ⊥ Km ⇐⇒ (rm)

ty = 0, ∀ y ∈ Km

where
- x0 initial iterate, r0 initial residual

- Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0} is the Krylov subspace of dimension m.
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Optimality result for Orthogonal Projection Methods

Proposition Assume A is Symmetric Positive Definite. Then x̃ is the result
of an (orthogonal) projection method onto K with the starting vector x0 if
and only if it minimizes the A-norm of the error over x0 +K, i.e.,

E (x̃) = min
x∈x0+K

E (x),

where x∗ = A−1b and

E (x) = ∥x∗ − x∥A =
(
(x∗ − x)TA(x∗ − x)

)1/2
= (A(x∗ − x), x∗ − x)1/2 ,

Proof. For x̃ to be the minimizer of E (x̃), it is necessary and sufficient that
x∗ − x̃ be A-orthogonal to all vectors in K, i.e., iff

(x∗ − x̃)TAv = 0, ∀v ∈ K,

or equivalently
(b − Ax̃)T v = 0, ∀v ∈ K,

which is the Galerkin condition.
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Orthogonal Projection Methods

Given the Krylov subspace Km(A, r0), we seek an approximate solution xm
from x0 +Km(A, r0) such that

b − Axm ⊥ Km(A, r0) (1)

By Arnoldi process and given q1 = r0/β, β = ∥r0∥, we obtain:

QT
mAQm = Hm (2)

QT
m r0 = QT

m (βq1) = βe1 (3)

The approximate solution is obtained as

xm = x0 + Qmym, where (4)

ym = H−1
m (βe1) (5)

since 0 = QT
m rm = QT

m (b − Axm) = QT
m r0 − QT

mAQmym
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Symmetric matrices and Lanczos algorithm

Given the Arnoldi process, A ∈ Rn×n, H̄m and Hm ∈ Rm×m formed from H̄m

by deleting its last row, we have:

QT
mAQm = Hm (6)

■ If A is symmetric, then Hm is tridiagonal, this leads to:
□ Lanczos process: mainly used for eigenvalue computation
□ Conjugate Gradient: most used algorithm for solving linear systems when A

is symmetric positive definite
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Symmetric Lanczos algorithm

Let αj ≡ hjj βj ≡ hj−1,j ,

Hm =


α1 β2

β2 α2 β3

. . .
βm−1 αm−1 βm

βm αm

 (7)

Symmetric Lanczos uses a three-term recurrence:

βj+1qj+1 = Aqj − αjqj − βjqj−1,

Algorithm 1 Symmetric Lanczos for linear systems

1: r0 = b − Ax0, β = ∥r0∥2, q1 = r0/β
2: for j = 1 : m do
3: wj+1 = Aqj − βjqj−1 (If j = 1 set β1q0 ≡ 0)
4: αj = ⟨wj+1, qj⟩
5: wj+1 = wj+1 − αjqj
6: βj+1 = ∥wj+1∥2. If βj+1 = 0 then Stop
7: qj+1 = wj+1/βj+1

8: end for
9: Set Hm = tridiag(βj , αj , βj+1) and Qm = [q1, . . . , qm]

10: Compute ym = H−1
m (βe1) and xm = x0 + Qmym

9 of 26



Conjugate gradient (Hestenes, Stieffel, 52)

■ A Krylov projection method for SPD matrices where Lk = Kk(A, r0).

■ Finds x∗ = A−1b by minimizing the quadratic function

ϕ(x) =
1

2
(x)tAx − btx

▽ϕ(x) = Ax − b = 0

■ After j iterations of CG,

||x∗ − xj ||A ≤ 2||x∗ − x0||A

(√
κ(A)− 1√
κ(A) + 1

)j

, (8)

where x0 is starting vector, ||x ||A =
√
xTAx and κ(A) = |λmax(A)|/|λmin(A)|.
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Conjugate gradient

■ Computes A-orthogonal search directions by conjugation of the residuals{
p1 = r0 = −▽ ϕ(x0)
pk = rk−1 + βkpk−1

(9)

■ At k-th iteration,

pk = rk−1 + βkpk−1 (10)

xk = xk−1 + αkpk = argminx∈x0+Kk (A,r0)ϕ(x) (11)

rk = rk−1 − αkApk (12)

where αk is the step along pk .

■ CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rTk ri = 0, for all i ̸= k ,

pTk Api = 0, for all i ̸= k .
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CG derivation

Since we have xk = xk−1 + αkpk we obtain

rk = rk−1 − αkApk and (rk , rk−1) = 0 hence

rTk−1rk−1 − αk r
T
k−1Apk = 0 =⇒ αk =

(rk−1, rk−1)

(Apk , rk−1)

Since we have pk = rk−1 + βkpk−1,

(Apk , rk−1) = (Apk , pk − βkpk−1) = (Apk , pk) =⇒ αk =
(rk−1, rk−1)

(Apk , pk)

Since pk = rk−1 + βkpk−1 is A-orthogonal to pk−1 we obtain

βk = − (rk−1,Apk−1)

(pk−1,Apk−1)
and Apk−1 =

1

αk−1
(rk−2 − rk−1) =⇒ βk =

(rk−1, rk−1)

(rk−2, rk−2)
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CG algorithm

Algorithm 2 The CG Algorithm

1: r0 = b − Ax0, ρ0 = ||r0||22, p1 = r0, k = 1
2: while (

√
ρk > ϵ||b||2 and k < kmax ) do

3: if (k ̸= 1) then
4: βk = (rk−1, rk−1)/(rk−2, rk−2)
5: pk = rk−1 + βkpk−1

6: end if
7: αk = (rk−1, rk−1)/(Apk , pk)
8: xk = xk−1 + αkpk
9: rk = rk−1 − αkApk

10: ρk = ||rk ||22
11: k = k + 1
12: end while
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Properties of CG

■ The directions p1, . . . pk are A-conjugate, the following properties are
satisfied:

(Apk , pj) = 0, for all k , j , k ̸= j

(rk , rj) = 0, for all k , j , k ̸= j

(pk , rj) = 0, for all k , j , k < j

■ The Krylov subspace is spanned by the residuals and the search
directions:

Kk(A, r0) = span{r0, r1, ..., rk−1} = span{p0, p1, ..., pk−1}

Adviced exercice: prove the above relations, e.g. by using recurrence on
equations (10), (11), (12).
We do not prove (11) and (8), the proofs can be found in [Saad, 2003]
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Enlarged Krylov methods [LG, Moufawad, Nataf, 14]

■ Partition the matrix into N domains

■ Split the residual r0 into t vectors corresponding to the N domains,
obtain Re

0 ,

r0 R
e
0

■ Generate t new basis vectors, obtain an enlarged Krylov subspace

Kt,k(A, r0) = span{Re
0 ,AR

e
0 ,A

2Re
0 , ...,A

k−1Re
0}

■ Search for the solution of the system Ax = b in Kt,k(A, r0)
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Properties of enlarged Krylov subspaces

■ The Krylov subspace Kk(A, r0) is a subset of the enlarged one

Kk(A, r0) ⊂ Kt,k(A, r0)

■ For all k < kmax the dimensions of Kt,k and Kt,k+1 are stricltly increasing
by some number ik and ik+1 respectively, where

t ≥ ik ≥ ik+1 ≥ 1.

■ The enlarged subspaces are increasing subspaces, yet bounded.

Kt,1(A, r0) ⊊ ... ⊊ Kt,kmax−1(A, r0) ⊊ Kt,kmax (A, r0) = Kt,kmax+q(A, r0),∀q > 0

■ The solution of the system Ax = b belongs to the subspace x0 +Kt,kmax .
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Enlarged Krylov subspace methods based on CG

Defined by the subspace Kt,k and the following two conditions:

1. Subspace condition: xk ∈ x0 +Kt,k

2. Orthogonality condition: rk ⊥ Kt,k

■ At each iteration, the new approximate solution xk is found by
minimizing ϕ(x) = 1

2 (x)
tAx − btx over x0 +Kt,k :

ϕ(xk) = min{ϕ(x),∀x ∈ x0 +Kt,k(A, r0)}

■ Can be seen as a particular case of a block Krylov method
□ AX = S(b), such that S(b)ones(t, 1) = b;Re

0 = AX0 − S(b)
□ Orthogonality condition involves the block residual Rk ⊥ Kt,k
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Convergence analysis

Given

■ A is an SPD matrix, x∗ is the solution of Ax = b

■ ||x∗ − xk ||A is the k th error of CG

■ ||x∗ − xk ||A is the k th error of ECG

Result
CG ECG

||x∗ − xk ||A ≤ 2||x∗ − x0||A
(√

κ− 1√
κ+ 1

)k

where κ = λmax (A)
λmin(A)

||x∗ − xk ||A ≤ C ||x∗ − x0||A
(√

κt − 1
√
κt + 1

)k

where κt =
λmax (A)
λt(A)

C is a const indpdt. of k, dpdt. of t

Proof of convergence of ECG can be found in [Grigori and Tissot, 2019].
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Classical CG vs. Enlarged CG derived from Block CG

Algorithm 3 Classical CG

1: p1 = r0(r
⊤
0 Ar0)

−1/2

2: while ||rk−1||2 > ε||b||2 do

3: αk = p⊤
k rk−1

4: xk = xk−1 + pkαk

5: rk = rk−1 − Apkαk

6: zk+1 = rk − pk (p
⊤
k Ark )

7: pk+1 = zk+1(z
⊤
k+1Azk+1)

−1/2

8: end while

Cost per iteration
# flops = O( n

P ) ← BLAS 1 & 2
# words = O(1)
# messages = O(1) from SpMV +
O(logP) from dot prod + norm

Algorithm 4 ECG

1: P1 = Re
0 (R

e
0
⊤ARe

0 )
−1/2

2: while ||
∑⊤

i=1 R
(i)
k ||2 < ε||b||2 do

3: αk = P⊤
k Rk−1 ▷ t × t matrix

4: Xk = Xk−1 + Pkαk

5: Rk = Rk−1 − APkαk

6: Construct Zk+1 s.t. Z⊤
k+1APi = 0, ∀i ≤ k

7: Pk+1 = Zk+1(Z
⊤
k+1AZk+1)

−1/2

8: end while
9: x =

∑⊤
i=1 X

(i)
k

Cost per iteration

# flops = O( nt
2

P ) ← BLAS 3
# words = O(t2) ← Fit in the buffer
# messages = O(1) from SpMV +
O(logP) from A-ortho
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Test cases: boundary value problem

2D and 3D Skyscraper Problem - SKY2D,3D

−div(κ(x)∇u) = f in Ω

u = 0 on ∂ΩD

∂u

∂n
= 0 on ∂ΩN

discretized on a 3D grid , where

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi ] = 0mod(2), i = 1, 2, 3,
1, otherwise.
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Test cases (contd)

Linear elasticity 3D problem

div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD ,

σ(u) · n = g on ∂ΩN , Figure: The distribution of
Young’s modulus

■ u ∈ Rd is the unknown displacement field, f is some body force.

■ Young’s modulus E and Poisson’s ratio ν take two values,
(E1, ν1) = (2 · 1011, 0.25), and (E2, ν2) = (107, 0.45).

■ Cauchy stress tensor σ(u) is given by Hooke’s law, defined by E and ν.

Matrices Generated with FreeFem++ (F. Hecht, Sorbonne Université)
Linear Elasticity discretized using P1 FE, 1600× Y × Y grid
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Enlarged CG: numerical results

■ Block Jacobi preconditioner (1024 blocks)

■ Stopping criterion 10−6, initial block size 32

■ BRRHS-CG: block method with t − 1 random
rhs

matrix n(A) nnz(A)
SKY2D 10,000 49,600
Ela3D100 36,663 1,231,497
Ela2D200 80,802 964,800

PCG BRRHS-CG ECG
red. size iter iter dim(K32,k) iter dim(K32,k)

SKY2D × 655 61 1952 57 1824
✓ 655 61 1739 59 1546

Ela3D100 × 955 102 3264 109 3488
✓ 955 102 3093 116 2384

Ela2D200 × 4551 255 8160 253 8096
✓ 4551 258 7331 266 6553
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Enlarged CG: parallel performance

■ Stopping criterion 10−5, blocks
Jacobi = #MPI

■ Performance study on:
– Kebnekaise (Suede), Intel Xeon
(Broadwell), 28 MPI process/node
– Cori NERSC, Intel KNL, 68 cores
each

ECG(K24) CG
# MPI # iter res # iter res

252 513 1.3E-4 13,626 1.3E-4
504 531 1.9E-4 15,819 1.9E-4
1,008 606 2.6E-4 17,023 2.7E-4
2,016 696 2.6E-4 19,047 2.7E-4

252 504 1008 2016
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