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Chapter 1

Communication cost
model and collective
communication operations

We discuss a basic parallel computer architecture, the basic communication cost model
that we will use to evaluate algorithms, and the parallel communication primitives (re-
duction, broadcast, etc.) that parallel algorithms will use.

1.1 Abstract model of a parallel machine
We consider a simple model of a parallel machine that is formed by a collection of
homogeneous processors connected through a fast network. This model is displayed in
Figure 1.1. The time required to compute one floating point operation per processor
is γ. The time required to communicate a message of n words from one processor to
another is modeled as α+ nβ, where α is the interprocessor latency and β is the inverse
of the interprocessor bandwidth. The time of a parallel algorithm is estimated with the
α− β − γ model as,

T = γ ·# flops + β ·# words + α ·# messages, (1.1)

where #flops represents the computation on the critical path of the algorithm, #words
the volume of communication, and #messages the number of messages exchanged on
the critical path of the parallel algorithm. An advantage of this model is that it can
be applied to both sequential and parallel machines, with the appropriate choices of the
parameters α, β, γ.

This model has several simplifying assumptions:

• The time required to compute one flop per processor is constant. Thus the model
ignores the memory hierarchy of each processor.

• The communication cost is independent of the topology of the interconnect network
and of the physical distance between processors. Network contention is ignored.

• At a given time, a processor can send and can receive a message.

• Any subset of disjoint pair of processors can communicate simultaneously and the
links in the network are assumed to be bidirectional. With these assumptions,
the communication cost of exchanging a message of n words between a pair of
processors is estimated as α+ nβ.
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6 Chapter 1. Communication cost model and collective communication operations

Figure 1.1: Abstract model of a parallel machine.

0 1 2 3

A B C D

0

A B C D

(a) Scatter

0 1 2 3

A B C D

0

A B C D

(b) Gather

0 1 2 3

A A A A

0

A

(c) Broadcast

0 1 2 3

A0 A1 A2 A3

0∑
k Ak

(d) Reduce

Figure 1.2: Rooted collective operations on 4 processors

1.2 Collective communication operations
We present several collective communication operations and their communication cost
by considering the simplified model of a parallel machine described in Section 1.1. The
presentation focuses on the most fundamental MPI collective operations.

The eight collectives presented in this section and their costs are summarized in
Table 1.1, Figure 1.2, and Figure 1.3. We let n denote the size of the data involved in a
given collective, as measured in words. Depending on the size of n, different algorithms
can be used for these collective operations. Our focus is in particular on algorithms
used for short or medium size messages, when the latency cost might dominate the
communication cost, and in particular we consider the case when n ≥ P . For simplicity,
we assume that the number of processors P is a power of 2, and the size of the message
n divides P when n ≥ P .

We now describe what each collective does, and later we describe how the operations
are performed efficiently. The most commonly used collectives are Broadcast and Reduce,
and they are duals of each other. In a Broadcast, one processor, which we refer to as
the root, has data that we want every other processor to have. The Reduce collective
computes a global sum (or other accumulation operation) of the data stored on each
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Table 1.1: Summary of collective operations involving P processors and their leading-
order costs. Root is a designated processor among the P processors. Reduce, Re-
duce scatter, and Allreduce are assumed to use an associative and commutative reduction
operator and their cost includes the cost of arithmetic when the reduction of two words
corresponds to one flop.

Routine Description and cost of efficient algorithm

Scatter a root scatters n words, each processor receives n/P words
α · log2 P + β · n when n ≥ P ,
α · log2 n+ β · n otherwise

Gather each processor sends n/P words, which are gathered on root
α · log2 P + β · n when n ≥ P ,
α · log2 n+ β · n otherwise

Reduce scatter reduction on n words from each processor, result scattered on all processors
α · log2 P + β · n+ γ · n when n ≥ P ,
α · log2 P + β · (n+ log2(P/n)) + γ · (n+ log2(P/n)) otherwise

Allgather each processor sends n/P words, which are gathered on all processors
α · log2 P + β · n when n ≥ P
α · log2 P + β · (n+ log2(P/n)) otherwise

Reduce reduction on n words from each processor, result returned on root
α · 2 log2 P + β · 2n+ γ · n when n ≥ P ,
α · log2(Pn) + β · (2n+ log2(P/n)) + γ · (n+ log2(P/n)) otherwise

Broadcast a root broadcasts n words to all processors
α · 2 log2 P + β · 2n when n ≥ P ,
α · log2(Pn) + β · (2n+ log2(P/n)) otherwise

Allreduce reduction on n words from each processor, result returned on all processors
α · 2 log2 P + β · 2n+ γ · n when n ≥ P ,
α · 2 log2 P + β · 2(n+ log2(P/n)) + γ · (n+ log2(P/n)) otherwise

Alltoall each processor sends different n/P words to every other processor
α · log2 P + β · n

2
log2 P

individual processor, storing the result on a single root processor. In each case, the data
may be a single word or an array of arbitrary length, in which case the accumulation
operation is performed elementwise. See Figs. 1.2c and 1.2d for a visualization.

Less common but simpler are the Scatter and Gather collectives, which are shown
in Figs. 1.2a and 1.2b. In a Scatter, an array of data of size n starts on the root and
is scattered evenly across all processors so that each processor stores n/P of the array.
A Gather is the opposite: the data starts distributed across processors and is gathered
onto a single root.

These first four collectives all specify a root processor, but the next four do not. As
shown in Fig. 1.3a, the Reduce scatter collective achieves the effect of first performing a
Reduce followed by a Scatter (though it is not efficient to implement it this way): each
processor starts with its own data array and then ends with a global accumulation of
part of the array. An Allgather starts like a Gather but ends as if every processor is a
root: all processors end with all the input data in their local memory (see Fig. 1.3b).
Similarly, an Allreduce starts like a Reduce but ends as if every processor is the root:
all processors end with a copy of the accumulated result as shown in Fig. 1.3c. Finally,
the Alltoall collective performs a redistribution of the data: each processor starts with n
data but ends with n/P data from each of the other processors, so it ends with a different
set of n words than it started. An example is given in Fig. 1.3d.

These routines have different names in different communication libraries. For example
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Figure 1.3: Unrooted collective operations on 4 processors

in MPI, the Broadcast, Allgather, and Alltoall are called MPI Broadcast, MPI Allgather,
and MPI Alltoall, respectively.

1.2.1 Binomial Tree and Butterfly Patterns

Efficient implementations of these collectives in our communication model are based on
two communication patterns called binomial tree and butterfly, shown in Fig. 1.4. The
binomial tree is like a binary tree except that some of the nodes in any given level are
repeated from a previous level. For example, a simple algorithm for broadcasting n words
uses a binomial tree of depth log2 P and proceeds as follows. Suppose processor 0 is the
root that starts with the data. First the root processor sends the n words to processor
P/2. After this step, there are two subtrees, each having P/2 processors, for which the
roots are processors 0 and P/2. Processors 0 and P/2 send simultaneously the n words
to processors P/4 and 3P/4. The algorithm continues recursively until depth log2 P .
However, because every message is of size n, such an algorithm leads to a communication
cost of α · log2 P + β · n log2 P . A similar binomial-tree Reduce algorithm achieves the
same communication cost as the binomial-tree Broadcast algorithm. While this latency
cost is optimal, the bandwidth cost of Broadcast can be improved using a combination
of Scatter and Allgather, as we describe in § 1.2.4.

The butterfly scheme is useful for the unrooted collectives. For example, to perform
an Allgather on n words of data initially distributed across P processors, we can use a
butterfly pattern of depth log2 P . In the first step, consecutive processors exchange their
data, each ending with twice as many words of the data as they started. After this step,
the n words are distributed across the even processors, and they are also distributed
across the odd processors. The process continues recursively with pairwise exchanges
among the even processors proceeding simultaneously with pairwise exchanges among
the odd processors. After log2 P steps, all processors have all the data. Because the
size of each message doubles each step from n/P to n/2, the cost of the algorithm is
α · log2 P + β · P−1

P n. This algorithm is sometimes called recursive doubling, see § 1.2.3
for more details.
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(b) butterfly scheme

Figure 1.4: Communication schemes in collectives on 8 processors. Each level corresponds
to a communication phase in the collective, with solid lines indicating messages.

1.2.2 Scatter and Gather

Examples for Scatter and Gather operations with 4 processors are presented in Figs. 1.2a
and 1.2b, respectively. Both collectives are rooted, and efficient implementations of these
algorithms use the binomial tree communication pattern.

In a Scatter operation, an array of n words, for n ≥ P , is scattered from a root
processor to all the other processors. At the end of this operation, processor i owns n/P
words, which correspond to the elements starting at position in/P in the initial array,
with the index of the first element of the array being 0. The binomial tree algorithm is
called recursive halving. In the first step, the root 0 sends the 2nd half of the data to
processor P/2. After the first step, the 1st P/2 processors recursively scatter the 1st half
of the data, and simultaneously, the 2nd P/2 processors recursively scatter the 2nd half
of the data. After log2 P steps, each processor owns n/P of the data.

In a Gather operation, each processor starts with n/P data (assuming n ≥ P ) and
the root ends with the entire array of n words. The binomial tree Gather algorithm
works in the opposite direction of the Scatter algorithm and is called recursive doubling.
For a Gather, the message size in the first step is n/P and occurs between consecutive
processors. Then the Gather proceeds recursively on only the even processors. The
message size in the last step is n/2 and occurs between processors 0 and P/2. The
communication cost of both routines is given by

α · log2 P + β · P − 1

P
n.

In the case that n < P , we can still perform a Scatter, but only n processors will end
up with data. Similarly, we can perform a Gather across n processors, each of which has
1 word of data. In this case, assuming n is also a power of two, the cost above simplifies
by setting P = n.

1.2.3 Reduce scatter and Allgather

Reduce scatter and Allgather are unrooted collectives. Like Scatter and Gather, Re-
duce scatter and Allgather are duals of each other, as shown in Figs. 1.3a and 1.3b.
Efficient algorithms for these collectives use the butterfly communication pattern. We
assume n ≥ P .
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The Allgather collective starts with each processor owning n/P unique words of data
and ends with all processors owning all n words. As in the efficient algorithm for Gather,
we can perform a recursive doubling approach; however, in order for all processors to end
with all the data, we use a butterfly pattern instead of a single binomial tree. In the first
step, consecutive processors exchange their data, after which each processor owns 2n/P
words of data. Then the full array is distributed across even processors and also across
odd processors. The algorithm continues recursively and simultaneously on both sets of
processors. After this step, each processor owns 2n/P words. In the final log2 P step,
each processor i such that 0 ≤ i < P/2 exchanges n/2 words with processor i + P/2.
After this step, n words are gathered on all processors.

In a Reduce scatter, each processor starts with n words and ends with n/P words
of the global accumulated result. This works the same as Allgather but in the opposite
order: we perform recursive halving using the butterfly pattern. We assume here that
the reduce operation (e.g., scalar addition) is associative and commutative and that
the reduction of two words costs one flop. In the first step, each processor i such that
0 ≤ i < P/2 exchanges n/2 words with processor i + P/2. All processors compute the
reduction operation between the n/2 words they owned originally and the received data.
At this point, all contributions to the left half of the array are distributed across the first
P/2 processors, and all contributions to the right half of the array are distributed across
the last P/2 processors, and the algorithm proceeds recursively on each half of processors
simultaneously. In the last step, consecutive processors exchange n/P data and perform
the final reductions.

Assuming n ≥ P , the communication cost of each collective using these algorithms is
given by

α · log2 P + β · P − 1

P
n,

and the Reduce scatter incurs an additional computation cost of γ P−1
P n.

When n < P , not all processors have data to contribute to an Allgather, and not all
processors end up with data in a Reduce scatter. Assuming n is also a power of two, we
can combine binomial-tree algorithms with the algorithms described above.

In the case of an Allgather, n processors start with 1 word of data each, and all
other processors start with no data. We start with a binomial-tree Broadcast among
groups of P/n processors, each rooted at a different processor that started with data.
After this step, there are P/n groups of processors, each consisting of n processors with
each processor owning a unique word of data. Within each group, we simultaneously
perform the recursive-doubling Allgather algorithm described above where the array size
n matches the number of processors exactly.

In the case of a Reduce scatter with n < P , we perform the same steps of the recursive-
halving algorithm described above until the data size on each processor is 1 word, which
requires log2 n steps. At this point, groups of P/n processors own contributions to a
single word of the final result. Within those n groups of processors, we simultaneously
perform binomial-tree Reduce algorithms to obtain a final result with n processors each
owning one word of the final result.

The cost of these algorithms for n < P is the sum of the cost given above for n ≥ P
(plugging in P = n) and the cost of the binomial-tree Broadcast or Reduce, which is
α · log2(P/n) + β · log2(P/n) and additional cost of γ · log2(P/n) for Reduce. Thus, the
communication cost is given by

α · log2 P + β ·
(
n− 1 + log2

P

n

)
,
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and the Reduce scatter incurs an additional computation cost of γ ·
(
n− 1 + log2

P
n

)
.

1.2.4 Broadcast, Reduce, and Allreduce

Broadcast and Reduce are rooted collectives visualized in Figs. 1.2c and 1.2d. While
each collective can be implemented straightforwardly using a binomial-tree algorithm,
this simple approach is not bandwidth optimal. As described in § 1.2.1, the binomial-
tree algorithm has communication cost α · log2 P + β · n log2 P . Likewise, Allreduce
is an unrooted collective (see Fig. 1.3c) whose straightforward implementation using
a butterfly algorithm does not minimize bandwidth cost. Instead, we can implement
these three collectives using pairs of simpler collectives analyzed above and reduce the
bandwidth cost by a factor of O(log2 P ). More details and references can be found in
[2, 7].

In a Broadcast, we start with n data stored on a root processor, and we end with
all processors owning all the data. We can achieve this effect by first performing a
Scatter and then performing an Allgather. Thus, we combine a binomial-tree algorithm
that distributes the data from the root to all processors with a butterfly algorithm that
gathers all the data to all the processors. The key observation is that within the Scatter
and Allgather algorithms, the message sizes shrink and grow from n/2 to n/P and back,
as opposed to each message having size n in the simple binomial-tree broadcast. This
means that the bandwidth cost is proportional to n rather than n log2 P . Note that we
double both the bandwidth and latency costs by using two collectives as subroutines, but
both costs are within a factor of 2 of optimal. This algorithm works when n ≥ P and
n < P , though the costs vary in the two cases. When n ≥ P , the communication cost is

α · 2 log2 P + β · 2P − 1

P
n,

and when n < P , the cost is

α · (log2 P + log2 n) + β ·
(
2P − 1

P
n+ log2

P

n
− 1

)
.

In a Reduce, we start with n data on every processor and end with the global accumu-
lation of that data onto a root processor. Instead of the simple binomial-tree algorithm,
we implement a Reduce efficiently by using a Reduce scatter followed by a Gather. Like
the case of Broadcast, both bandwidth and latency costs are optimal to within a factor
of 2, and the algorithm works for any data size n.

To implement an Allreduce efficiently, in which case the global accumulation of data
ends redundantly on every processor, we perform a Reduce scatter followed by an All-
gather. In this case, both subroutines are implemented with the butterfly scheme. The
simplified costs for both Reduce and Allreduce are given in Tab. 1.1.

1.2.5 Alltoall

In an Alltoall, each processor sends different n/P words to every other processor. At
the end of the algorithm every processor has received P−1

P n words. When latency is
important, a butterfly algorithm can be used, which has cost

α · log2 P + β · n
2
log2 P.
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Chapter 2

Background

This chapter will be updated progressively with notations and background needed through-
out the lectures. It is organized as follows. Section 2.1 defines the vector and matrix
notation that we will use throughout the book.

2.1 Notations, BLAS and LAPACK libraries
We introduce in this section notations and several basic matrix operations. Matlab
notation is used predominantly throughout the book.

2.1.1 Matrices and vectors

Let Rm×n denote the vector space of all real matrices of dimension m × n and Cm×n

denote the vector space of all complex matrices of dimension m × n. Unless mentioned
otherwise, we consider real vector spaces in this book. A matrix A ∈ Rm×n is a collection
of m× n real numbers,

A =

a11 . . . a1n
...

...
am1 . . . amn

 .

We denote the element of a matrix A at row i and column j as A(i, j), and sometimes
also as aij . The submatrix of A formed by rows from i to j and columns from k to l is
referred to as A(i : j, k : l).

A(i : j, k : l) =

aik . . . ail
...

...
ajk . . . ajl

 .

The leading k × k minor of A is A(: k, : k). The matrix formed by concatenating two
matrices A1, A2 stacked atop one another is referred to as [A1;A2]. The matrix formed
by concatenating two matrices one next to another is referred to as [A1,A2]. For example,
A = [A(1 : i, :);A(i+ 1 : n, :)], or A = [A(:, 1 : j);A(:, j + 1 : m)], where 1 ≤ i < m,
1 ≤ j < n. The matrix |A| is the matrix formed by the absolute value of the elements of
A. The identity matrix of size n× n is referred to as In.

13
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There are several different ways to partition a matrix, by rows or blocks of rows, by
columns or blocks of coumns, or simply by blocks. In general, algorithms use a partition
into square blocks of dimension b× b, and by assuming that m and n divide b, M = m/b,
N = n/b, the matrix A is partitioned as

A =

A11 . . . A1N

...
...

AM1 . . . AMN

 .

A real m-vector v belongs to the vector space Rm and is defined as

v =

 v1...
vm

 .

Its kth component is referred to as either vk or v(k).
In general, matrices are denoted by upper case letters, while vectors are denoted by

lower case letters. A scalar is denoted by a greek lower case letter, unless it is a specific
element of a matrix or a vector.

Some of the basic matrix operations are the following:

• Transposition: B = AT , where A ∈ Rm×n,B ∈ Rn×m and

A(i, j) = B(j, i), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

• Addition: C = A+B, where A,B,C ∈ Rm×n and

C(i, j) = A(i, j) +B(i, j), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

• Matrix-matrix multiplication: C = AB, or sometimes for more clarity denoted as
C = A ·B, where A ∈ Rm×p, B ∈ Rp×n, C ∈ Rm×n, and

C(i, j) =

p∑
k=1

A(i, k) ·B(k, j), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

2.1.2 BLAS and LAPACK linear algebra libraries

Given the importance of linear algebra, there is a standard interface for basic linear
algebra routines, referred to as BLAS. Those routines are grouped into three categories,
BLAS-1, BLAS-2 and BLAS-3.

• BLAS-1: 15 different operations. It implements vector-vector operations as dot
product of two vectors, saxpy (y=a*x+y). Those routines are not very efficient,
since there are few operations that are performed on each element of the vectors.
Hence the cost of transferring data through memory hierarchies is important/

• BLAS-2: 25 different operations. It implements matrix-vector operations, as ma-
trix vector multiplication. Those routines are slightly faster than BLAS1, but
their runtimes remains dominated by data transfers between different levels of the
memory hierarchy.
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• BLAS-3: 9 different operations. It implements matrix-matrix operations as matrix
matrix multiplication. There routines are efficient. They are implemented to use
efficiently the memory hierarchy. Indeed this is possible since for multiplying two
matrices for example of dimensions n×n, n3 operations for matrices of dimensions
n × n. Most efficient algorithms will aim to rely as much as possible on BLAS3
operations.

More advanced linear algebra algorithms that compute the factorization of a matrix,
as QR, LU or Cholesky, or compute the eigenvalue decomposition of a matrix, are avail-
able in many libraries provided by vendors. Their reference implementation can be found
in LAPACK, and a distributed memory implementation in ScaLAPACK.
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Chapter 3

Orthogonalization

Given a set of vectors, the term orthogonalization refers to computing a set of orthonor-
mal vectors, which are unit length and mutually orthogonal, that spans the same space
as the input. Computing a QR decomposition of a matrix is one way to orthogonalize
the columns of the matrix. There are a variety of algorithms for orthogonalization and
computing QR decompositions. Gram-Schmidt methods can be thought of as triangular
orthogonalization: each successive vector is orthogonalized against the previous ones,
which yields a transformation matrix R with triangular structure. Other methods, in-
cluding Householder QR, can be thought of as orthogonal triangularization: each step
of the algorithm uses an orthogonal transformation to annihilate entries in the matrix
A until it becomes the triangular factor R. Methods based on Cholesky-QR exploit the
fact that A = QR implies ATA = RTQTQR = RTR, which means the Cholesky factor
of ATA is the triangular factor of the QR decomposition of A.

These methods have varying numerical stability properties as well as arithmetic and
communication costs. In this chapter, we focus on the “tall-and-skinny” case, where the
lengths of the vectors far exceeds the number of vectors or equivalently, the input matrix
has many more rows than columns. This case is common for highly overdetermined
least squares problems and large-scale Krylov methods. When the problem is not so tall
and skinny, more general algorithms are required to achieve communication efficiency.
We discuss these approaches, which utilize algorithms for the tall-and-skinny case as
subroutines, in a later section.

Communication lower bounds exist for orthogonalization algorithms, and they are
generally consistent with other matrix computations. We will discuss communication
lower bounds in the following chapter.

3.1 Background on Orthogonalization and Least Squares
An orthogonal matrix Q is a square matrix that satisfies QTQ = QQT = I. Orthogonal
matrices have very convenient properties, so they are fundamental to the solution of
a wide range of problems in linear algebra. For example, we can solve linear systems
quickly because Q−1 = QT . They also maintain norms of vectors (∥Qx∥ = ∥x∥).

An m × n matrix Q with orthonormal columns satisfies QTQ = I, but if m > n,
QQT ̸= I. In this case, each column has unit norm and each pair of columns is mutually
orthogonal. Suppose we have a set of n (column) vectors of length m. Arranging the
vectors into the columns of a matrix A, the QR decomposition A = QR, with R upper

17
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triangular, achieves orthogonalization with the property that the first k columns of Q
are an orthogonalization of the first k columns of A for each 1 ≤ k ≤ n. In this case, we
consider Q to be m×n, a matrix with orthonormal columns, and R to be square, which
is sometimes referred to as the compact QR decomposition. An equivalent decomposition

can be written A =
[
Q Q̃

] [R
0

]
, where Q̃ is any orthogonal complement of Q (it is a

matrix with orthonormal columns that are all orthogonal to the columns of Q). In this
full QR decomposition, the first factor

[
Q Q̃

]
is an orthogonal matrix.

Three of the most compelling applications of orthogonalization within linear algebra
are the solution of linear least squares problems, computing the low rank approximation
of a matrix, and Krylov subspace methods for iteratively solving linear systems and
eigenvalue problems, but there are many others. We will discuss low rank approximation
algorithms and Krylov subspace methods later on.

A linear least squares problem is defined by an m × n coefficient matrix A and a
length-n vector b:

argmin
x

∥Ax− b∥ (3.1)

If we consider the full QR decomposition of A and use the property that orthogonal
matrices maintain norms, we have

∥Ax− b∥2 =

∥∥∥∥[R0
]
x−

[
Q Q̃

]T
b

∥∥∥∥2 =
∥∥∥Rx−QTb

∥∥∥2 + ∥∥∥Q̃T
b
∥∥∥2 .

This implies that

argmin
x

∥Ax− b∥ = argmin
x

∥∥∥Rx−QTb
∥∥∥ ,

and so we can solve the linear least squares problem by solving the triangular linear
system in terms of the QR decomposition factors.

3.1.1 Distribution of data in parallel

We now turn our attention to parallel algorithms for orthogonalization of an m×n matrix
A using P processors. We assume that our matrices are sufficiently tall and skinny, with
the explicit assumption that m/n ≥ P .

For all the algorithms we consider, we impose a 1D row-wise distribution of the input
matrix across processors, so that each processor owns mℓ = m/P rows of A and we
assume mℓ is an integer. With this distribution, processor I owns the mℓ × n submatrix

AI = A((I−1)mℓ + 1 : Imℓ, 1 : n).

Under the tall-and-skinny assumption, each processor’s local submatrix has more rows
than columns, as mℓ ≥ n.

3.2 Gram-Schmidt Orthogonalization
Gram-Schmidt orthogonalization is accomplished via a sequence of projections. In step
j, the next orthogonal vector is produced by subtracting from the jth column of A the
orthogonal projection of the jth column of A onto the previously computed orthogonal
vectors. The difference between classical Gram-Schmidt (CGS) and modified Gram-
Schmidt (MGS) is that the computations are performed in a different order. Whereas in
CGS, the next vector is computed as (I−Q(:, 1 : j−1)Q(:, 1 : j−1)T )A(:, j), in MGS the
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computation is performed via (I−Q(:, j − 1)Q(:, j − 1)T ) · · · (I−Q(:, 1)Q(:, 1)T )A(:, j).
Although the approaches are mathematically equivalent, this seemingly small change
makes a significant difference numerically.

The two main variants of Gram-Schmidt orthogonalization are classical and modified,
but for each variant, there are several approaches for organizing the computation. We
will first distinguish between left-looking and right-looking algorithms.

Both types of algorithms work column by column, left to right. Left-looking algo-
rithms repeatedly access columns to the left in order to compute the current column, and
they do not access or update columns to the right at that iteration. Right-looking algo-
rithms repeatedly access and update columns to the right after computing the current
column, and they do not access columns to the left ever again. We note that left-looking
algorithms are required in the case that vectors (columns) are added to the set one at a
time, as is the case in many Krylov methods. Right-looking algorithms cannot update
future vectors unless they are known from the start.

Next, we distinguish between BLAS-1 and BLAS-2 algorithms. Removing vector
projections in the Gram-Schmidt process involves dot products (to compute the length of
the projection) and axpys (to subtract the projection from the vector), both of which are
BLAS-1 (vector-vector) operations. Because these operations are performed for multiple
vectors at a time, they can usually be cast into BLAS-2 (matrix-vector) operations.
BLAS-2 operations offer modest improvements in communication costs, allow for more
flexibility of low-level optimizations to be applied within the BLAS implementation, and
also simplify the algorithms.

We focus in the following only on left-looking algorithms. We present left-looking
CGS, sequential and parallel, and parallel left-looking MGS, the other variants can be
adapted from these.

3.2.1 Left-Looking BLAS-2 CGS

Algorithm 3.1. Classical Gram-Schmidt (Left-looking, BLAS-2 version).

Require: A is an m× n matrix with m ≥ n
Ensure: QR = A where R is upper triangular
1: function [Q,R] = CGS(A)
2: R = 0
3: R(1, 1) = ∥A(:, 1)∥2
4: Q(:, 1) = A(:, 1) / R(1, 1)
5: for j = 2 to n do
6: R(1 : j−1, j) = Q(:, 1 : j−1)T ·A(:, j)
7: Q(:, j) = A(:, j)−Q(:, 1 : j−1) ·R(1 : j−1, j)
8: R(j, j) = ∥Q(:, j)∥2
9: Q(:, j) = Q(:, j) / R(j, j)

10: end for
11: end function

Here we consider the BLAS-2, left-looking version of CGS, which is presented as
Alg. 3.1 and visualized in Fig. 3.1. The algorithm works column by column, and for each
column j, it performs four steps: it computes the lengths of the projections of the vector
on the previously computed vectors and stores them in the jth column of R in line 6
(Fig. 3.1a), it subtracts those projections from the vector in line 7 (Fig. 3.1b), and then it
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(d) Normalize Q(:, j)
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Figure 3.1: Steps of Left-looking CGS (Alg. 3.1) at iteration j. Green highlighting
indicates access (reads) and blue highlighting indicates update (writes).

normalizes the vector and stores its magnitude in the diagonal entry of R in lines 8 and 9
(Figs. 3.1c and 3.1d). The algorithm is left looking because at each iteration it computes
the projections of the vector on the previously computed columns (stored to the left) and
never accesses or updates any columns to the right. The algorithm is BLAS-2 because
the projections are computed and removed using matrix-vector products.

In the case of parallel left-looking CGS, whose access pattern is illustrated in Fig. 3.1,
the projections of previously computed columns of Q are removed from the current
column of A. The dot products that represent the magnitude of these projections in
the jth iteration are given by the matrix-vector product Q(:, 1 : j − 1)TA(:, j). This
matrix-vector product involves distributed data and is performed in parallel as shown
in Alg. 3.2. In the 1D block-row distribution, this consists of a matrix-vector product
involving local data (line 8) followed by a sum across all processors. Because the result
will be used in the subsequent matrix-vector computation, we compute the sum using an
all-reduce (line 9), after which the update of the jth column can be performed locally
with no further communication (line 10). Normalizing the vector that remains after the
projections have been removed follows a similar computational pattern in lines 11 to 13.

The computation and communication costs are dominated by the matrix-vector prod-
ucts and corresponding collective. The number of rows of QI is m/P , and the number of
columns involved in the matrix-vector products at iteration j is j − 1, so the total arith-
metic cost over the entire algorithm is 2mn2/P . The all-reduce collective involves data
of size j−1 at iteration j. By using the communication costs from Tab. 1.1 and ignoring
some lower order terms, the cost over all n iterations is β ·O(n2+n logP )+α ·O(n logP )
(see details in § 1.2).

Algorithm 3.2. Parallel Classical Gram-Schmidt (Left-looking).
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Require: A is an m× n matrix 1D-row-distributed over P processors
Ensure: QR = A where R is upper triangular and Q is m× n
Ensure: R is stored redundantly on all processors and Q’s distribution matches A
1: function [Q,R] = 1D-CGS(A)
2: I = MyProcID()
3: R = 0
4: β = ∥AI(:, 1)∥22
5: All-reduce β over all processors, take square root, and store in R(1, 1)
6: QI(:, 1) = AI(:, 1) / R(1, 1)
7: for j = 2 to n do
8: r = QI(:, 1 : j−1)T ·AI(:, j)
9: All-reduce r over all processors, store in R(1 : j−1, j)

10: QI(:, j) = AI(:, j)−QI(:, 1 : j−1) ·R(1 : j−1, j)
11: β = ∥QI(:, j)∥22
12: All-reduce β over all processors, take square root, and store in R(j, j)
13: QI(:, j) = QI(:, j) / R(j, j)
14: end for
15: end function

3.2.2 Left-Looking BLAS-1 MGS

In the case of left-looking MGS, the parallel algorithm given in Alg. 3.3 must perform
BLAS-1 style operations to compute and remove projections. Note that the main differ-
ence between Alg. 3.3 and Alg. 3.2 is the doubly nested loops and the communication
that occurs in the inner loop. In this algorithm, the dot product between each previous
column of Q and the current vector must be computed independently and removed from
the vector before proceeding, and each operation occurs over the 1D-row-distributed
data. The computational cost of the inner loop is that of a dot product and an axpy of
vectors of local dimension m/P , and the communication cost is that of an all-reduce of
a single element. Over all n2/2 inner iterations, the total costs are γ · O(2mn2/P ) and
β ·O(n2 logP ) + α ·O(n2 logP ). Note that no more efficient all-reduce algorithm exists
when the data consists of a single element.

Algorithm 3.3. Parallel Modified Gram-Schmidt (Left-looking).

Require: A is an m× n matrix 1D-row-distributed over P processors
Ensure: QR = A where R is upper triangular and Q is m× n
Ensure: R is stored redundantly on all processors and Q’s distribution matches A
1: function [Q,R] = 1D-MGS(A)
2: I = MyProcID()
3: R = 0
4: QI = AI

5: for j = 1 to n do
6: for i = 1 to j − 1 do
7: ρ = QI(:, i)

T ·QI(:, j)
8: All-reduce ρ over all processors, store in R(i, j)
9: QI(:, j) = QI(:, j)−QI(:, i) ·R(i, j)
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10: end for
11: β = ∥QI(:, j)∥22
12: All-reduce β over all processors, take square root, and store in R(j, j)
13: QI(:, j) = QI(:, j) / R(j, j)
14: end for
15: end function

We highlight the extra factor of n that appears in the latency cost of left-looking
parallel MGS compared to parallel CGS. For this reason, many users resort to the more
communication-efficient CGS.

3.3 Cholesky-QR
In contrast to iterative, projection-based approaches like Gram-Schmidt, the Cholesky-
QR approach is based on the fact that in exact arithmetic, theR in the QR decomposition
of A is the Cholesky factor of ATA. The Cholesky-QR algorithm (abbreviated CholQR)
first computes ATA, computes it Cholesky factor to find R, and then computes Q =
AR−1. It is clear that explicitly forming ATA can have consequences numerically; it
is shown in [10] that if O(ε)κ2(A) < 1, then the loss of orthogonality is bounded by
O(ε)κ2(A).

Algorithm 3.4. Cholesky QR.

Require: A is an m× n matrix with m ≥ n
Ensure: QR = A where R is upper triangular n× n and Q is m× n
1: function [Q,R] = CholQR(A, b)
2: G = 0
3: G = ATA
4: R = Cholesky(G)
5: Q = AR−1 ▷ Triangular solve with multiple RHS
6: end function

The Cholesky-QR algorithm has three simple steps: compute ATA, compute its
Cholesky decomposition to find R, and use triangular solve to recover Q.

We consider now parallel Cholesky-QR. The three steps of Cholesky-QR are (1) form
ATA, (2) compute Cholesky factorization for R, and (3) perform a triangular solve
(TRSM) for Q. When A (and Q) are 1D-row-distributed, the first and third steps
are easily parallelized. Under the assumption that m/P ≥ n, the most communication
efficient algorithm for computingATA is by assuming that the matrix has a 1D block row
distribution. After symmetric multiplication of each local block of dimension m/P × n,
the final result is the sum over all processors. We perform an all-reduce in line 4 of Alg. 3.5
so that the Cholesky factorization of the result can be performed redundantly to obtain
R on all processors. In this way, the parallel TRSM requires no further communication,
as each processor computes its local block of Q from its local block of A using R.

The computational cost of Parallel Cholesky-QR is thus 2mn2/P + O(n3), and the
communication cost is that of the all-reduce: β ·O(n2) + α ·O(logP ) when n2 ≥ P .

Algorithm 3.5. Parallel Cholesky-QR.
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Require: A is an m× n matrix 1D-row-distributed over P processors
Ensure: QR = A where R is upper triangular and Q is m× n
Ensure: R is stored redundantly on all processors and Q’s distribution matches A
1: function [Q,R] = ParCholQR(A)
2: I = MyProcID()
3: G = AT

I AI ▷ Local symmetric rank-k update
4: All-reduce G over all processors, store in G
5: R = Cholesky(G) ▷ Performed redundantly on all processors
6: QI = AIR

−1 ▷ Local triangular solve with multiple RHS
7: end function

3.4 Householder QR and TSQR

3.4.1 Householder QR

The Householder QR factorization is an orthogonalization procedure that transforms the
input matrix into an upper triangular factor R using orthogonal transformations based
on Householder reflectors. A Householder reflector H ∈ Rm×m is constructed from a
Householder vector y ∈ Rm \ {0} as:

H = Im − 2

yTy
yyT , H2 = HTH = Im, (3.2)

where Im is the identity matrix of dimensions m × m. Note that H is symmetric and
orthogonal and is independent of the scaling of y. We illustrate the construction of
the Householder reflector that allows to annihilate all the elements of the first column
of A, except the first one. We refer to this first column as a1, a1 ∈ Rm. Note first
that when applied to a vector a1, H reflects a1 about the hyperplane span(y)⊥, since

H·a1 = a1− 2yT a1

yTy
y = a1−ξy, where ξ is a scalar. Suppose a1 is not a multiple of e1 (the

vector whose first element is 1 and all the other elements are zero). Let α̃ = a1(1) be its
first element. By setting β̃ = − sgn(α̃)·∥a1∥ and y = a1−β̃e1, we obtain the Householder
reflector H = Im − τyyT , where τ = 2/(yTy). One can verify that H · a1 = β̃e1, hence
the Householder reflector can be used to annihilate all the elements of a vector, except its
first entry. The choice of sign has been made such that cancellations are avoided when
computing y(1) = a1(1)− β̃.

Let’s note the Householder matrix used to annihilate the elements of the first column
below the diagonal as H1 = Im − τ1y1y

T
1 . The same reasoning can be applied to the

following columns ofA to progressively annihilate the elements below its diagonal. Indeed
let’s consider the j-th column of A, aj . To annihilate all the elements below the diagonal,
we build a transformation Hj that does not modify the first j−1 elements of that column
as:

Hj · aj = (Im − τjyjy
T
j ) · aj =

 aj(1 : j − 1)
±∥aj(j : m)∥

0m−j

 , where yj =

 0j−1

aj(1) + sgn(aj(1))∥aj(j : m)∥2
aj(j + 1 : m)


where 0m denotes a vector of dimension m formed by zeros.

We obtain thus a factorization

Hn · · ·H1A =

[
R

0m−n,n

]
⇐⇒ A = H1 · · ·Hn

[
R

0n−m,m

]
= QR, (3.3)
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Figure 3.2: Major steps of Householder QR (Alg. 3.6) at iteration j. Green highlighting
indicates access (reads) and blue highlighting indicates update (writes).

where R is upper-triangular and 0n−m,m is a matrix of dimensions (n−m)×m.
The standard Householder QR algorithm is given as Alg. 3.6, and it corresponds to the

algorithm implemented in LAPACK. The algorithm works column by column, computes
a Householder vector whose transformation will annihilate entries below the diagonal in
that column and then applies the transformation to the “trailing matrix,” which is the
submatrix consisting of the rows affected by the transformation and the columns that
have not yet been annihilated. See Fig. 3.2 for an illustration of a step of the algorithm.
In Alg. 3.6, we use the convention that the topmost nonzero entry of each Householder
vector is 1 and follow LAPACK notation for the vector τ and the scalar quantities α̃
and β̃ in the computation of Householder vectors {yi}, which are stored as columns in a
lower triangular matrix Y. We also note that we overwrite the input matrix A through
the course of the algorithm (for ease of presentation), so the results of the algorithm
form a QR decomposition of the original input and not the status of the matrix A at
the end of the algorithm. The output of the algorithm includes the triangular factor R
but not the explicit orthogonal factor Q. In many cases, we need not form Q (or its
first n columns) explicitly, as we can apply it or its transpose to other matrices using its
implicit Householder vector structure. We discuss how to generate Q explicitly below.

Algorithm 3.6. Householder QR.

Require: A is an m× n matrix with m ≥ n
Ensure: Q̂R̂ = A where R̂ is upper triangular (m× n), R is its upper triangular part

(n× n), and Q̂ = (I−τ1y1y
T
1 ) · · · (I−τnyny

T
n )

1: function [Y, τ ,R] = HouseholderQR(A)
2: Y = 0, R = 0
3: for j = 1 to n do

▷ Compute the Householder vector
4: α̃ = A(j, j)
5: β̃ = − sgn(α̃) · ∥A(j : m, j)∥2
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Algorithm # flops # words # messages

CGS 2mn2

P O(n2 + n logP ) O(n logP )

MGS 2mn2

P O(n2 logP ) O(n2 logP )

Cholesky-QR 2mn2

P + n3

3 O(n2) O(logP )

Householder QR 2mn2

P O(n2) O(n logP )

TSQR 2mn2

P + 2n3

3 logP O(n2 logP ) O(logP )

Table 3.1: Algorithmic costs for various parallel orthogonalization routines (P < m/n)
Cost of CholQR assumes n2 ≥ P .

6: τ (j) = (β̃ − α̃)/β̃
7: Y(j+1 : m, j) = 1/(α̃− β̃) ·A(j+1 : m, j)
8: R(j, j) = β̃

▷ Apply the Householder transformation to the trailing matrix
9: z = τ (j) · (A(j, j+1 : n) +Y(j+1 : m, j)T ·A(j+1 : m, j+1 : n))

10: R(j, j+1 : n) = A(j, j+1 : n)− z
11: A(j+1 : m, j+1 : n) = A(j+1 : m, j+1 : n)−Y(j+1 : m, j) · z
12: end for
13: end function

Note that it is possible to block the Householder vectors. Given n Householder
vectors, the implicit structure of the corresponding orthogonal factor is

Q̂ = (I−τ1y1y
T
1 ) · · · (I−τnyny

T
n ) = I−YTYT , (3.4)

where Y is a unit lower triangular matrix whose ith column is yi and T is an upper
triangular matrix that satisfies YTY = T−1 + T−T . The more detailed construction

is explained in the slides. Thus, applying Q̂
T

to a vector can be computed by multi-
plying with the product YTYT in an efficient order, and each operation is a matrix
multiplication.

Given the implicit structure of Q̂, we can apply it to a matrix efficiently using a se-

quence of Householder transformations. Note that applying Q̂
T
can be done by applying

the (symmetric) transformations in opposite order. In order to generate Q̂ explicitly,
we can apply it to the identity matrix and further improve efficiency by exploiting the
sparsity structure throughout the process. More commonly, we wish to form only the
first n columns of Q̂, similar to the output of Gram-Schmidt or Cholesky-QR, and thus
we apply Q̂ to the first n columns of the m × m identity matrix, which we denote by
Im,n:

Q̂(1 : m, 1 : n) = (I−τ1y1y
T
1 ) · · · (I−τnyny

T
n )Im,n.

Note that the first Householder transformation involves yn, which has zeros in the first
n − 1 entries and therefore fills in values only in the last column of Im,n. Likewise,
the ith transformation involves yn−i+1 and need be applied only to the last i columns.
Exploiting this structure, the algorithm for generating the first n columns of Q operates
nearly identically to lines 9 to 11 of Alg. 3.6, only in reverse order. The leading order
costs, in terms of both computation and communication, are the same as Alg. 3.6.
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The 1D parallel Householder QR approach is not discussed in details here. We only
note that, as in the sequential case, the algorithm proceeds column by column. Each
iteration consists of computing a norm of a subcolumn and scaling it to compute the
Householder vector, followed by computing a matrix-vector product and outer-product
update with the trailing matrix to apply the Householder transformation. Given the 1D
distribution of the matrix across processors, each of these operations involves distributed
data. We note that computing the norm of a subcolumn requires communication among
all processors. Specifically it requires an all-reduce collective, and thus the number
of messages exchanged by this algorithm is O(n logP ). We discuss in the following a
faster algorithm that reduces the number of messages exchanged during Householder
QR, referred to as TSQR.

3.4.2 TSQR

The goal of the Tall-Skinny QR (TSQR) algorithm is to match simultaneously the com-
munication cost of Cholesky-QR and the numerical stability of Householder QR. That
is, we want to obtain a QR factorization while relying on a constant number of collective
exchanges among processors, and use orthogonal transformations based on Householder
to annihilate entries such that we preserve the numerical stability. The key idea is to
exploit the flexibility in the order of annihilation for obtaining an upper triangular fac-
tor. Given that the input matrix A is 1D-row-distributed across processors, the first
observation of the parallel TSQR algorithm is that each processor can annihilate many
of its entries independently by performing a local QR decomposition. After this first
step, P triangles remain, and P − 1 of them need to be annihilated to obtain a single
upper triangular factor R. The second observation of the TSQR algorithm is that these
triangles can be annihilated using a parallel reduction where the reduction operator is a
QR decomposition of stacked triangles. Thus, the parallel reduction can be optimized by
tuning the reduction tree. In particular, a binomial reduction tree achieves a latency cost
of O(logP ), which improves upon the latency cost of Householder QR. Algorithm 3.7
specifies the TSQR algorithm using a binomial tree, where we assume P is a power of
two. The algorithm is illustrated in Fig. 3.3 for P = 4. We note that there are many
possibilities for reduction trees, and they can be tuned for particular architectures and
matrix dimensions. The implicit structure of the orthogonal factor depends on the shape
of the reduction tree. Further, we can use all-reduction algorithms, which have the same
asymptotic cost as reduction algorithms, to produce the resulting triangular factor on all
processors at the end of the computation.

Consider the parallel TSQR algorithm with 4 processors and a binomial tree, as
depicted in Fig. 3.3. We can express the orthogonal factor mathematically as follows. In

the first step, we determine a matrix Q̂
(2)

such that

Q̂
(2)T


A1

A2

A3

A4

 =


R̂

(2)

1

R̂
(2)

2

R̂
(2)

3

R̂
(2)

4

 , where Q̂
(2)

=


Q̂

(2)

1

Q̂
(2)

2

Q̂
(2)

3

Q̂
(2)

4


and AI = Q̂

(2)

I R̂
(2)

I for each I. Here Q̂
(2)

I has dimension (m/4) × (m/4) and R̂
(2)

I has

dimension (m/4) × n. We use the notation R
(2)
I to denote the first n rows of R̂

(2)

I so

that R̂
(2)

I =

[
R

(2)
I

0

]
.
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In the second level of the binomial tree, we eliminate R
(2)
2 and R

(2)
4 in parallel. We

do this by determining two orthogonal matrices that satisfy[
Q̂

(1)

11 Q̂
(1)

12

Q̂
(1)

21 Q̂
(1)

22

]T [
R

(2)
1

R
(2)
2

]
=

[
R

(1)
1

0

]
and

[
Q̂

(1)

33 Q̂
(1)

34

Q̂
(1)

43 Q̂
(1)

44

]T [
R

(2)
3

R
(2)
4

]
=

[
R

(1)
3

0

]
.

Here, each Q̂
(1)

IJ is n×n. The corresponding sets of Householder vectors have the structure

Y
(1)
12 =

[
I

Y
(1)
1

]
and Y

(1)
34 =

[
I

Y
(1)
3

]
,

where Y
(1)
1 and Y

(1)
3 are each n× n and upper triangular. Mathematically, we have

Q̂
(1)T


R̂

(2)

1

R̂
(2)

2

R̂
(2)

3

R̂
(2)

4

 =


R

(1)
1

0

R
(1)
3

0

 ,

where

Q̂
(1)

=



Q̂
(1)

11 Q̂
(1)

12

I

Q̂
(1)

21 Q̂
(1)

22

I

Q̂
(1)

33 Q̂
(1)

34

I

Q̂
(1)

43 Q̂
(1)

44

I


.

To get to the root of the tree, the final step consists of determining a 2n× 2n orthogonal
matrix that satisfies [

Q̂
(0)

11 Q̂
(0)

13

Q̂
(0)

31 Q̂
(0)

33

]T [
R

(1)
1

R
(1)
3

]
=

[
R

(0)
1

0

]
(with the same Householder vector structure as the 2nd step) so that

Q̂
(0)T


R

(1)
1

0

R
(1)
3

0

 =


R

(0)
1

0

0

0

 , where Q̂
(0)

=


Q̂

(0)

11 Q̂
(0)

13

I

Q̂
(0)

31 Q̂
(0)

33

I

 .

Thus, we obtain an orthogonal factor represented mathematically as Q̂ = Q̂
(2)

Q̂
(1)

Q̂
(0)

.

In general, the orthogonal factor Q̂
(logP )

is a block diagonal with diagonal blocks

denoted by Q̂
(logP )

I corresponding to the QR factorization of AI . Each diagonal block

Q̂
(logP )

I is represented using a set of Householder vectors Y
(logP )
I . For k < logP , the

orthogonal factor Q̂
(k)

encodes the elimination at step k, which is a collection of QR
decompositions of stacked triangles. If processor I is involved in the elimination at step

k, then it stores the upper triangular Householder vector information in the matrix Y
(k)
I .
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The parallel algorithm is specified in Alg. 3.7, where we assume for simplicity that P is
a power of two. A visualization of the binomial tree for P = 4 is given in Fig. 3.3. When P
is not a power of two, the pseudocode is complicated slightly, but the asymptotic costs are
the same. As explained above, the first step involves independent QR decompositions
of local data (line 3), which is of size (m/P ) × n. The remaining loop specifies the
binomial reduction tree, where after each loop iteration, half the processors drop out of
the computation. Each processor with work to do at a given iteration receives triangular
data from its partner processor (line 8) and performs a QR decomposition of stacked
triangles (line 10).

The computational cost of the initial QR of local data is 2mn2/P + O(n3), and the
cost of a QR decomposition of two stacked n × n triangles is 2n3/3 + O(n2) taking the
triangular structure into account. The communication cost of the algorithm is that of
sending an n× n triangular matrix between partner processors at each level of the tree.
As the depth of the tree is O(logP ), we obtain the costs given in Tab. 3.1.

In order to apply Q̂ (or Q̂
T
) to a matrix, we apply each step in sequence, using the

implicit Householder structure of each Q̂
(k)

and obtaining the same parallelism as when
each factor was computed. The explicit representation of the first n columns of Q̂ can
be generated in the same computation and communication cost of the TSQR algorithm.

Algorithm 3.7. Parallel TSQR (binomial tree).

Require: A is an m× n matrix 1D-row-distributed over power-of-two P processors

Ensure: Q̂R = A where R is upper triangular and Q̂ = Q̂
(logP )

· · · Q̂
(0)

Ensure: R is stored on processor 1 and each Y(k) is distributed across 2k processors

1: function
[{

Y
(k)
I

}
,R
]
= ParTSQR(A)

2: I = MyProcID()

3:

[
Y

(logP )
I ,R

(logP )
I

]
= HouseholderQR(AI) ▷ Eliminate lower triangle of local

block
4: for k = logP − 1 down to 0 do
5: Break if I doesn’t have a partner proc
6: Determine J , partner proc ID
7: if I > J then
8: Send R

(k+1)
I to processor J

9: else
10: Receive R

(k+1)
J from processor J

11:

[
Y

(k)
I ,R

(k)
I

]
= HouseholderQR

([
R

(k+1)
I

R
(k+1)
J

])
▷ Eliminate Jth triangle

12: end if
13: end for
14: if I = 1 then
15: R = R

(0)
1

16: end if
17: end function
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Figure 3.3: Visualization of the binomial elimination tree used by parallel TSQR
(Alg. 3.7)

3.5 Numerical Stability
In finite precision arithmetic, the computation of the QR factorization of a matrix A
is, of course, not exact. There are generally two main quantities we can consider when
discussing the numerical stability of orthogonalization methods. The first is the orthogo-

nality error, or the loss of orthogonality, typically measured as ∥I−Q̂
T
Q̂∥. This quantity

measures how close the matrix Q̂ is to being orthogonal, which can affect the behavior
of downstream applications such as the convergence of Krylov subspace methods. This
quantity is also refected by the condition number of Q̂, that is κ(Q̂) = σmax(Q̂)/σmin(Q̂),
where σmax(Q̂), σminQ̂ are the largest and the smallest singular values of Q̂, respectively.

Another quantity that is important is the residual norm or the decomposition error,
measured as ∥A−Q̂R∥, which describes how close the computed Q̂R is to A. Generally,
most reasonable approaches to QR factorization produce a residual norm on the order
of machine epsilon times the norm of the input matrix. Guarantees on the orthogonality
of Q̂, however, can vary greatly amongst algorithms. We briefly discuss the different
numerical stability properties of the algorithms presented in this section in order to
motivate their inclusion; these properties are summarized in Table 3.2.

3.5.1 Gram-Schmidt

Gram-Schmidt orthogonalization, discussed in Section 3.2, is accomplished via a sequence
of projections. In step j, the next orthogonal vector is produced by subtracting from the
jth column of A the orthogonal projection of the jth column of A onto the previously
computed orthogonal vectors. The difference between classical Gram-Schmidt (CGS)
and modified Gram-Schmidt (MGS) is that the computations are performed in a different
order. Whereas in CGS, the next vector is computed as (I − Q̂(:, 1 : j − 1)Q̂(:, 1 : j −
1)T )A(:, j), in MGS the computation is performed via (I−Q̂(:, j−1)Q̂(:, j−1)T ) · · · (I−
Q̂(:, 1)Q̂(:, 1)T )A(:, j). Although the approaches are mathematically equivalent, this
seemingly small change makes a significant difference numerically.
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Algorithm ∥I − QTQ∥ Constraint References

CGS O(ε)κ2(A) O(ε)κ2(A) < 1 [4]

MGS O(ε)κ(A) O(ε)κ(A) < 1 [1]

Cholesky-QR O(ε)κ2(A) O(ε)κ2(A) < 1 [10]

Householder QR O(ε) none [8]

TSQR O(ε) none [3],[6]

Table 3.2: Various orthogonalization routines and their stability in terms of loss of or-
thogonality, associated constraints on condition number, and references. Note that there
are dimensional constants hidden in the O(ε) factors.

The bound on the loss of orthogonality for CGS is due to Giraud, Langou, Rozložńık,

and van den Eshof with a constraint: if O(ε)κ2(A) < 1, then ∥I − Q̂
T
Q̂∥ ≤ O(ε)κ2(A)

[4]. The reordering of computations in MGS leads to a much more stable algorithm than
CGS without incurring any extra arithmetic cost. For MGS, Björck has shown that if

O(ε)κ(A) < 1, then ∥I− Q̂
T
Q̂∥ ≤ O(ε)κ(A) [1].

3.5.2 Cholesky-QR

In contrast to iterative, projection-based approaches like Gram-Schmidt, the Cholesky-
QR approach is based on the fact that in exact arithmetic, theR in the QR decomposition
of A is the Cholesky factor of ATA. As explained in § 3.3, the Cholesky-QR algorithm
(abbreviated CholQR) first computes ATA, computes its Cholesky factor to find R,
and then computes Q̂ = AR−1. It is clear that explicitly forming ATA can have
consequences numerically; it is shown in [10] that if O(ε)κ2(A) < 1, then the loss of
orthogonality is bounded by O(ε)κ2(A).

3.5.3 Householder QR and TSQR

The Householder QR algorithm is often considered to be the canonical numerically stable
approach to computing a QR decomposition. This nice numerical behavior stems from
the fact that this approach involves a series of orthogonal transformations; see Section
3.4.1 for details. The study of the stability of Householder transformations and House-
holder QR goes back to the work of Wilkinson; see [8] and [9]. In summary, the loss of
orthogonality in Householder QR is bounded by O(ε), and this algorithm is uncondition-
ally stable. In other words, the algorithm will return a factor Q̂ that is orthogonal to
working precision regardless of the conditioning of the input matrix A.

Like Householder QR, TSQR produces a Q̂ factor that is orthogonal to working
precision with no constraint on the conditioning of A [3],[6].



Chapter 4

Matrix Multiplication

We consider a fundamental computation in numerical linear algebra: classical matrix
multiplication. By “classical”, we mean that the multiplication of an m × n matrix A
and an n× r matrix B is performed via the mathematical definition and excludes faster
algorithms as Strassen. To simplify later algorithms and analysis, we consider the form
of matrix multiplication that updates existing entries of a matrix: C := C +A ·B. In
general, this can be expressed as

C(i, j) = C(i, j) +

n∑
k=1

A(i, k) ·B(k, j), (4.1)

where the order of summation and the order of computing output entries is unspecified.
Thus, whenm = n = r, all classical algorithms perform exactly 2n3 flops, but the amount
of communication the algorithms perform can vary widely.

We first present lower bounds on communication, in the sequential case with a two-
level memory model, along with the proof, and then we discuss several algorithms along
with their communication cost analysis.

4.1 Lower Bounds

4.1.1 Sequential case

Here we focus on the sequential two-level memory model, where we have two levels of
memory, a fast memory of sizeM words and a slow memory of infinite size. Computations
are performed on data that resides in fast memory, and data is transferred between slow
and fast memory. The idea of the lower bound is to establish a minimum number of reads
and writes that applies to any order of evaluation of the summations given by eq. (4.1),
and we use a geometric inequality that applies to both sequential and parallel models.

Theorem 4.1.1 Assume that we want to compute C = C + A · B, where A is m × n
and B is n × r, and that the memory locations storing entries of A, B, and C do not
overlap. Then the bandwidth cost lower bound for classical matrix multiplication on a
sequential machine is

W ≥ 2mnr√
M

− 2M,

where M is the size of the fast memory.

31
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Proof. The general idea of the proof is as follows. We consider the classical matrix
multiplication algorithm as a stream of instructions involving computations and memory
operations: loads and stores between fast and slow memory. We break this instruction
stream into segments, where each segment contains exactly x load and store instructions,
where x is a parameter we can optimize to obtain the tightest lower bound. We will then
derive an upper bound F on the number of scalar multiplications that can be performed
during any given segment using a geometric inequality. Then, we derive a lower bound
on the number of complete segments by dividing by the total number of operations mnr
by F , giving ⌊mnr/F ⌋. Finally, we can bound from below the total number of loads and
stores needed by taking the product of x (the number of loads/stores per segment) times
the minimum number of complete segments, giving x⌊mnr/F ⌋, and choosing a particular
x.

We note that in order to compute the scalar multiplication A(i, k) · B(k, j) for a
particular (i, k, j), we require that A(i, k), B(k, j), as well as the output operand (a
variable for accumulating the sum of the k scalar multiplications) reside in fast memory.
Now, consider the number of input/output operands that are available in fast memory
during a given segment. At the start of the segment, there can be at most M distinct
operands in fast memory. During the segment, there can be at most x additional operands
read into fast memory (since a segment contains exactly x load/store operations). Since
there are at most M words in fast memory at the start of a segment and at most x store
operations, we have a maximum of M + x distinct operands available. Recall that we
have assumed that the memory locations storing entries of A, B, and C cannot overlap,
so this means that

# of entries of A+# of entries of B+# of entries of C ≤ M + x. (4.2)

This inequality provides an upper bound on the amount of data available in a segment,
which we want to leverage to establish an upper bound on the number of operations F
that can be performed on that data. The key to this step is to use geometry: in the case
of matrix multiplication the iteration space (i.e., the computation) is three dimensional
and the matrices (i.e., the data) are two dimensional, with a clear relationship between
them. We state the key geometric inequality in Lemma 4.1.2, visualize it in Fig. 4.1, and
apply it to matrix multiplication below.

Lemma 4.1.2 (Loomis and Whitney [5]) Let V be a finite set of lattice points in
Z3, that is, points (x, y, z) with integer coordinates. Let Vx be the projection of V in the
x-direction, that is, all points (y, z) such that there exists an x′ such that (x′, y, z) ∈ V .
Define Vy and Vz similarly. Let | · | denote the cardinality of a set. Then

|V | ≤
√

|Vx||Vy||Vz|.

One can gain intuition for the inequality by first picturing a rectangular prism with
dimensions w × h × ℓ. In this case, the volume V is whℓ. The areas of the three
types of faces are wh, wℓ, and hℓ, and the square root of the product of those areas is√
wh · wℓ · hℓ = whℓ, the same as the volume. Lemma 4.1.2 implies that the rectangular

prism is the most efficient shape for maximizing volume subject to its projections; more
amorphous blobs will yield strict inequality.

Let the set of lattice points (i, j, k) represent the scalar multiplications. For a given
segment, let V be the set of indices (i, j, k) of the scalar multiplications performed during
the segment, let VC be the set of memory locations storing the entries of C for the set of
indices (i, j), let VA be the set of memory locations storing the entries of A for the set
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(a) One lattice point and its projections
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(b) Rectangular prism and its projections

Figure 4.1: Loomis-Whitney cube visualization: interior lattice points correspond to
scalar multiplications and projections onto the faces correspond to data required.

of indices (i, k), and let VB be the set of memory locations storing entries of B for the
set of indices (k, j). These sets of memory locations are exactly the projections of the
computation in the three coordinate directions, and their cardinality is the number of
entries of each matrix that are accessible in the segment. Then applying Lemma 4.1.2,
the inequality of arithmetic and geometric means (AM-GM), and eq. (4.2), we have

|V | ≤
√

|VA||VB||VC| ≤
(
|VA|+ |VB|+ |VC|

3

)3/2

≤
(
M + x

3

)3/2

≡ F

total scalar multiplications per segment. Then we need at least⌊
mnr(

M+x
3

)3/2
⌋

segments. Thus the total number of loads and stores over all segments is lower bounded
by

x

⌊
mnr(

M+x
3

)3/2
⌋
,

and choosing x = 2M , which would be the maximizer above absent the floor function,
we get the lower bound of

2M
⌊ mnr

M3/2

⌋
≥ 2mnr√

M
− 2M

words moved between fast and slow memory, which proves Theorem 4.1.1.

4.1.2 Parallel Case

We now consider the distributed-memory parallel memory model, where each of P pro-
cessors has a local memory of size M . For matrix multiplication, we must have that
PM = Ω(n2) in order to store the input and output matrices.
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Theorem 4.1.1 in § 4.1 establishes the communication lower bound for the sequential
case. We note that the argument applies not only to the entire matrix multiplication,
but also to any subset of the computation, where the only update to the argument is
the value of the total number of scalar multiplications. In the case of parallel matrix
multiplication of m×n and n×r matrices, some processor must perform at least mnr/P
scalar multiplications. Applying the argument to that processor, and interpreting fast
memory as that processor’s local memory, we obtain the following memory-dependent
parallel lower bound.

Theorem 4.1.3 The bandwidth cost lower bound for classical matrix multiplication of
m×n and n×r matrices on a parallel machine with P processors, each with local memory
of size M , is

W ≥ 2mnr

P
√
M

−M.

Assuming that the matrices are square (m = n = r) and there is just enough memory
to store in the input and output matrices, i.e., M = Θ(n2/P ), Theorem 4.1.3 gives that
W = Ω(n2/P 1/2). If M = Θ(n2/P 2/3) words of fast memory are available, then there
is enough memory to replicate the matrices O(P 1/3) times. This leads to a reduction in
the required communication; the lower bound in this case becomes W = Ω(n2/P 2/3). If
there is effectively infinite memory, then the lower bound degenerates to zero. However
it can be shown that the communication cannot decrease more than W = Ω(n2/P 2/3),
since otherwise one of the processors will need to perform too much computation.

4.2 Parallel algorithms
We now consider parallel algorithms implementing classical matrix multiplication C =
AB. We present here the Scalable Universal Matrix Multiplication Algorithm (SUMMA)
in § 4.2.1. SUMMA attains the parallel lower bounds to within a factor of logP when
there is only enough memory for one or two copies of the data. However, the matrices
may be sized such that we can afford to store more than one copy in memory, and in that
case, SUMMA communicates more than necessary. Algorithms running on machines with
Ω(n2/P 2/3) memory can attain the bound in ?? (which is tighter than Theorem 4.1.3
when M is large), and we present one such “3D” algorithm in § 4.2.2.

4.2.1 SUMMA

We first consider the Scalable Universal Matrix Multiplication Algorithm (SUMMA).
While one of the advantages of SUMMA is that it is easily extended to rectangular
matrices, for simplicity we present it in Alg. 4.1 for square matrices and assume a square
processor grid. In this case, the algorithm requires that the input matrices A and B start
out distributed in a 2D distribution across a

√
P ×

√
P processor grid. This means that

each processor owns a local submatrix of each input matrix of dimension nℓ × nℓ with
nℓ = n/

√
P , and we use the notation (I, J) to index the processor that owns submatrices

AIJ and BIJ in block row I and block column J . Likewise, at the end of the algorithm,
processor (I, J) will own submatrix CIJ of the output matrix.

The outer-product formulation of matrix multiplication considers the output matrix
as a sum of outer products of corresponding columns and rows of the input matrices:
C = C +

∑
k A(:, k)B(k, :). The idea of SUMMA is to perform each outer product in

parallel, where the result of the outer product is distributed and accumulated across the
entire processor grid. In the standard formulation of SUMMA, the output matrix is never
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communicated, so the vectors of the outer product must be shared across processors so
that they can be used to update the local submatrix of C. The algorithm typically
blocks the n outer products into blocks of size b ≥ 1, so that outer products, or rank-
one updates, become rank-b updates. This tuning parameter b trades off the temporary
memory requirement with the number of messages sent among the processors, and it also
affects the performance of the local matrix multiplications.

To understand the communication pattern, consider the extreme case of choosing
b = nℓ = n/

√
P . In this case, the inner loop starting at line 4 collapses to a single

iteration and the subindexing of blocks AIK and BKJ in lines 5 and 6 simplify to (:, :),
or including the entire blocks. Thus, the algorithm works in

√
P steps, where at step

K, each processor in the Kth column of the processor grid broadcasts its local block of
A to all processors in its processor row. Likewise, each processor in the Kth processor
row broadcasts its local block of B to all processors in its processor column. After this
communication, each processor (I, J) temporarily stores blocks AIK and BKJ and can
multiply them and accumulate the result into its local CIJ . After all

√
P steps of the

algorithm are complete, each processor will have fully computed the block inner product
to obtain its local submatrix of C. Note that the temporary space required to run the
algorithm with b = nℓ is as much as it takes to store the input matrices.

In order to reduce the memory footprint, SUMMA allows the outer products to be
blocked into smaller groups of size b < nℓ. In this case, the size of temporaries Atmp and
Btmp is reduced from n2

ℓ to bnℓ. The tradeoff is that more broadcasts of smaller data
will be performed, which increases the latency cost of the algorithm (the bandwidth cost
is not affected by b). We also note that the local matrix multiplications occur between
matrices of dimensions nℓ × b and b× nℓ, and the possible cache re-use of matrix entries
is limited to O(b), which will adversely affect local performance when b is much smaller
than the square root of the cache size.

Figure 4.2 shows the data involved at a particular iteration K and k. The highlighted
data in matrix A is the subset of columns involved in the global rank-b update; each
processor owning a subset of the rows of this block column broadcasts it to all other
processors in its row (line 5). The highlighted data in matrix B is the subset of row
involved in the global rank-b update; each processor owning a subset of the columns of
this block row broadcasts it to all other processors in its column (line 6). We highlight
one particular processor’s local computation in matrix C: after receiving the submatrices
corresponding to the global rank-b update it needs, it performs local matrix multiplication
and accumulates the result into its local submatrix of C (line 7).

The communication cost of this algorithm is the cost of the broadcasts in lines 5
and 6. Each involves data of size nℓ × b, so using an efficient broadcast algorithm, the
cost of each is given by Tab. 1.1: β · 2bnℓ + α · logP , assuming P ≤ b2n2

ℓ . The two

broadcasts are performed
√
P · nℓ

b = n
b times for a total communication cost of

β · 4 n2

√
P

+ α · 2n
b
logP.

The computation cost of line 6 is γ · 2n2
ℓb, and it is performed n

b times, so the overall

computation cost is γ · 2n3

P . Note that the computation is perfectly load balanced and
the communication cost attains the lower bound of Theorem 4.1.3 assuming the memory

size is limited to M = O
(

n2

P

)
(at most a constant factor more than memory required to

store the input and output matrices).

Algorithm 4.1. Scalable Universal Matrix Multiplication Algorithm (SUMMA).
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Figure 4.2: Illustration of one of SUMMA’s inner loops as viewed by processor (3, 4) of
a 4 × 4 processor grid, depicting the broadcast of block of A in processor row 3, the
broadcast of block of B in processor column 4, and the local rank-b update on processor
(3, 4).

Require: A,B are n× n matrices in identical 2D block distribution across processors
Require: Processors arranged in

√
P ×

√
P grid where nℓ = n/

√
P is an integer

Require: Processor (I, J) owns nℓ × nℓ submatrix

MIJ = M((I−1)nℓ+1 : Inℓ, (J−1)nℓ+1 : Jnℓ)

Require: Block size b divides nℓ evenly
Ensure: C = C+AB is n×n matrix in identical 2D block distribution across processors
1: function C = SUMMA(C,A,B, b)
2: (I, J) = MyProcID()
3: for K = 1 to

√
P do

4: for k = 1 to nℓ

b do
5: Proc(I,K) broadcasts AIK(:, (k−1)b+1:kb) to Proc(I, :), store in Atmp

6: Proc(()K,J) broadcasts BKJ((k−1)b+1:kb, :) to Proc(:, J), store in Btmp

7: CIJ = CIJ +Atmp ·Btmp

8: end for
9: end for

10: end function

4.2.2 3D Algorithm (square case)

While SUMMA is a communication-optimal algorithm when the memory is limited to
M = O(n2/P ), the lower bound of Theorem 4.1.3 suggests that a larger local memory
admits a smaller lower bound. Indeed, 3D algorithms for matrix multiplication exploit
this memory-communication tradeoff to reduce communication at the expense of a larger
memory footprint. We present a simple variant of 3D matrix multiplication for square
matrices here.

For intuition, we note that the name “3D” stems from the fact the iteration space is
three dimensional and that 3D algorithms parallelize the computation in each of the three
dimensions. SUMMA follows an “owner computes” rule so that the only processor that
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performs scalar multiplications that contribute to a particular entry in C is the processor
that owns that entry of C. Visualizing the iteration space as the Loomis-Whitney cube
(Fig. 4.1), SUMMA parallelizes over dimensions corresponding to both A and B, but
not C. That is, different processors must share entries of A and B to perform their local
computations, but no communication is required of entries of C; thus, SUMMA can be
considered a 2D algorithm. 3D algorithms, on the other hand, parallelize across all three
dimensions of the iteration space and require communication of all three matrices.

We present the 3D algorithm in Alg. 4.2 and visualize the steps of the algorithm in
Fig. 4.3. The algorithm assumes a rectangular block distribution (as opposed to a square
block distribution as used by SUMMA). Additionally, we note that the distributions
of the three matrices are not identical. These distribution assumptions are somewhat
arbitrary because an algorithm could perform redistribution from other reasonable dis-
tributions without affecting the leading order communication costs, but the assumptions
simplify the presentation of the algorithm. In particular, we assume that each matrix is
distributed over a 3

√
P × ( 3

√
P )2 processor grid, so that each processor owns submatrices

of dimension nℓ × nb, where nℓ = n/ 3
√
P and nb = n/( 3

√
P )2. We use the notation MIJ

to denote the (I, J) submatrix of matrix M with dimensions nℓ × nℓ and the notation
MIJK to denote the Kth column block of MIJ with dimension nℓ × nb. Considering
the processors to be organized into a logical 3

√
P × 3

√
P × 3

√
P processor grid, we assign

processor (I, J,K) the blocks AIKJ , BKJI , and CIJK . The initial distribution of A and
B is presented in Fig. 4.3b.

Given the input and output matrix distributions, the algorithm proceeds in four steps:
gather the necessary entries of A, gather the necessary entries of B, perform local matrix
multiplication, and sum the corresponding entries of C. Processor (I, J,K) is responsible
for the matrix multiplicationAIKBKJ , which is accumulated into output submatrixCIJ .
To obtain the submatrix AIK , processor (I, J,K) performs an all-gather collective with
processors that also own subsets of entries of that submatrix, those that share indices
I and K. Similarly, to obtain the submatrix BKJ , processor (I, J,K) performs an all-
gather collective with processors that also own subsets of entries of that submatrix, those
that share indices J and K. These two steps are shown in Fig. 4.3c. After performing
the local computation, processor (I, J,K) performs the summation with other processors
that share the indices I and J ; to obtain a final distribution so that each processor owns
n2/P entries, a reduce-scatter collective operation is used. This step is shown in Fig. 4.3d.

The costs of Alg. 4.2 is that of the three communication collectives and the local
matrix multiplication, each of which involves matrices of dimension nℓ × nℓ. Thus, from
Tab. 1.1, the cost is given by

γ · 2n
3

P
+ β · 3 n2

P 2/3
+ α · logP.

The memory required for the algorithm is that of storing AIK , BKJ , and C̄IJ , which is
3n2/P 2/3. Thus, Alg. 4.2 attains the lower bounds specified by Theorem 4.1.3 and ??.

In the case that there exists substantially more than O(n2/P ) memory but not the
O(n2/P 2/3) required by Alg. 4.2, 3D algorithms can be adapted to use as much memory as
is available, continuously navigating the memory-communication tradeoff and obtaining
the memory-dependent lower bound (Theorem 4.1.3), which dominates the memory-
independent bound (??) in this case. For example, we can parametrize by α ∈ [0, 1/6]
and obtain bandwidth cost O(n2/P 2/3−α) and latency cost O(P 3α) with O(n2/P 2α+2/3)
memory.



38 Chapter 4. Matrix Multiplication
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(a) Visualization of computation assigned to processor (1, 2, 3).
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(b) Initial distribution of A and B. Processor (1, 2, 3) initially owns A132 and B321, each of
dimension nℓ × nb.
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(c) All-gathers and local computation. Processor (1, 2, 3) participates in an all-gather of A with
processors (1, :, 3) and in an all-gather of B with processors (:, 2, 3), each of dimension nℓ × nℓ,
and then computes a local matrix multiplication.

nℓ

nb
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(d) Reduce-scatter to obtain final distribution of C. Processor (1, 2, 3) participates in a reduce-
scatter of C with processors (1, 2, :) of dimension nℓ × nℓ and finally owns C123 of dimension
nℓ × nb.

Figure 4.3: Steps of 3D Parallel Matrix Multiplication (Alg. 4.2) with computation and
data associated with processor (1, 2, 3) highlighted.
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Algorithm 4.2. 3D Parallel Matrix Multiplication.

Require: Processors arranged in 3
√
P × 3

√
P × 3

√
P grid

Require: A,B are n×n matrices in 2D block distribution across 3
√
P×( 3

√
P )2 processor

grid where nℓ = n/ 3
√
P and nb = n/( 3

√
P )2 are integers

Require: All matrices partitioned into nℓ × nℓ blocks so that

MIJ = M((I−1)nℓ+1 : Inℓ, (J−1)nℓ+1 : Jnℓ)

Require: Processor (I, J,K) owns nℓ × nb submatrices

AIKJ = AIK(:, (J−1)nb+1 : Jnb)

BKJI = BKJ(:, (I−1)nb+1 : Inb)

CIJK = CIJ(:, (K−1)nb+1 : Knb)

Ensure: C = C+AB is n×n matrix in 2D block distribution across processors so that
processor (I, J,K) owns CIJK

1: function C = 3D-Matmul(C,A,B)
2: (I, J,K) = MyProcID()
3: All-gather AIKJ across Proc(I, :,K), store in AIK

4: All-gather BKJI across Proc(:, J,K), store in BKJ

5: CIJ = AIK ·BKJ

6: Reduce-scatter CIJ across Proc(I, J, :), combine result with CIJK

7: end function
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Chapter 5

Linear Systems

This chapter focuses on solving linear systems of equations Ax = b, with A ∈ Rn×n by
using direct methods of factorization as LU factorization. We consider in particular the
case when A is a dense matrix. Solving a linear system of equations is one of the most
used operations in scientific computing. Direct methods are used in particular when the
matrix A is ill conditioned and iterative methods converge slowly or even fail to converge.

5.1 Background on LU factorization
Gaussian elimination solves the linear system Ax = b by using linear combinations of
the equations that transform progressively the system into a triangular system. This can
be expressed as factoring the matrix A as A = LU, where L is unit lower triangular and
U is upper triangular. Then the equivalent linear system LUx = b is solved by finding
the solution of two triangular systems: first Ly = b by using forward substitution and
second Ux = y by using backward substitution. If the matrix A is symmetric positive
definite, then the Cholesky factorization A = LLT can be used.

The LU factorization of a matrix A ∈ Rn×n is obtained by progressively transforming
A into upper triangular through elementary row operations. This is achieved by adding,
for each column k, appropriate multiples of the kth row to subsequent rows k + 1 to n
such that the elements below the kth diagonal are annihilated. Consider first a simple
matrix A ∈ R3×3,

A =

3 2 1
6 9 6
9 16 17

 .

The elements below the first diagonal are zeroed by adding multiples of the first row to
the two subsequent rows. This is equivalent to multiplying A with a matrix M1 whose
first column is formed by the multipliers,

M1 =

 1
−2 1
−3 1

 , M1A =

3 2 1
5 4
10 14

 .

The multipliers are computed by dividing the elements of the first column of A by
the diagonal element a11. Following the same procedure to annihilate a32, the upper

41
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triangular factor U is obtained as,

M2 =

1
1
−2 1

 , U = M2M1A =

3 2 1
5 4

6

 .

The unit lower triangular factor L is hence,

L = M−1
1 M−1

2 =

1
2 1
3 2 1

 .

In general, suppose that the first k − 1 steps of the LU factorization of a matrix
A ∈ Rn×n have been computed. The partially factored matrix A(k),

A(k) = Mk−1 . . .M1A,

is upper triangular in the first k − 1 columns. If a
(k)
k,k is non zero, the factorization can

proceed. The multipliers for this step are computed as lj,k = a
(k)
j,k/a

(k)
k,k, for j = 1 to k.

They are used to form Mk, a Gauss transformation matrix,

Mk =


Ik−1

1
−lk+1,k 1

. . .
. . .

−ln,k 1

 = I−mke
T
k ,

where Ik−1 ∈ R(k−1)×(k−1) is the identity matrix, mk = (0, . . . , 0, 1,mk+1,k, . . . ,mn,k)
T ,

and ek is the k-th unit vector. It is easy to check that eTi mk = 0, for all i ≤ k. A new

matrix A(k+1), which is upper triangular in the first k columns, is obtained by applying
the Gauss transformation to A(k),

A(k+1) = MkA
(k).

Gauss transforms are easy to operate with, their inverse is M−1
k = I+mke

T
k , while their

multiplication is simplely computed as M−1
1 . . .M−1

k = (I + m1e
T
1 ) . . . (I + mke

T
k ) =

I+
∑k

i=1 mie
T
i , with the result being a unit lower triangular matrix.

If n− 1 such steps can be computed, the upper triangular U factor is obtained as

U = A(n) = Mn−1 . . .M1A,

and hence
A = LU, (5.1)

where

L = M−1
1 . . .M−1

n−1 =


1
l21 1
...

...
. . .

ln1 ln2 . . . 1

 . (5.2)

However the factorization might not exist if at some iteration k the diagonal element

a
(k)
kk is zero. Even division by small diagonal elements needs to be avoided for numerical
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stability. This can be achieved by permuting the rows or the columns of A. The most
used technique is partial pivoting, which consists in permuting at each step k of the
factorization the element of maximum magnitude in absolute value of A(k)(k+1 : n, k)
to the diagonal position. Let akj be that element. Let Πk be the permutation matrix
that corresponds to inderchanging rows k and j of the identity matrix,

Πk =


Ik−1

1
Ij−k−1

1
In−j

 ,

where Il ∈ R(l)×(l), with l ∈ {k − 1, j − k − 1, n − j} are identity matrices. The rows k
and j of A(k) are interchanged, then the multipliers are computed, and a matrix upper
triangular in the first k columns is obtained as

A(k+1) = MkΠkA
(k).

Upon completion, we obtain

U = A(n) = Mn−1Πn−1 . . .M1Π1A.

The LU factorization with partial pivoting is written as

ΠA = LU, (5.3)

where Π = Πn−1 . . .Π1 and if Mk = I−mke
T
k , then it can be easily shown that L(k+1 :

n) = (Πn−1 . . .Πk+1mk)(k+1 : n). Partial pivoting allows to bound the multipliers

lik ≤ 1 and hence |L| ≤ 1. If at step k, all elements ofA(k)(k : n, k) are zero, then the first
k columns of A are linearly dependent in exact arithmetic. However the factorization can
proceed by omitting step k. This factorization is also referred to as Gaussian elimination
with partial pivoting, or GEPP.

5.1.1 Blocked LU factorization with row pivoting

The blocked LU factorization with row pivoting computes the factorization of a matrix
A ∈ Rn×n by traversing it by blocks of b columns, where for simplicity we assume b
divides n. Consider the matrix A is partitioned as

A =

[
A11 A12

A21 A22

]
, (5.4)

where A11 ∈ Rb×b, A21 ∈ R(n−b)×b, A12 ∈ Rb×(n−b) and A22 ∈ R(n−b)×(n−b). The first
iteration computes the factorization

Π1A =

[
Ā11 Ā12

Ā21 Ā22

]
=

[
L11

L21 In−b

]
·
[
Ib

A
(1)
22

]
·
[
U11 U12

In−b

]
. (5.5)

This is obtained as follows. First, the LU factorization with row pivoting of the first
block column is performed,

Π1

[
A11

A21

]
=

[
L11

L21

]
U11. (5.6)
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This step is also referred to as panel factorization. Letting Ā = ΠT
1 A, the block U12 is

computed by solving the triangular system

L11U12 = Ā12, (5.7)

and finally the trailing matrix is updated,

A
(1)
22 = Ā22 − L21U12. (5.8)

The algorithm continues recursively on the trailing matrix A
(1)
22 .

Except for the first step, which requires row pivoting for stability and has not yet
been specified, it can be seen that the subsequent steps rely on matrix-matrix operations
and thus can be implemented efficiently on modern architectures.

5.1.1.1 Partial pivoting

Blocked LU factorization with partial pivoting computes the LU factorization with partial
pivoting of each panel, following the algebra described in section 5.1, which processes the
panel column by column. For each column, the algorithm identifies the element with
the largest absolute magnitude. The row containing this element is permuted to the
diagonal position and then the remaining columns in the panel are updated. This process
is repeated for each column until the factorization is complete. The panel factorization
relies on vector and matrix-vector operations, which can require more data transfers than
the other steps in the blocked LU factorization. The communication cost is discussed in
detail in Section 5.4.1 for the parallel algorithm.

5.1.1.2 Tournament pivoting

Blocked LU factorization with tournament pivoting computes the LU factorization of
each panel in two steps. The first step is a preprocessing phase that identifies at low
communication cost a set of b pivot rows. These rows are then used as pivots in the second
step for the LU factorization of the entire panel. That is, the identified pivot rows are
permuted into the leading b positions of the panel, maintaining the order determined
in the first step, and the LU factorization of the panel is performed without additional
pivoting. Since the panel is a matrix with many more rows than columns, being thus tall
and skinny, the panel factorization is referred to as TSLU.

The preprocessing step considers that the panel is partitioned into several blocks and
the selection of the pivot rows is performed as a reduction operation, using LU with
partial pivoting as the operator to select new pivot rows at each node of the reduction
tree. The blocks are selected such that they either fit into fast memory in the sequential
case or they match the number of processors in the parallel case. To illustrate tournament
pivoting, consider a binomial reduction tree and the factorization of the first panel of
dimension m × b that is partitioned into four blocks, assuming that 4 evenly divides m
and that m ≥ 4b. The preprocessing starts by performing the LU factorization with
partial pivoting of each block AI ∈ Rm/4×b of the first panel,

Π
(2)
1 A1 = L

(2)
1 U

(2)
1 ,

Π
(2)
2 A2 = L

(2)
2 U

(2)
2 ,

Π
(2)
3 A3 = L

(2)
3 U

(2)
3 ,

Π
(2)
4 A4 = L

(2)
4 U

(2)
4 .
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This corresponds to the reductions performed at the leaves of the binomial tree, with
the superscript (2) indicating the level in the reduction tree. For each factorization

Π
(2)
I AI = L

(2)
I U

(2)
I , Π

(2)
I ∈ Rm/4×m/4 is a permutation matrix, L

(2)
I ∈ Rm/4×m/4 is a

lower unit trapezoidal matrix, and U
(2)
I ∈ Rm/4×b is an upper triangular matrix. In the

second level of the binomial tree, two sets of pivot rows are identified in parallel from
the four sets identified at the leaves of the binomial tree. For this, the first two sets

are stacked atop one another to form the matrix A
(1)
1 ∈ R2b×b and the remaining two

sets are stacked to form the matrix A
(1)
3 ∈ R2b×b. Two LU factorizations with partial

pivoting are computed in parallel to obtain two new sets of pivot rows,

A
(1)
1 :=

[
Π

(2)
1 A1(1 : b, :)

Π
(2)
2 A2(1 : b, :)

]
, Π

(1)
1 A

(1)
1 = L

(1)
1 U

(1)
1 ,

A
(1)
3 :=

[
Π

(2)
3 A3(1 : b, :)

Π
(2)
4 A4(1 : b, :)

]
, Π

(1)
3 A

(1)
3 = L

(1)
3 U

(1)
3

At the root of the depth-2 binomial tree tree, the two new sets of pivot rows are merged

into the matrix A
(0)
1 and the global pivot rows are obtained by applying LU with partial

pivoting on this matrix,

A
(0)
1 :=

[
Π

(1)
1 A

(1)
1 (1 : b, :)

Π
(1)
3 A

(1)
3 (1 : b, :)

]
, Π

(0)
1 A

(0)
1 = L

(0)
1 U

(0)
1

The global pivot rows Π
(0)
1 A

(0)
1 (1 : b, :) are permuted to the leading positions of the first

panel (Π1A)(1 : b, 1 : b). Let Π1 ∈ Rm×m be the matrix that reflects this permutation.
Then the LU factorization of the first panel is computed with no more permutations to
obtain the factorization of the first panel as in (5.6),

Π1

[
A11

A21

]
=

[
L11

L21

]
U11. (5.9)

Note that U11 = U
(0)
1 . The blocked LU factorization continues with computing the first

block row of U and the update of the trailing matrix.
Different reduction trees can be used during the preprocessing step of TSLU. We

illustrate them using an arrow notation with the following meaning. The function f(B)
computes GEPP of matrix B, and returns the b rows used as pivots. The input matrix B
is formed by stacking atop one another the matrices situated at the left side of the arrows
pointing to f(B). A binary tree of height two is represented in the following picture:

A4

A3

A2

A1

Π
(2)
4 A4

Π
(2)
3 A3

Π
(2)
2 A2

Π
(2)
1 A1

Π
(1)
3 A

(1)
3

Π
(1)
1 A

(1)
1

Π
(0)
1 A

(0)
1

A reduction tree of height one leads to the following factorization:

A4

A3

A2

A1

Π
(1)
4 A4

Π
(1)
3 A3

Π
(1)
2 A2

Π
(1)
1 A1

Π
(0)
1 A

(0)
1
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
2 4
0 1
2 0
1 2



2 0
0 0
4 1
1 0



0 1
1 4
0 0
0 2



2 1
0 2
1 0
4 2



[
2 4
2 0

]

[
4 1
2 0

]

[
1 4
0 2

]

[
4 2
0 2

]

[
4 1
2 4

]

[
4 2
1 4

]

[
4 1
1 4

]

Figure 5.1: Visualization on a simple matrix of the binomial elimination tree used by
parallel TSLU (Fig. 5.2)

The flat-tree-based TSLU is illustrated using the arrow abbreviation as:

A4

A3

A2

A1 Π
(1)
1 A1 Π

(2)
1 A

(2)
1 Π

(1)
1 A

(1)
1 Π

(0)
1 A

(0)
1

5.2 Numerical stability
The numerical stability of the LU factorization is well studied in the literature. In fact it
is the first algorithm for which a rounding error analysis was studied. We recall here only
the main backward error stability result. The stability of the LU factorization depends
on the growth factor gW defined as

gW (n) =
maxi,j,k |akij |
maxi,j |aij |

. (5.10)

Note that while the elements of L are bounded by 1 when partial pivoting is used, the
elements of U can be bounded as

|uij | = |aiij | ≤ gW max
i,j

|aij |.

Theorem 5.2.1 (Wilkinson’s backward error stability result) Let A ∈ Rn×n and
let x̂ be the computed solution of Ax = b obtained by using GEPP. Then

(A+∆A)x̂ = b, ∥∆A∥∞ ≤ n2γ3ngW (n)∥A∥∞,

where γn = nϵ/(1− nϵ), ϵ is machine precision and assuming nϵ < 1.
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The LU factorization is backward stable if the growth factor is small. For partial pivoting,
the growth factor can be as large as 2n−1. As noted by Wilkinson, this bound is attained
on the following matrix:

A = diag(±1)



1 0 0 · · · 1
−1 1 0 ... 1

−1 −1 1
. . .

...
...

...
. . .

. . . 1
−1 −1 · · · −1 1

 (5.11)

Since all the elements below the diagonal are 1 in absolute value, no row permutation
occurs during the LU factorization with partial pivoting. Exponential growth appears
in the last column as only additions are performed at each step of the factorization.
While there are a few other classes of matrices for which the growth factor is large, in
practice for most of the applications the growth factor is small, on the order of n2/3. Two
reasons contribute to this. First, the multipliers in L are on average much smaller than
1. Second, the signs of the multipliers in L and of the elements of U are not independent,
this being related to the fact that a rank-1 update of the trailing matrix is performed
at each step of the factorization. As a result, cancellations are favored and growth is
delayed.

A comparison of the upper bound of the growth factors obtained by different pivoting
strategies is given in Table 5.1. All the results discussed in this section hold in exact
arithmetic. The growth factor of CALU is obtained by using the fact that performing
CALU on a matrix A is equivalent with performing GEPP on a larger matrix formed by
blocks from the original matrix A and blocks of zeros. We observe that the upper bound
of the growth factor is larger for CALU than for GEPP. However many experiments

Table 5.1: Bounds for the growth factor gW obtained from tournament pivoting in CALU
and partial pivoting in GEPP for a matrix of size n×n. The reduction tree used during
tournament pivoting is of height logP .

CALU GEPP

Upper bound 2n(logP+1)−1 2n−1

5.3 Lower bounds on communication
It can be shown by reduction that the lower bounds on communication identified in
section 4 apply as well to LU factorization and other direct methods of factorization as
QR or Cholesky factorizations. Consider the LU factorization of the following matrix: I −B

A I
I

 =

 I
A I

I

I −B
I AB

I

 .

Since this factorization involves multiplying matrices A and B, by reduction, the
lower bounds from matrix multiplication apply to LU factorization as well. We consider
here the case where the memory size available on each processor is M = Ω(n2/P ), and
thus the lower bounds are:

#words ≥ Ω

(
n2

√
P

)
, #messages ≥ Ω(

√
P ) (5.12)



48 Chapter 5. Linear Systems

5.4 Parallel algorithms

5.4.1 Parallel LU with partial pivoting

Parallel blocked LU distributes the matrix A over a Pr × Pc grid of processors using a
bidimensional (2D) block cyclic layout with blocks of dimension b × b. As an example,
with a 2× 2 grid of processors, the blocks of the matrix are distributed over processors
as (1, 1) (1, 2) (1, 1) (1, 2) . . .

(2, 1) (2, 2) (2, 1) (2, 2) . . .
...

...
...

...
. . .

 .

Algorithm 5.1 presents the main operations executed at each iteration of the blocked
LU factorization. First the panel factorization using partial pivoting is computed by
processors in the same column of the process grid that own the current panel. For each
column i in the block column, the pivot is found and the the i-th row is swapped with
the pivot row of the current block column. Once the i-th column of L is computed, the
i-row is broadcasted in the current column of processes and the trailing block column is
updated. By ignoring some lower order terms, the cost of the panel factorization is

2n log2 Prα+ nbβ +
1

Pr

(
mnb− n2b

2

)
γ

The processors owning block column K broadcast the pivot information along the rows
of the process grid. The pivot information is applied to the remainder of the rows to
obtain A = ΠKA. Considering that all to all is used for the communication, the cost
becomes

n

b
(log2 Pr + log2 Pc)α+

n2 − nb

Pc
log2 Prβ.

The b × b upper part of the block column j of L is broadcasted along row of processes
owning block row j of U . Then the block row j of U is computed, with the cost being

n

b
log2 Pcαr +

nb

2
log2 Pcβr +

n2b

2Pc
γ

The block column j of L is broadcasted along rows of processors of the grid and the block
row j of U is broadcasted along columns of processors of the grid. A rank-b update on
the trailing matrix is performed. The cost is

n

b
(log2 Pc + log2 Pr)α+ (

1

Pr

(
mn− n2

2

)
log2 Pc +

n2

2Pc
log2 Pr)β +

1

P

(
mn2 − n3

3

)
γ

By summing up all the costs and ignoring further lower order terms, the overall cost of
this algorithm is:

(2n

(
1 +

2

b

)
log2 Pr +

3n

b
log2 Pc)α+ (5.13)(

nb

2
+

3n2

2Pc

)
log2 Pr + log2 Pc

1

Pr

(
mn− n2

2

)
β + (5.14)

(
1

P

(
mn2 − n3

3

)
+

1

Pr

(
mn− n2

2

)
b+

n2b

2Pc
)γ (5.15)
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In terms of number of messages, it can be seen that, except for the panel factoriza-
tion, all the other operations rely on collective communications which require exchanging
O(logPr) or O(logPc) messages. Hence, the latency bottleneck lies in the panel factor-
ization, where the LU factorization is performed column by column.

Algorithm 5.1. Parallel LU with partial pivoting.

Require: A ∈ Rn×n in 2D block cyclic distribution across processors
Require: Processors arranged in Pr × Pc grid where m/Pr and n/Pc are integers
Require: Processor (I, J) owns b× b submatrices MKS for all K,S...

MIJ = M((I−1)nℓ+1 : Inℓ, (J−1)nℓ+1 : Jnℓ)

Require: Block size b divides m/Pr and n/Pc evenly
1: function [L,U,Π] = 2D-LU(A)
2: L ∈ Rm×n is initialized with identity matrix and U ∈ Rn×n with zero matrix
3: for K = 1 to n/b do
4: Let Proc(I, J) be the owner of AKK

5: Procs(:, J) compute pivoted LU factorization
ΠkAK:,K = LK:,K ·UK,K

6: for S = 1 to Pr in parallel do
7: Proc(S, J) broadcasts pivot information to Proc(S, :)
8: end for
9: Alltoall among all processors to permute b rows and obtain

A = ΠkA
10: Proc(I, J) broadcasts LK,K to Procs(:, J)
11: Procs(I, :) compute their blocks of UK,K+1: as

UK,K+1: = L−1
K,KAK,K+1:

12: for S = 1 to Pr in parallel do
13: Proc(S, J) broadcasts its blocks of LK+1:,K to Proc(S, :)
14: end for
15: for S = 1 to Pc in parallel do
16: Proc(I, S) broadcasts its blocks of UK,K+1: to Proc(:, S)
17: end for
18: All processors update their blocks of the trailing matrix,

AK+1:,K+1: = AK+1:,K+1: − LK+1:,K ·UK,K+1

19: end for
20: end function

5.4.2 Parallel communication avoiding LU with tournament pivoting

A more efficient algorithm is obtained if tournament pivoting is used instead of partial
pivoting for each panel factorization. This algorithm is presented in Figure 5.2 and the
factorization is referred to as TSLU.

Algorithm 5.2. Parallel TSLU (binomial tree).

Require: A is an m× n matrix 1D-row-distributed over power-of-two P processors
Ensure: ΠA = LU, where U is upper triangular and L is unit lower triangular.
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Figure 5.2: Visualization of the binomial reduction tree used by parallel TSLU (??)

Ensure: U is stored on processor 1 and each L(k) is distributed across 2k processors

1: function
[
Π,
{
L
(k)
I

}
,R
]
= ParTSLU(A)

2: I = MyProcID()

3: Compute Π
(logP )
I A

(logP )
I = L

(logP )
I U

(logP )
I using GEPP, where A

(logP )
I := AI

4: for k = logP − 1 down to 0 do
5: Break if I doesn’t have a partner proc
6: Determine J , partner proc ID
7: if I > J then
8: Send Π

(k+1)
I A

(k+1)
I (1 : b, :) to processor J

9: else
10: Receive Π

(k+1)
J A

(k+1)
J (1 : b, :) from processor J

11: Form the matrix A
(k)
I :=

[
Π

(k+1)
I A

(k+1)
I (1 : b, :)

Π
(k+1)
J A

(k+1)
J (1 : b, :)

]
12: Compute Π

(k)
I A

(k)
I = L

(k)
I U

(k)
I using GEPP

13: end if
14: end for
15: Permute the pivot rows Π

(0)
1 A

(0)
1 (1 : b, :) to the leading positions of A

16: Let Π be the matrix that reflects this permutation
17: if I = 1 then
18: U = U

(0)
1

19: Broadcast U to all processors
20: end if
21: Compute LI = AIU

−1

22: end function

The LU factorization of a square matrix that relies on TSLU for its panel factorization
is referred to as CALU. TSLU requires exchanging logP messages among processors.
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This allows the overall CALU algorithm to attain the lower bounds on communication
in terms of both number of messages and volume of communication. When the LU
factorization of a matrix of size n×n is computed by using CALU on a grid of P = Pr×Pc

processors, the parallel performance of CALU in terms of number of messages, volume
of communication, and flops, is

TCALU (m,n, P ) ≈ γ ·
(
1

P

(
mn2 − n3

3

)
+

1

Pr

(
2mn− n2

)
b+

n2b

2Pc
+

nb2

3
(5 log2 Pr − 1)

)
+ β ·

((
nb+

3n2

2Pc

)
log2 Pr +

1

Pr

(
mn− n2

2

)
log2 Pc

)
+ α ·

(
3n

b
log2 Pr +

3n

b
log2 Pc

)
. (5.16)

To attain the lower bounds on communication, an optimal layout can be chosen with

Pr = Pc =
√
P and b = log−2

(√
P
)
· n√

P
. The blocking parameter b is chosen such that

the number of messages attains the lower bound on communication from equation (??),
while the number of flops increases only by a lower order term. With this layout, the
performance of CALU becomes,

TCALU (m,n, P =
√
P ×

√
P ) ≈ γ ·

(
1

P

2n3

3
+

5n3

2P log2 P
+

5n3

3P log3 P

)
+ β · n2

√
P

(
2 log−1 P + 1.25 logP

)
+ α · 3

√
P log3 P. (5.17)

We note that GEPP as implemented for example in ScaLAPACK (PDGETRF routine) has
the same volume of communication as CALU, but requires exchanging a factor on the
order of b more messages than CALU.
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