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Singular value decomposition

For any given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 ·
(
V1 V2

)T
where for a given k,

■ U ∈ Rm×m is orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

■ Σ ∈ Rm×n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k , Σ2 is n − k × n − k

■ V ∈ Rn×n is orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k
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Min-max principle for singular values

Courant-Fischer Min-max Theorem

σi (A) = min
V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

∥Ax∥2. (1)
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Properties of SVD

Given A = UΣV T , we have

■ ATA = VΣTΣV T ,
the right singular vectors of A are a set of orthonormal eigenvectors of
ATA.

■ AAT = UΣTΣUT ,
the left singular vectors of A are a set of orthonormal eigenvectors of
AAT .

■ The non-negative singular values of A are the square roots of the
non-negative eigenvalues of ATA and AAT .

■ If σk ̸= 0 and σk+1, . . . , σn = 0, then
Range(A) = span(U1), Null(A) = span(V2),
Range(AT ) = span(V1), Null(A) = span(U2 U3).
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Norms and condition number

||A||2 = σmax(A) = σ1(A)

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2
1(A) + . . . σ2

n(A)

||A||∗ = σ1(A) + . . . σn(A)

κ(A) =
σmax(A)

σmin(A)
=

√
∥ATA∥2∥(ATA)−1∥2

Some properties:

max
i,j

|A(i , j)| ≤ ||A||2 ≤
√
mnmax

i,j
|A(i , j)|

||A||2 ≤ ||A||F ≤
√

min(m, n)||A||2
Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

||QAZ ||F = ||A||F
||QAZ ||2 = ||A||2
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Low rank matrix approximation

■ Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

■ Problem with diverse applications
□ from scientific computing: fast solvers for integral equations, H-matrices
□ to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k
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Low rank matrix approximation

■ Best rank-k approximation [[A]]k = UkΣkV
T
k is rank-k truncated SVD of

A [Eckart and Young, 1936]

min
rank(Ak )≤k

||A− Ak ||2 = ||A− [[A]]k ||2 = σk+1(A) (2)

min
rank(Ak )≤k

||A− Ak ||F = ||A− [[A]]k ||F =

√√√√ n∑
j=k+1

σ2
j (A) (3)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

■ Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Random sketching

xi

xj

z1

z2

z3

...

e1

e2

e3

Ωxi

Ωxjα1

α2

α3

β3

α2

β3
Ω

Rm Rℓ

Sketching: embedding of a high dimensional subspace into a low
dimensional one, while preserving some geometry, with high probability

Applications: least squares problems, low rank matrix approximation, data
compression, column subset selection, orthogonalization of set of vectors,
Krylov subspace methods, . . .

References: [Johnson and Lindenstrauss, 1984, Dasgupta and Gupta, 2003],
[Martinsson and Tropp, 2020]

Image courtesy of O. Balabanov
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RandBLAS and RandLAPACK

Ongoing effort to define standards similar to BLAS/LAPACK, organized as

■ drivers: few and simple

■ computational routines: building blocks for the drivers

RandBLAS - data-oblivious sketching routines

■ generate a sketching operator

■ apply a sketching operator to a matrix

RandLAPACK: linear algebra problems solved through randomization, e.g.

■ least squares

■ low rank approximation

■ linear solvers

■ advanced sketching: leverage scores, sketching operators with tensor
product structures
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RandBLAS and RandLAPACK

Randomized Numerical Linear Algebra: A Perspective on the Field With an
Eye to Software, R. Murray et al, describes:

■ basic sketching: dense and sparse sketching operators

■ least squares and optimization

■ low rank approximation

■ full rank matrix decompositions

■ kernel methods as arising in machine learning models

■ linear solvers and trace estimation

■ advanced sketching: leverage scores, sketching operators with tensor
product structures
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References on RandNLA

Many references available, as:

■ Sketching As a Tool for Numerical Linear Algebra [Woodruff, 2014]

■ Finding Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions [Halko et al., 2011]

■ Randomized Numerical Linear Algebra: Foundations and Algorithms
[Martinsson and Tropp, 2020]

■ Randomized Numerical Linear Algebra: A Perspective on the Field With
an Eye to Software [Murray et al., 2023]
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ε-subspace embedding property

For a given subspace V ⊂ Rm and ε ∈ (0, 1), a sketching matrix Ω ∈ Rl×m

is an ε-embedding for V if for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (4)

■ If xi = xj we obtain

(1− ε)∥xi∥22 ≤ ∥Ωxi∥22 ≤ (1 + ε)∥xi∥22. (5)
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ε-subspace embedding property

For a given subspace V ⊂ Rm and ε ∈ (0, 1), a sketching matrix Ω ∈ Rl×m

is an ε-embedding for V if for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (6)

■ It can also be expressed as: given all vectors xi , xj ∈ V are rescaled to be
unit vectors, then for all xi , xj ∈ V we require to hold:

(1− ϵ)∥xi + xj∥22 ≤ ∥Ω(xi + xj)∥22 ≤ (1 + ϵ)∥xi + xj∥22 (7)

Proof that we obtain relation (6):

⟨Ωxi ,Ωxj⟩ =
(
∥Ω(xi + xj)∥22 − ∥Ωxi∥22 − ∥Ωxj∥22

)
/2

=
(
(1± ϵ)∥xi + xj∥22 − (1± ϵ)∥xi∥22 − (1± ϵ)∥xj∥22

)
/2

= ⟨xi , xj⟩ ± O(ϵ)
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ε-subspace embedding property

Let A be a matrix whose columns form a basis for V. For simplicity, we refer
to an ε-subspace embedding for V as an ε-embedding for A.

Corollary 1
If Ω ∈ Rl×m is an ε-embedding for A, then the singular values of A are
bounded by

(1 + ε)−1/2σmin(ΩA) ≤ σmin(A) ≤ σmax(A) ≤ (1− ε)−1/2σmax(ΩA).

Proof.
By min-max principle we have: σi (A) = min

V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

∥Ax∥2. We obtain:

σi (ΩA) = min
V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

∥ΩAx∥2 ≤ min
V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

√
1 + ε ∥Ax∥2 =

√
1 + ε σi (A).

(8)

Proceed similarly for the other bound.
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Oblivious subspace embedding

Aim: construct Ω such that for any n-dimensional subspace V ⊂ Rm

P(Ω is ε-embedding for V) ≥ 1− δ

Definition: oblivious subspace embedding
A random matrix Ω ∈ Rl×m is an oblivious subspace embedding with
parameters OSE(n, ϵ, δ) if with probability at least 1− δ for any
n-dimensional subspace V ⊂ Rm, for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (9)
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Random sketching matrices

■ Ω ∈ Rl×m whose entries are independent standard normal random
variables, multiplied by 1/

√
l

□ Ω is OSE(n, ϵ, δ) with l = O(ϵ−2(n + log 1
δ
))

□ Cost of computing ΩA, A ∈ Rm×n: 2mnl flops
□ Relies on BLAS3 operations when A is dense

■ Easy to parallelize, ΩA =
∑P

i=1 ΩiAi

ΩA =
(
Ω1 . . . ΩP

)A1

...
AP

 =
P∑
i=1

ΩiAi

□ Each processor i owns a block Ωi ∈ Rl×m/P and a block Ai ∈ Rm/P×n

□ Each processor computes ΩiAi ∈ Rl×n

□ Sum-Reduce among all processors to compute ΩA =
∑P

i=1 ΩiAi

□ Cost of the algorithm

(2mnl/P)γ + log2 Pα+ ln log2 Pβ
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Fast Johnson-Lindenstrauss transform

Find sparse or structured Ω such that computing ΩA is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given m = 2q, l < m, the SRHT ensemble embedding Rm into Rl is defined
as

Ω =

√
m

l
· P · H · D, where (10)

■ D ∈ Rm×m is diagonal matrix of uniformly random signs, random
variables uniformly distributed on ±1

■ H ∈ Rm×m is the normalized Walsh-Hadamard transform

■ P ∈ Rl×m formed by subset of l rows of the identity, chosen uniformly at
random (draws l rows at random from HD).

References: Sarlos’06, Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and

Woolfe’06.
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Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh–Hadamard Matrix
For given m = 2q, Hm ∈ Rm×m is the non-normalized Walsh-Hadamard
transform defined recursively as,

H2 =

(
1 1
1 −1

)
, Hm =

(
Hm/2 Hm/2

Hm/2 −Hm/2

)
. (11)

The normalized Walsh-Hadamard transform is H = m−1/2Hm.

Cost of matrix vector multiplication:
For w ∈ Rm and Ω ∈ Rl×m, computing Ωw costs 2m log2 m flops.
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Random sketching matrices - SRHT

■ Ω ∈ Rl×m is a fast Johnson-Lindenstrauss transform, e.g. a subsampled
randomized Hadamard transform (SRHT)1

Ω =

√
m

l
· R · H · D, where (12)

D ∈ Rm×m is diagonal with independent random signs, H ∈ Rm×m is normalized

Walsh-Hadamard matrix, R ∈ Rl×m draws l rows uniformly at random from HD.

□ Ω is OSE(n, ϵ, δ) with l = O(ϵ−2
(
n + ln m

δ

)
ln n

δ
)

□ Cost of computing ΩA, A ∈ Rm×n on P processors:

2mn log2 m

P
γ + log2 Pα+

mn

P
log2 Pβ

1. Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and Woolfe’06, Sarlos’06.
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Block SRHT for parallelization on P processors

■ Ω as in (13) is OSE(n, ϵ, δ) with l = O(ϵ−2
(
n + ln m

δ

)
ln n

δ )

Ω = [Ω1 Ω2 . . . ΩP ] =

√
m

Pl
·
[
DL1 . . . DLP

] 
RH

. . .

RH



DR1

. . .

DRP

 ,

(13)

where Ωi =
√

m
Pl DLiRHDRi , DLi ∈ Rl×l , DRi ∈ Rm/P×m/P are diagonal with independent random

signs, H ∈ Rm/P×m/P is normalized Walsh-Hadamard matrix, R ∈ Rl×m/P is uniform sampling

matrix.

■ Parallelize as [Balabanov et al., 2022]:

ΩA =

√
m

Pl

P∑
i=1

DLiRHDRiAi
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Parallelization of block SRHT

Considering each processor i owns a block Ai ∈ Rm/P×n, parallelize as:

ΩA =
(
Ω1 . . . ΩP

)A1

...
AP

 =
(√

m
Pl
DL1RHDR1 . . .

√
m
Pl
DLPRHDRPAP

)A1

...
AP


=

P∑
i=1

√
m

Pl
DLiRHDRiAi

■ Root processor broadcasts seed of R

■ Each processor i draws R, DLi ,DRi

■ Each processor computes ΩiAi =
√

m
PlDLiRHDRiAi , ΩiAi ∈ Rl×n

■ Sum-Reduce among all processors to compute ΩA =
∑P

i=1 ΩiAi

Cost of the algorithm (some lower order terms ignored)

2mn log2 m/Pγ + log2 Pα+ ln log2 Pβ
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Performance of Gaussian vs block SRHT

A ∈ Rn×m, n = 64000,P = 1 A ∈ RnP×m, n = 65536,m = 256, k = 4096

■ Results obtained in Julia on nodes formed by 2 Cascade Lake Intel Xeon 5218,
16 cores each, 2.4GHz/core
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Performance of Gaussian vs SRHT

A ∈ Rm×n,m = 107, n = 200, l = 2000 A ∈ Rm×n,m = 105 × P, n = 200, l = 2000

A ∈ Rm×n,m = 108, n = 200, l = 2000 Memory per processor

Machine: Intel Skylake 2.7GHz (AVX512), 48 cores per node
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Solving least squares problems

Given A ∈ Rm×n full-rank and b ∈ Rm, with n ≪ m, solve

y := arg min
x∈Rn

∥Ax − b∥2

The unique solution is

y = A+b, A+ = (ATA)−1AT

Solve by using the QR factorization of A (see lecture on dense QR)
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Least squares problems

Solve by using the normal equations,

ATAx = ATb

1. with direct methods
multiply ATA and compute the Cholesky factorization of the result

2. or with iterative methods without computing explicitely ATA
use a Krylov subspace solver and at each iteration multiply ATA with a
vector
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Randomized least squares - sketch and solve

Solve by using randomization, with Ω ∈ Rl×m being OSE(n + 1, ϵ, δ) for
V = range([A, b])

ys := arg min
x∈Rn

∥Ω(Ax − b)∥2

or ys = (ΩA)†(Ωb)
We obtain with probability 1− δ:

1√
1 + ε

∥Ω(Ays − b)∥2 ≤ ∥Ay − b∥2 ≤
1√
1− ε

∥Ω(Ays − b)∥2
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Randomized least squares - sketch and solve

1√
1 + ε

∥Ω(Ays − b)∥2 ≤ ∥Ay − b∥2 ≤
1√
1− ε

∥Ω(Ays − b)∥2

Proof
Since y is the minimizer of the original least squares problem, using (5), we
obtain

∥Ay − b∥2 = min
x∈Rn

∥Ax − b∥2 ≤ ∥Ays − b∥2 ≤
1√
1− ε

∥Ω(Ays − b)∥2 (14)

Similarly, since ys is the minimizer of the sketched least square problem, we
have

∥Ω(Ays − b)∥2 = min
x∈Rn

∥Ω(Ax − b)∥2 ≤ ∥Ω(Ay − b)∥2 ≤
√
1 + ε∥Ay − b∥2

(15)
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