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Singular value decomposition

For any given A € R™*" m > n its singular value decomposition is

00
A=USVT = (Ui U, Us)- |0 |-(Vi W)'
0 0

where for a given k,

= U € R™*™ js orthogonal matrix, the left singular vectors of A,
Ulismxk U ismxn—k, Usismxm—n

m Y € R™*" its diagonal is formed by o1(A) > ... > 0,(A) >0
21iskxk, Xoisn—kxn—k

= V € R™" is orthogonal matrix, the right singular vectors of A,
Viisnx k, Voisnxn—k
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Min-max principle for singular values

Courant-Fischer Min-max Theorem

U’(A) = Vsubl;?alc?ofR" r;neaVX ||AX||2.
dim(V)=n+1—i |x|l2=1
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Properties of SVD

Given A= UXZ VT, we have

" ATA=VETyv’T,
the right singular vectors of A are a set of orthonormal eigenvectors of
ATA.

= AAT = UXTXZUT,
the left singular vectors of A are a set of orthonormal eigenvectors of
AAT .

= The non-negative singular values of A are the square roots of the
non-negative eigenvalues of AT A and AAT.

m If oy 750 and Ok41y-++,0n =0, then
Range(A) = span(U), Null(A) = span(V,),
Range(AT) = span(V;), Null(A) = span(U, Us).
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Norms and condition number

1Al = omeelA) = m(A)

IAllF = 212|au|2 Vo A) + .. 03(A)
[ — ol(’A):..an(A)

w) = T8 = JlATALIATA)

Some properties:

max|A(L )] < |lAll2 < Vmnmax]A(i,j)

Al < [JAlle < v/ min(m, n)||A]|2
Orthogonal Invariance: If @ € R™*™ and Z € R"*" are orthogonal, then
IQAZ||F = ||AllF
IQAZ|[2 = [|Al2
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Low rank matrix approximation

= Problem: given A € R™*" compute rank-k approximation ZW T, where
Zismx kand WT is k x n.

= Problem with diverse applications

0 from scientific computing: fast solvers for integral equations, H-matrices
U to data analytics: principal component analysis, image processing, ...

Ax — ZW T x
Flops 2mn — 2(m + n)k
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Low rank matrix approximation

® Best rank-k approximation [A]x = UxX« VkT is rank-k truncated SVD of

A [Eckart and Young, 1936]
ANm

LA Al = A= A2 = 011 (A) (2
rank(A
n
min _ [JA=Adlr = [IA=[AlllF = > XA 3)
rank(Ay)< farety

Rank-50 approximation, SVD

Rank-10 approximation, SVD

Image, size 1190 x 1920

B Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/
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Random sketching

Sketching: embedding of a high dimensional subspace into a low
dimensional one, while preserving some geometry, with high probability

Applications: least squares problems, low rank matrix approximation, data
compression, column subset selection, orthogonalization of set of vectors,
Krylov subspace methods, ...

References: [Johnson and Lindenstrauss, 1984, Dasgupta and Gupta, 2003],
[Martinsson and Tropp, 2020]

Image courtesy of O. Balabanov
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RandBLAS and RandLAPACK

Ongoing effort to define standards similar to BLAS/LAPACK, organized as
= drivers: few and simple

® computational routines: building blocks for the drivers

RandBLAS - data-oblivious sketching routines
® generate a sketching operator

® apply a sketching operator to a matrix

RandLAPACK: linear algebra problems solved through randomization, e.g.
® |east squares

® |ow rank approximation

® linear solvers

B advanced sketching: leverage scores, sketching operators with tensor
product structures
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RandBLAS and RandLAPACK

Randomized Numerical Linear Algebra: A Perspective on the Field With an
Eye to Software, R. Murray et al, describes:

® basic sketching: dense and sparse sketching operators
® |east squares and optimization

® |ow rank approximation

= full rank matrix decompositions

® kernel methods as arising in machine learning models
® linear solvers and trace estimation

® advanced sketching: leverage scores, sketching operators with tensor
product structures
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https://arxiv.org/abs/2302.11474
https://arxiv.org/abs/2302.11474

References on RandNLA

Many references available, as:
m Sketching As a Tool for Numerical Linear Algebra [Woodruff, 2014]

® Finding Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions [Halko et al., 2011]

® Randomized Numerical Linear Algebra: Foundations and Algorithms
[Martinsson and Tropp, 2020]

® Randomized Numerical Linear Algebra: A Perspective on the Field With
an Eye to Software [Murray et al., 2023]
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e-subspace embedding property

For a given subspace V C R™ and ¢ € (0, 1), a sketching matrix Q € R/*™
is an e-embedding for V if for all x;,x; € V, we have

[(€2xi, Q2x5) = (63, x5)| < ellxill2]lxj]2 (4)
" If x; = x; we obtain

(1= e)llxill3 < x]13 < (1 +e)lxll3- (5)
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e-subspace embedding property

For a given subspace V C R™ and ¢ € (0, 1), a sketching matrix Q € R/*™
is an e-embedding for V if for all x;, x; € V, we have

(€2, €)= (xi, x7)| < €l|xil|2]|x]]2 (6)

B |t can also be expressed as: given all vectors x;, x; € V are rescaled to be
unit vectors, then for all x;, x; € V we require to hold:

(1= )lxi + x5 < 1120 + )13 < (1+€)lxi + x5 (7)
Proof that we obtain relation (6):
(@, Q%) = (190 +x)II3 — 15 — 12x]13) /2

= (A£9lx+xl3 - Q£ )xl3 - (1 £e)llxl3) /2
{xi, xj) £ O(¢)
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e-subspace embedding property

Let A be a matrix whose columns form a basis for V. For simplicity, we refer
to an e-subspace embedding for V as an e-embedding for A.

Corollary 1

If Q € R'*™ js an e-embedding for A, then the singular values of A are
bounded by

(1 + 5)_1/20'min(QA) < Umin(A) < Umax(A) < (1 - 5)_1/20max(QA)-

Proof.
By min-max principle we have: g;(A)=  min  max ||Ax||2. We obtain:
V subspace of R"  xEV
dim(V)=n+1—i ||x][2=1
oi(QA) = min max [|QAx]|2 < min max v1+ ¢ ||Ax]2 = vV1+e0oi(A).
V subspace of R xEV V subspace of R xEV
dim(V)=n+1—i |x[la=1 dim(V)=n+1—i [x|[o=1
(8)
Proceed similarly for the other bound. ]
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Oblivious subspace embedding

Aim: construct Q such that for any n-dimensional subspace V C R™
P(Q2 is e-embedding for V) > 1 —§

Definition: oblivious subspace embedding

A random matrix Q € R’*™ is an oblivious subspace embedding with
parameters OSE(n, €, ) if with probability at least 1 — ¢ for any
n-dimensional subspace V C R™, for all x;,x; € V, we have

(€2, €x5) — (xi, x7)| < €l|xil2]|x]]2 (9)
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Random sketching matrices

m Q € R™*™ whose entries are independent standard normal random
variables, multiplied by 1/\ﬂ
o Qis OSE(n,¢€,6) with | = O(e ?*(n+ log 1))
1 Cost of computing QA, A € R™": 2mnl/ flops
1 Relies on BLAS3 operations when A is dense

= Easy to parallelize, QA = Z,.P:l Q;A;
A1

P
AP i=1

O Each processor i owns a block €; € R”*™” and a block A; € R™/Px"
O Each processor computes Q;A; € R/*"

0 Sum-Reduce among all processors to compute QA = 2;3:1 QA

o Cost of the algorithm

(2mnl/P)~ + log, Pa + Inlog, PS
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Fast Johnson-Lindenstrauss transform

Find sparse or structured €2 such that computing QA is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given m = 29,/ < m, the SRHT ensemble embedding R™ into R’ is defined

as
Q:,/?-P-H.D, where (10)

®m D e R™*™ js diagonal matrix of uniformly random signs, random
variables uniformly distributed on +1

m H e R™M is the normalized Walsh-Hadamard transform

= P c R'™™ formed by subset of / rows of the identity, chosen uniformly at
random (draws / rows at random from HD).

References: Sarlos'06, Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and
Woolfe'06.
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Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh—Hadamard Matrix
For given m = 29, H,, € R™*™ is the non-normalized Walsh-Hadamard
transform defined recursively as,

(1 1 _ (Hmp2  Hmp2
H2 - (1 1) 9 Hm - <Hm/2 *Hm/2 . (11)

The normalized Walsh-Hadamard transform is H = m—1/2H,),.

Cost of matrix vector multiplication:
For w € R™ and Q € R'*™, computing Qw costs 2mlog, m flops.
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Random sketching matrices - SRHT

® Q € R'*™ is a fast Johnson-Lindenstrauss transform, e.g. a subsampled
randomized Hadamard transform (SRHT)!

Q:,/?-R-H-D,where (12)

D € R™X™ is diagonal with independent random signs, H € R™*™ is normalized
Walsh-Hadamard matrix, R € R/*™ draws / rows uniformly at random from HD.

0 Qis OSE(n,€,6) with /= O(e > (n+1InZ)In %)
1 Cost of computing QA, A € R™*" on P processors:

2mnlog, m

b v + log, Pa + % log, P8

1. Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and Woolfe'06, Sarlos'06.
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Block SRHT for parallelization on P processors

= Qasin (13) is OSE(n,€,6) with [ = O(e ™2 (n+1InZ)In 1)

RH Dr
m
Q=[ 2 ... QP]:\/E'[Du ... Dp] ,
RH Drp

(13)
where Q; = /% D;iRHDg;, D;; € R'*!, Dg; € R™/P*X™/P are diagonal with independent random
signs, H € R™/PXm/P is normalized Walsh-Hadamard matrix, R € R'*™/* is uniform sampling

matrix.

m Parallelize as [Balabanov et al., 2022]:

P
m
QA =, /ﬁ ; D,; RHDg: A;
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Parallelization of block SRHT

Considering each processor i owns a block A; € R™/P*" parallelize as:

A A1
QA = (1 ... Qp) ( ) :( 2D RHDRy ... %DLPRHDRPAP) ( )

Ap Ap
P m
= Z \/ 5; DLiRHDgi A;
P PI

= Root processor broadcasts seed of R
® Each processor i draws R, D;;, Dg;
= Each processor computes Q;A; = 4 /%DL;RHDR,-A,-, Q;A; € RIxn

® Sum-Reduce among all processors to compute QA = Z,’;l Q;A;

Cost of the algorithm (some lower order terms ignored)

2mnlog, m/P~ + log, Pa + Inlog, P
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Execution time (s)

Performance of Gaussian vs

A€ R"™M n=64000,P = 1

block SRHT

A € R"PXM n = 65536, m = 256, k = 4096

--- Gaussian sampling m=256 ’," 15 Gaussian
—— SRHT sampling m=256 Pre SRHT
-== gaussian sampling m=512 Prag reduction
—— SRHT sampling m=512 R
-
-
- -
Pl 2
- @ 10
7 £
/’ c
P ]
e - 5
-
-
e P b
s - x 5
-7 - b}
-
-7 -
- Pt
-, -
¢ e
Z- 0
1000 2000 3000 4000 2816 32

sampling size

64 128

P (proc count)

256

B Results obtained in Julia on nodes formed by 2 Cascade Lake Intel Xeon 5218,

16 cores each, 2.4GHz/core
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Performance of Gaussian vs SRHT

A €R™" m =107, n =200,/ = 2000 A€ R™ m=10° x P,n =200,/ = 2000

4
10

1 “©—o- Gauss. total

-~ Gauss. total
-©~- BSRHT total “~e¢- BSRHT total
~~a Gauss. local

1 i 4~ Gauss. local
0.1 -~ BSRHT local ~4~ BSRHT local

Runtime (s)
©

12 48 192 1536 12 48 192 1,536
# MPI process # MPI process
X — 8 — —
A€ R™" m =108, n = 200,/ = 2000 Memory per processor
a
2 1,000 G\o
5 10 2
z 3
9 ]
E “—¢- Gauss. total g
ER “~¢- BSRHT total 5 100 “~¢ Gauss.
& s Gauss. local ; o BSRHT
——a BSRHT local E
0.1 2 ‘ ;
1248 192 1,536 12 48 192 1,536

# MPI process # MPI process

Machine: Intel Skylake 2.7GHz (AVX512), 48 cores per node
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Solving least squares problems

Given A € R™" full-rank and b € R™, with n < m, solve

= in ||Ax —
y := arg min [[Ax — b|2

The unique solution is
y=A"h, AT =(ATA)AT

Solve by using the QR factorization of A (see lecture on dense QR)

28 of 32 1



Least squares problems

Solve by using the normal equations,

ATAx=ATbh

1. with direct methods
multiply AT A and compute the Cholesky factorization of the result

2. or with iterative methods without computing explicitely AT A
use a Krylov subspace solver and at each iteration multiply AT A with a
vector
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Randomized least squares - sketch and solve

Solve by using randomization, with Q € R/*™ being OSE(n + 1, ¢, ) for
V = range([A, b])

s = arg min [ Q(Ax — b)z
or y, = (QA)!(Qb)
We obtain with probability 1 — ¢:

1 1
Q(Ays — b)|]» < ||[Ay — bl <
1A~ Bl < Ay — bl < L

1S2(Ays — b)|2
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Randomized least squares - sketch and solve

1
VvV1—c¢

= b)ll2 < [[Ay = bl]2 < 1S2(Ays — b)ll2

1
ﬁ”Q(Ays

Proof
Since y is the minimizer of the original least squares problem, using (5), we
obtain

1
— — mi — < — < - —
1Ay = bll2 = min || Ax — b2 < [|Ays — bll2 < —==——[|Q(Ay: — b)ll> (14)

Similarly, since ys is the minimizer of the sketched least square problem, we
have

12(Ays — b)ll2 = min [[Q2(Ax — b)ll2 < [[2(Ay = b)ll2 < V1 +ellAy — bll2
(15)
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