
Introduction to randomization and sketching techniques

Laura Grigori

EPFL and PSI

October 29, 2024

Plan

Some background

Random sketching

Randomization for least-squares problem

2 of 32

Plan

Some background

Random sketching

Randomization for least-squares problem

3 of 32

Singular value decomposition

For any given A ∈ Rm×n, m ≥ n its singular value decomposition is

A = UΣV T =
(
U1 U2 U3

)
·

Σ1 0
0 Σ2

0 0

 ·
(
V1 V2

)T
where for a given k,

■ U ∈ Rm×m is orthogonal matrix, the left singular vectors of A ,
U1 is m × k, U2 is m × n − k , U3 is m ×m − n

■ Σ ∈ Rm×n, its diagonal is formed by σ1(A) ≥ . . . ≥ σn(A) ≥ 0
Σ1 is k × k , Σ2 is n − k × n − k

■ V ∈ Rn×n is orthogonal matrix, the right singular vectors of A,
V1 is n × k , V2 is n × n − k

4 of 32

Min-max principle for singular values

Courant-Fischer Min-max Theorem

σi (A) = min
V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

∥Ax∥2. (1)

5 of 32

Properties of SVD

Given A = UΣV T , we have

■ ATA = VΣTΣV T ,
the right singular vectors of A are a set of orthonormal eigenvectors of
ATA.

■ AAT = UΣTΣUT ,
the left singular vectors of A are a set of orthonormal eigenvectors of
AAT .

■ The non-negative singular values of A are the square roots of the
non-negative eigenvalues of ATA and AAT .

■ If σk ̸= 0 and σk+1, . . . , σn = 0, then
Range(A) = span(U1), Null(A) = span(V2),
Range(AT) = span(V1), Null(A) = span(U2 U3).

6 of 32

Norms and condition number

||A||2 = σmax(A) = σ1(A)

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
σ2
1(A) + . . . σ2

n(A)

||A||∗ = σ1(A) + . . . σn(A)

κ(A) =
σmax(A)

σmin(A)
=

√
∥ATA∥2∥(ATA)−1∥2

Some properties:

max
i,j

|A(i , j)| ≤ ||A||2 ≤
√
mnmax

i,j
|A(i , j)|

||A||2 ≤ ||A||F ≤
√

min(m, n)||A||2
Orthogonal Invariance: If Q ∈ Rm×m and Z ∈ Rn×n are orthogonal, then

||QAZ ||F = ||A||F
||QAZ ||2 = ||A||2

7 of 32

Low rank matrix approximation

■ Problem: given A ∈ Rm×n, compute rank-k approximation ZW T , where
Z is m × k and W T is k × n.

■ Problem with diverse applications
□ from scientific computing: fast solvers for integral equations, H-matrices
□ to data analytics: principal component analysis, image processing, ...

Ax → ZW T x

Flops 2mn → 2(m + n)k

8 of 32

Low rank matrix approximation

■ Best rank-k approximation [[A]]k = UkΣkV
T
k is rank-k truncated SVD of

A [Eckart and Young, 1936]

min
rank(Ak)≤k

||A− Ak ||2 = ||A− [[A]]k ||2 = σk+1(A) (2)

min
rank(Ak)≤k

||A− Ak ||F = ||A− [[A]]k ||F =

√√√√ n∑
j=k+1

σ2
j (A) (3)

Image, size 1190× 1920 Rank-10 approximation, SVD Rank-50 approximation, SVD

■ Image source: https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

9 of 32

https://pixabay.com/photos/billiards-ball-play-number-half-4345870/

Plan

Some background

Random sketching

Randomization for least-squares problem

10 of 32

Random sketching

xi

xj

z1

z2

z3

...

e1

e2

e3

Ωxi

Ωxjα1

α2

α3

β3

α2

β3
Ω

Rm Rℓ

Sketching: embedding of a high dimensional subspace into a low
dimensional one, while preserving some geometry, with high probability

Applications: least squares problems, low rank matrix approximation, data
compression, column subset selection, orthogonalization of set of vectors,
Krylov subspace methods, . . .

References: [Johnson and Lindenstrauss, 1984, Dasgupta and Gupta, 2003],
[Martinsson and Tropp, 2020]

Image courtesy of O. Balabanov

11 of 32

RandBLAS and RandLAPACK

Ongoing effort to define standards similar to BLAS/LAPACK, organized as

■ drivers: few and simple

■ computational routines: building blocks for the drivers

RandBLAS - data-oblivious sketching routines

■ generate a sketching operator

■ apply a sketching operator to a matrix

RandLAPACK: linear algebra problems solved through randomization, e.g.

■ least squares

■ low rank approximation

■ linear solvers

■ advanced sketching: leverage scores, sketching operators with tensor
product structures

12 of 32

RandBLAS and RandLAPACK

Randomized Numerical Linear Algebra: A Perspective on the Field With an
Eye to Software, R. Murray et al, describes:

■ basic sketching: dense and sparse sketching operators

■ least squares and optimization

■ low rank approximation

■ full rank matrix decompositions

■ kernel methods as arising in machine learning models

■ linear solvers and trace estimation

■ advanced sketching: leverage scores, sketching operators with tensor
product structures

13 of 32

https://arxiv.org/abs/2302.11474
https://arxiv.org/abs/2302.11474

References on RandNLA

Many references available, as:

■ Sketching As a Tool for Numerical Linear Algebra [Woodruff, 2014]

■ Finding Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions [Halko et al., 2011]

■ Randomized Numerical Linear Algebra: Foundations and Algorithms
[Martinsson and Tropp, 2020]

■ Randomized Numerical Linear Algebra: A Perspective on the Field With
an Eye to Software [Murray et al., 2023]

14 of 32

ε-subspace embedding property

For a given subspace V ⊂ Rm and ε ∈ (0, 1), a sketching matrix Ω ∈ Rl×m

is an ε-embedding for V if for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (4)

■ If xi = xj we obtain

(1− ε)∥xi∥22 ≤ ∥Ωxi∥22 ≤ (1 + ε)∥xi∥22. (5)

15 of 32

ε-subspace embedding property

For a given subspace V ⊂ Rm and ε ∈ (0, 1), a sketching matrix Ω ∈ Rl×m

is an ε-embedding for V if for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (6)

■ It can also be expressed as: given all vectors xi , xj ∈ V are rescaled to be
unit vectors, then for all xi , xj ∈ V we require to hold:

(1− ϵ)∥xi + xj∥22 ≤ ∥Ω(xi + xj)∥22 ≤ (1 + ϵ)∥xi + xj∥22 (7)

Proof that we obtain relation (6):

⟨Ωxi ,Ωxj⟩ =
(
∥Ω(xi + xj)∥22 − ∥Ωxi∥22 − ∥Ωxj∥22

)
/2

=
(
(1± ϵ)∥xi + xj∥22 − (1± ϵ)∥xi∥22 − (1± ϵ)∥xj∥22

)
/2

= ⟨xi , xj⟩ ± O(ϵ)

16 of 32

ε-subspace embedding property

Let A be a matrix whose columns form a basis for V. For simplicity, we refer
to an ε-subspace embedding for V as an ε-embedding for A.

Corollary 1
If Ω ∈ Rl×m is an ε-embedding for A, then the singular values of A are
bounded by

(1 + ε)−1/2σmin(ΩA) ≤ σmin(A) ≤ σmax(A) ≤ (1− ε)−1/2σmax(ΩA).

Proof.
By min-max principle we have: σi (A) = min

V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

∥Ax∥2. We obtain:

σi (ΩA) = min
V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

∥ΩAx∥2 ≤ min
V subspace of Rn
dim(V)=n+1−i

max
x∈V

∥x∥2=1

√
1 + ε ∥Ax∥2 =

√
1 + ε σi (A).

(8)

Proceed similarly for the other bound.

17 of 32

Oblivious subspace embedding

Aim: construct Ω such that for any n-dimensional subspace V ⊂ Rm

P(Ω is ε-embedding for V) ≥ 1− δ

Definition: oblivious subspace embedding
A random matrix Ω ∈ Rl×m is an oblivious subspace embedding with
parameters OSE(n, ϵ, δ) if with probability at least 1− δ for any
n-dimensional subspace V ⊂ Rm, for all xi , xj ∈ V, we have

|⟨Ωxi ,Ωxj⟩ − ⟨xi , xj⟩| ≤ ϵ∥xi∥2∥xj∥2 (9)

18 of 32

Random sketching matrices

■ Ω ∈ Rl×m whose entries are independent standard normal random
variables, multiplied by 1/

√
l

□ Ω is OSE(n, ϵ, δ) with l = O(ϵ−2(n + log 1
δ
))

□ Cost of computing ΩA, A ∈ Rm×n: 2mnl flops
□ Relies on BLAS3 operations when A is dense

■ Easy to parallelize, ΩA =
∑P

i=1 ΩiAi

ΩA =
(
Ω1 . . . ΩP

)A1

...
AP

 =
P∑
i=1

ΩiAi

□ Each processor i owns a block Ωi ∈ Rl×m/P and a block Ai ∈ Rm/P×n

□ Each processor computes ΩiAi ∈ Rl×n

□ Sum-Reduce among all processors to compute ΩA =
∑P

i=1 ΩiAi

□ Cost of the algorithm

(2mnl/P)γ + log2 Pα+ ln log2 Pβ

19 of 32

Fast Johnson-Lindenstrauss transform

Find sparse or structured Ω such that computing ΩA is cheap, e.g. a
subsampled random Hadamard transform (SRHT).
Given m = 2q, l < m, the SRHT ensemble embedding Rm into Rl is defined
as

Ω =

√
m

l
· P · H · D, where (10)

■ D ∈ Rm×m is diagonal matrix of uniformly random signs, random
variables uniformly distributed on ±1

■ H ∈ Rm×m is the normalized Walsh-Hadamard transform

■ P ∈ Rl×m formed by subset of l rows of the identity, chosen uniformly at
random (draws l rows at random from HD).

References: Sarlos’06, Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and

Woolfe’06.

20 of 32

Fast Johnson-Lindenstrauss transform (contd)

Definition of Normalized Walsh–Hadamard Matrix
For given m = 2q, Hm ∈ Rm×m is the non-normalized Walsh-Hadamard
transform defined recursively as,

H2 =

(
1 1
1 −1

)
, Hm =

(
Hm/2 Hm/2

Hm/2 −Hm/2

)
. (11)

The normalized Walsh-Hadamard transform is H = m−1/2Hm.

Cost of matrix vector multiplication:
For w ∈ Rm and Ω ∈ Rl×m, computing Ωw costs 2m log2 m flops.

21 of 32

Random sketching matrices - SRHT

■ Ω ∈ Rl×m is a fast Johnson-Lindenstrauss transform, e.g. a subsampled
randomized Hadamard transform (SRHT)1

Ω =

√
m

l
· R · H · D, where (12)

D ∈ Rm×m is diagonal with independent random signs, H ∈ Rm×m is normalized

Walsh-Hadamard matrix, R ∈ Rl×m draws l rows uniformly at random from HD.

□ Ω is OSE(n, ϵ, δ) with l = O(ϵ−2
(
n + ln m

δ

)
ln n

δ
)

□ Cost of computing ΩA, A ∈ Rm×n on P processors:

2mn log2 m

P
γ + log2 Pα+

mn

P
log2 Pβ

1. Ailon and Chazelle’06, Liberty, Rokhlin, Tygert and Woolfe’06, Sarlos’06.

22 of 32

Block SRHT for parallelization on P processors

■ Ω as in (13) is OSE(n, ϵ, δ) with l = O(ϵ−2
(
n + ln m

δ

)
ln n

δ)

Ω = [Ω1 Ω2 . . . ΩP] =

√
m

Pl
·
[
DL1 . . . DLP

] 
RH

. . .

RH



DR1

. . .

DRP

 ,

(13)

where Ωi =
√

m
Pl DLiRHDRi , DLi ∈ Rl×l , DRi ∈ Rm/P×m/P are diagonal with independent random

signs, H ∈ Rm/P×m/P is normalized Walsh-Hadamard matrix, R ∈ Rl×m/P is uniform sampling

matrix.

■ Parallelize as [Balabanov et al., 2022]:

ΩA =

√
m

Pl

P∑
i=1

DLiRHDRiAi

23 of 32

Parallelization of block SRHT

Considering each processor i owns a block Ai ∈ Rm/P×n, parallelize as:

ΩA =
(
Ω1 . . . ΩP

)A1

...
AP

 =
(√

m
Pl
DL1RHDR1 . . .

√
m
Pl
DLPRHDRPAP

)A1

...
AP


=

P∑
i=1

√
m

Pl
DLiRHDRiAi

■ Root processor broadcasts seed of R

■ Each processor i draws R, DLi ,DRi

■ Each processor computes ΩiAi =
√

m
PlDLiRHDRiAi , ΩiAi ∈ Rl×n

■ Sum-Reduce among all processors to compute ΩA =
∑P

i=1 ΩiAi

Cost of the algorithm (some lower order terms ignored)

2mn log2 m/Pγ + log2 Pα+ ln log2 Pβ

24 of 32

Performance of Gaussian vs block SRHT

A ∈ Rn×m, n = 64000,P = 1 A ∈ RnP×m, n = 65536,m = 256, k = 4096

■ Results obtained in Julia on nodes formed by 2 Cascade Lake Intel Xeon 5218,
16 cores each, 2.4GHz/core

25 of 32

Performance of Gaussian vs SRHT

A ∈ Rm×n,m = 107, n = 200, l = 2000 A ∈ Rm×n,m = 105 × P, n = 200, l = 2000

A ∈ Rm×n,m = 108, n = 200, l = 2000 Memory per processor

Machine: Intel Skylake 2.7GHz (AVX512), 48 cores per node

26 of 32

Plan

Some background

Random sketching

Randomization for least-squares problem

27 of 32

Solving least squares problems

Given A ∈ Rm×n full-rank and b ∈ Rm, with n ≪ m, solve

y := arg min
x∈Rn

∥Ax − b∥2

The unique solution is

y = A+b, A+ = (ATA)−1AT

Solve by using the QR factorization of A (see lecture on dense QR)

28 of 32

Least squares problems

Solve by using the normal equations,

ATAx = ATb

1. with direct methods
multiply ATA and compute the Cholesky factorization of the result

2. or with iterative methods without computing explicitely ATA
use a Krylov subspace solver and at each iteration multiply ATA with a
vector

29 of 32

Randomized least squares - sketch and solve

Solve by using randomization, with Ω ∈ Rl×m being OSE(n + 1, ϵ, δ) for
V = range([A, b])

ys := arg min
x∈Rn

∥Ω(Ax − b)∥2

or ys = (ΩA)†(Ωb)
We obtain with probability 1− δ:

1√
1 + ε

∥Ω(Ays − b)∥2 ≤ ∥Ay − b∥2 ≤
1√
1− ε

∥Ω(Ays − b)∥2

30 of 32

Randomized least squares - sketch and solve

1√
1 + ε

∥Ω(Ays − b)∥2 ≤ ∥Ay − b∥2 ≤
1√
1− ε

∥Ω(Ays − b)∥2

Proof
Since y is the minimizer of the original least squares problem, using (5), we
obtain

∥Ay − b∥2 = min
x∈Rn

∥Ax − b∥2 ≤ ∥Ays − b∥2 ≤
1√
1− ε

∥Ω(Ays − b)∥2 (14)

Similarly, since ys is the minimizer of the sketched least square problem, we
have

∥Ω(Ays − b)∥2 = min
x∈Rn

∥Ω(Ax − b)∥2 ≤ ∥Ω(Ay − b)∥2 ≤
√
1 + ε∥Ay − b∥2

(15)

31 of 32

References (1)

Balabanov, O., Beaupere, M., Grigori, L., and Lederer, V. (2022).

Block subsampled randomized hadamard transform for low-rank approximation on distributed architectures.

Dasgupta, S. and Gupta, A. (2003).

An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev., 53(2):217–288.

Johnson, W. and Lindenstrauss, J. (1984).

Extensions of Lipschitz mappings into a hilbert space.
Contemp. Math., 26:189–206.

Martinsson, P.-G. and Tropp, J. (2020).

Randomized numerical linear algebra: Foundations and algorithms.

Murray, R., Demmel, J., Mahoney, M. W., Erichson, N. B., Melnichenko, M., Malik, O. A., Grigori, L., Luszczek, P., Dereziński, M.,

Lopes, M. E., Liang, T., Luo, H., and Dongarra, J. (2023).
Randomized numerical linear algebra : A perspective on the field with an eye to software.

Woodruff, D. P. (2014).

Sketching as a tool for numerical linear algebra.
Found. Trends Theor. Comput. Sci., 10(1–2):1–157.

32 of 32

	Some background
	Random sketching
	Randomization for least-squares problem

