
Orthogonalization of a set of vectors and the QR
factorization

Laura Grigori

EPFL and PSI

September 24/31, 2024

Plan

Orthogonalization processes
Background on QR factorization

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR
Compact representation

Communication avoiding QR factorization
TSQR: QR factorization of a tall skinny matrix

Summary of cost and stability of the different algorithms

2 of 55

BLAS: optimized routines for basic linear algebra

■ Industry standard interface
www.netlib.org/blas, www.netlib.org/blas/blast–forum

■ Vendors, others supply optimized implementations

■ BLAS1: 15 different operations
□ vector-vector operations: dot product, saxpy (y=a*x+y)
□ not very efficient since few operations performed on each element of the

vectors, cost of data transfer through memory hierarchies is important

■ BLAS2: 25 different operations
□ matrix-vector operations: matrix vector multiply, etc
□ slightly faster than BLAS1

■ BLAS3 : 9 different operations
□ matrix-matrix operations: matrix matrix multiply, etc
□ better usage of caches, n3 operations for matrices of dimensions n × n,

potentially much faster than BLAS2 and BLAS1

3 of 55

LAPACk and ScaLAPACK for linear algebra

■ LAPACK : linear algebra package
www.netlib.org/lapack,scalapack

■ ScaLAPACK: scalable linear algebra package
□ designed for distributed memory machines

■ Vendors provide those libraries optimized

■ Both libraries rely as much as possible on BLAS3

4 of 55

Plan

Orthogonalization processes
Background on QR factorization

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR

Communication avoiding QR factorization

Summary of cost and stability of the different algorithms

5 of 55

The QR factorization

Given a matrix A ∈ Rm×n, m ≥ n, its QR factorization is

A = Q̂R̂ = (Q Q̃)

(
R
0

)
= QR

where Q̂ ∈ Rm×m is orthogonal and R̂ ∈ Rm×n is upper triangular.
The thin factorization has Q ∈ Rm×n and R ∈ Rn×n.

If A has full rank, the factorization QR is essentialy unique (modulo signs of
diagonal elements of R).

■ ATA = RTR is a Cholesky factorization and A = AR−1R is a QR
factorization.

■ A = QD ·DR, D = diag(±1) is a QR factorization.

6 of 55

Importance of orthogonalization

■ Used in many different applications, as:
□ Solving least squares problems
□ Computing an orthogonal basis of a set of vectors as in Krylov subspace

methods (they will be discussed in later lectures)
□ Computing the low rank approximation of a matrix

7 of 55

Solving least squares problems

Given matrix A ∈ Rm×n, rank(A) = n, vector b ∈ Rm×1,
the unique solution to argminx ∥Ax− b∥2 is

x = A+b, A+ = (ATA)−1AT

Using the QR factorization of A

A = Q̂R̂ =
(
Q Q̃

)(R
0

)
(1)

||r||22 = ||Ax− b||22 = ||
(
Q Q̃

)(R
0

)
x− b||22

= ||
(
R
0

)
x−

(
QT

Q̃
T

)
b||22 = ||

(
Rx−QTb

Q̃
T
b

)
||22

= ||Rx−QTb||22 + ||Q̃T
b||22

=⇒ argmin
x

∥Ax− b∥ = argmin
x

∥Rx−QTb∥.

8 of 55

Algorithms for orthogonalization

Many algorithms available. In this class we study:

■ Gram-Schmidt process (GS): Classical GS (CGS), Modified GS (MGS)

■ Cholesky-QR

■ Householder QR: QR factorization based on Householder transformations

Two different cases arise:

■ The vectors to be orthogonalized are known all at once
□ all algorithms discussed can be used

■ The vectors to be orthogonalized are given progressively
□ MGS, CGS could be used, Householder QR with modifications
□ Cholesky-QR cannot be used

9 of 55

Algorithms for orthogonalization

Many algorithms available. In this class we study:

■ Gram-Schmidt process (GS): Classical GS (CGS), Modified GS (MGS)

■ Cholesky-QR

■ Householder QR: QR factorization based on Householder transformations

Two different cases arise:

■ The vectors to be orthogonalized are known all at once
□ all algorithms discussed can be used

■ The vectors to be orthogonalized are given progressively
□ MGS, CGS could be used, Householder QR with modifications
□ Cholesky-QR cannot be used

9 of 55

Numerical stability

We will discuss the numerical stability of these algorithms as:

■ Loss of orthogonality ∥I−QTQ∥ and condition number of the basis κ(Q)

■ Accuracy of the factorization ∥A−QR∥

10 of 55

Data distribution

We consider first the the case when A ∈ Rm×n, m ≫ n
Matrix A distributed using a 1D distribution by blocks of rows, that is:

A =


A1

A2

A3

A4

 is distributed on


P1

P2

P3

P4


that is AI ∈ Rm/P×n is assigned to processor Pi , i = 1 : 4

■ Note that processors are numbered 1 to P, while in MPI they are
numbered 0 to P − 1,

■ Matrices are 1-indexed (as in Matlab), while they are 0-indexed in Python

11 of 55

Plan

Orthogonalization processes

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR

Communication avoiding QR factorization

Summary of cost and stability of the different algorithms

12 of 55

Gram-Schmidt (GS) orthogonalization process

Given set of linearly independent vectors A = [a1, . . . , an], A ∈ Rm×n,
m ≫ n.
Construct an orthogonal basis Q = [q1, . . . ,qn] such that A = QR,
Q ∈ Rm×n,R ∈ Rn×n.

For each aj do
1. Given Pj−1 projector on span(Q(:, 1 : j − 1))⊥, compute

qj ⊥ q1, . . . ,qj−1 as

qj = Pj−1aj

2. Normalize qj
End For

13 of 55

Orthogonal projector

Pj−1 = I−Q(:, 1 : j − 1)(Q(:, 1 : j − 1)TQ(:, 1 : j − 1))−1Q(:, 1 : j − 1)T

= I−Q(:, 1 : j − 1)Q(:, 1 : j − 1)†

■ Expensive to compute, hence two different projectors very used, leading
to:
□ Classical Gram-Schmidt
□ Modified Gram-Schmidt

14 of 55

Projectors Pj used in Gram-Schmidt

■ Classical Gram-Schmidt (CGS): BLAS-2 matrix-vector operations
□ one synchronization for each new vector aj

Pj−1 = I −Q(:, 1 : j − 1)Q(:, 1 : j − 1)T

□ Numerical stability: assume O(ϵ)κ2(A) < 1

∥I −QTQ∥2 = O(ε)κ2(A)

Note: ε machine precision, A ∈ Rm×n, κ(A) is condition number of A

15 of 55

Classical Gram-Schmidt

16 of 55

CGS: algorithm

Algorithm 1 Classical Gram-Schmidt (Left-looking, BLAS-2 version)

Require: A is an m × n matrix with m ≥ n
Assert: QR = A where R is upper triangular
1: function [Q,R] = CGS(A)
2: R = 0
3: R(1, 1) = ∥A(:, 1)∥2
4: Q(:, 1) = A(:, 1) / R(1, 1)
5: for j = 2 to n do
6: R(1 : j−1, j) = Q(:, 1 : j−1)T · A(:, j)
7: Q(:, j) = A(:, j)−Q(:, 1 : j−1) · R(1 : j−1, j)
8: R(j , j) = ∥Q(:, j)∥2
9: Q(:, j) = Q(:, j) / R(j , j)

10: end for
11: end function

17 of 55

Parallel Classical Gram-Schmidt

Algorithm 2 Parallel Classical Gram-Schmidt

Require: A is an m × n matrix 1D-row-distributed over P processors
Assert: QR = A where R is upper triangular and Q is m × n
Assert: R is stored redundantly on all processors and Q’s distribution matches A
1: function [Q,R] = 1D-CGS(A)
2: I = MyProcID
3: R = 0
4: β = ∥AI (:, 1)∥22
5: All-reduce β over all processors, take square root, and store in R(1, 1)
6: QI (:, 1) = AI (:, 1) / R(1, 1)
7: for j = 2 to n do
8: r = QI (:, 1 : j−1)T · AI (:, j)
9: All-reduce r over all processors, store in R(1 : j−1, j)

10: QI (:, j) = AI (:, j)−QI (:, 1 : j−1) · R(1 : j−1, j)
11: β = ∥QI (:, j)∥22
12: All-reduce β over all processors, take square root, and store in R(j , j)
13: QI (:, j) = QI (:, j) / R(j , j)
14: end for

15: end function
18 of 55

Cost of parallel CGS

■ Computation: each iteration j does a matrix-vector product with QI with
m/P rows:

γ · 2mn2

P

■ Communication:
all-reduce at each iteration j with data of size j − 1 and data of size 1

α · O(n logP) + β · O(n2 + n logP)

19 of 55

Projectors Pj used in Gram-Schmidt

■ Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations
□ (j − 1) synchronizations for each vector wj

Pj−1 = (I − qj−1q
T
j−1) . . . (I − q1q

T
1)

□ Numerical stability: assume O(ε)κ(W) < 1,

∥I −QTQ∥2 = O(ε)κ(W)

→ better numerical stability, but poor efficiency

Note: ε machine precision, A ∈ Rm×n, κ(A) is condition number of A

20 of 55

Projectors Pj used in Gram-Schmidt

■ Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations
□ (j − 1) synchronizations for each vector wj

Pj−1 = (I − qj−1q
T
j−1) . . . (I − q1q

T
1)

□ Numerical stability: assume O(ε)κ(W) < 1,

∥I −QTQ∥2 = O(ε)κ(W)

→ better numerical stability, but poor efficiency

Note: ε machine precision, A ∈ Rm×n, κ(A) is condition number of A

20 of 55

Parallel Modified Gram-Schmidt

Algorithm 3 Parallel Modified Gram-Schmidt

Require: A is an m × n matrix 1D-row-distributed over P processors
Assert: QR = A where R is upper triangular and Q is m × n
Assert: R is stored redundantly on all procs and Q’s distribution matches A
1: function [Q,R] = 1D-MGS(A)
2: I = MyProcID
3: R = 0
4: QI = AI

5: for j = 1 to n do
6: for i = 1 to j − 1 do
7: ρ = QI (:, i)

T ·QI (:, j)
8: All-reduce ρ over all processors, store in R(i , j)
9: QI (:, j) = QI (:, j)−QI (:, i) · R(i , j)

10: end for
11: β = ∥QI (:, j)∥22
12: All-reduce β over all processors, take square root, and store in R(j , j)
13: QI (:, j) = QI (:, j) / R(j , j)
14: end for
15: end function

21 of 55

Cost of parallel MGS

■ Computation:
n2/2 inner iterations
inner loop: dot product and axpy of vectors of local dimension m/P

γ · 2mn2

P

■ Communication:
n2/2 inner iterations
inner loop: all-reduce of a single element

α · O(n2 logP) + β · O(n2 logP)

22 of 55

Plan

Orthogonalization processes

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR

Communication avoiding QR factorization

Summary of cost and stability of the different algorithms

23 of 55

Cholesky-QR

■ Cholesky-QR : BLAS-3 matrix-matrix operations
Compute A = QR as:

1. Compute the Cholesky factorization of ATA as ATA = G = RTR
2. Compute the orthogonal factor as Q = AR−1

■ Numerical stability: assume O(ϵ)κ2(A) < 1, then

∥I−QTQ∥2 = O(ϵ)κ2(A)

24 of 55

Cholesky-QR: algorithm

Algorithm 4 Parallel Cholesky-QR

Require: A is an m × n matrix 1D-row-distributed over P processors
Assert: QR = A where R is upper triangular and Q is m × n
Assert: R is stored redundantly on all processors andQ’s distribution matches

A
1: function [Q,R] = ParCholQR(A)
2: I = MyProcID
3: G = AT

I AI

4: All-reduce G over all processors, store in G
5: R = Cholesky(G) ▷ Performed redundantly on all processors
6: QI = AIR

−1 ▷ Local triangular solve with multiple RHS
7: end function

25 of 55

Cost of Cholesky-QR

■ Computation:
matrix multiplication + Cholesky factorization:

γ · 2mn2

P
+ O(n3)

■ Communication:
all-reduce of Cholesky factor

α · O(logP) + β · O(n2) when n2 ≥ P

26 of 55

Plan

Orthogonalization processes

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR
Compact representation

Communication avoiding QR factorization

Summary of cost and stability of the different algorithms

27 of 55

Householder transformation

The Householder matrix

H = Im − 2

yTy
yyT

has the following properties:

■ is symmetric and orthogonal, H2 = HTH = Im,

■ is independent of the scaling of y,

■ it reflects a vector a1 about the hyperplane span(y)⊥

H · a1 = a1 −
2yTa1
yTy

y = a1 − ξy

■ By taking ξ = 1 we obtain y = a1 −H · a1

28 of 55

Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a
vector a1, except first one.

H · a1 = β̃e1, β̃ = ±∥a1∥2

With the choice of sign made to avoid cancellation when computing
y(1) = α̃− β̃ (where y(1), a1(1) = α̃ are the first elements of vectors y, a1
respectively), we have

y = a1 − β̃e1, β̃ = −sign(a1(1))∥a1∥2,

H = I − τyyT , τ =
2

yTy

29 of 55

Householder based QR factorization

■ Let a1 be the first column of A and the Householder matrix be:

H1 = Im − τ1y1y
T
1

■ Apply the same reasoning to subsequent columns.
■ Consider the j-th column aj and Hj that annihilates all the elements

below the diagonal,

Hj ·aj = (Im−τjyjy
T
j)·aj =

 aj (1 : j − 1)
±∥aj (j : m)∥

0m−j

 , where yj =

 0j−1

aj (1) + sgn(aj (1))∥aj (j : m)∥2
aj (j + 1 : m)



30 of 55

Householder based QR factorization

A =

x x x
x x x
x x x



H3H2H1A = H3H2

x x x
0 x x
0 x x

 = H3

x x x
0 x x
0 0 x

 = R̂

So we have

A = H1 · · ·Hn

[
R

0n−m,m

]
= Q̂R̂,

Q̂ = (I − β̃1y1y
T
1) . . . (I − β̃n−1yn−1y

T
n−1)(I − β̃nyny

T
n)

#flops = 2n2(m − n/3)

31 of 55

Error analysis of the QR factorization

Theorem ([N.J.Higham, 2002])
Let R̃ ∈ Rm×n be the computed factor of A ∈ Rm×n obtained by using
Householder transformations. Then there is an orthogonal Q̂ ∈ Rm×m such
that

A+∆A = Q̂R̃, where ∥∆aj∥2 ≤ O(mnε)∥aj∥2, j = 1 : n,

where ε is machine precision, mnε < 1, aj denotes the j-th column of A.

Loss of orthogonality:

∥I− Q̂
T
Q̂∥ = O(ε), with no constraints on κ(A) (unconditionally stable)

32 of 55

Householder QR - algorithm

33 of 55

Householder QR - algorithm

Algorithm 5 Householder QR
Require: A is an m × n matrix with m ≥ n
Assert: Q̂R̂ = A where R̂ is upper triangular (m× n), R is its upper triangular part

(n × n), and Q̂ = (I−τ1y1y
T
1) · · · (I−τnyny

T
n)

1: function [Y, τ ,R] = HouseholderQR(A)
2: Y = 0, R = 0
3: for j = 1 to n do

▷ Compute the Householder vector
4: α̃ = A(j , j)
5: β̃ = − sgn(α̃) · ∥A(j : m, j)∥2
6: τ (j) = (β̃ − α̃)/β̃
7: Y(j+1 : m, j) = 1/(α̃− β̃) · A(j+1 : m, j)
8: R(j , j) = β̃

▷ Apply the Householder transformation to the trailing matrix
9: z = τ (j) · (A(j , j+1 : n) + Y(j+1 : m, j)T · A(j+1 : m, j+1 : n))

10: R(j , j+1 : n) = A(j , j+1 : n)− z
11: A(j+1 : m, j+1 : n) = A(j+1 : m, j+1 : n)− Y(j+1 : m, j) · z
12: end for

13: end function
34 of 55

Computational complexity

■ Flops per iterations
□ Dot product: 2(m − j)(n − j)

z = τ (j) · (A(j , j+1 : n) + Y(j+1 : m, j)T · A(j+1 : m, j+1 : n))
□ Outer product and Subtraction: 2(m − j)(n − j)

A(j+1 : m, j+1 : n) = A(j+1 : m, j+1 : n)− Y(j+1 : m, j) · z
■ Flops of Householder-QR

n∑
j=1

4(m − j)(n − j) = 4
n∑

j=1

(mn − j(m + n) + j2)

≈ 4mn2 − 4(m + n)n2/2 + 4n3/3 = 2mn2 − 2n3/3

35 of 55

Applying/obtaining the Q factor

■ Apply directly Q̂ to a vector

■ Sometimes necessary to obtain Q, the first n columns of Q̂, as

Q̂(1 : m, 1 : n) = (I−τ1y1y
T
1) · · · (I−τnyny

T
n)Im,n.

36 of 55

Parallelization of Householder QR

■ Not discussed in the lectures

■ Expensive in terms of communication since each iteration requires
computing the norm of a vector and updating the trailing matrix

■ Thus number of messages is O(n log2(P))

37 of 55

Compact representation

Storage efficient representation for Q [Schreiber and Loan, 1989]

Q = H1H2 . . .Hn = (I− β̃1y1y
T
1) . . . (I− β̃nyny

T
n) = I− YTYT

Example for k = 2

Y = (y1|y2), T =

(
β̃1 −β̃1yT1 y2β̃2

0 β̃2

)

Example for combining two compact representations

Q = (I− Y1T1Y
T
1)(I− Y2T2Y

T
2)

T =

(
T1 −T1Y

T
1 Y2T2

0 T2

)
38 of 55

Plan

Orthogonalization processes

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR

Communication avoiding QR factorization
TSQR: QR factorization of a tall skinny matrix

Summary of cost and stability of the different algorithms

39 of 55

TSQR: QR factorization of a tall skinny matrix

■ QR decomposition of m x n matrix A, m ≫ n using Householder
transformations
□ P processors, block row layout

■ Classic Parallel Algorithm
□ Compute Householder vector for each column
□ Number of messages ≈ n · log2P

■ Communication Avoiding TSQR Algorithm
□ Reduction operation, with QR as operator
□ Number of messages log2P

40 of 55

TSQR: QR factorization of a tall skinny matrix

J. Demmel, LG, M. Hoemmen, J. Langou, 08

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker,

Patterson, 02
41 of 55

Algebra of TSQR with binomial tree and 4 procs

■ At the leaves of the binomial tree, perform in parallel 4 local QR
factorizations,

AI = Q̂
(2)

I R̂
(2)

I for each processor I , Q̂
(2)

I ∈ R(m/4)×(m/4) and

R̂
(2)

I ∈ R(m/4)×n.

■ Write the algebra as:

Q̂
(2)T


A1

A2

A3

A4

 =


R̂

(2)

1

R̂
(2)

2

R̂
(2)

3

R̂
(2)

4

 , where Q̂
(2)

=


Q̂

(2)

1

Q̂
(2)

2

Q̂
(2)

3

Q̂
(2)

4

 ,

and R̂
(2)

I =

[
R

(2)
I

0

]
.

42 of 55

Algebra of TSQR with binomial tree and 4 procs

■ Second level of the binomial tree, eliminate R
(2)
2 and R

(2)
4 in parallel,[

Q̂
(1)

11 Q̂
(1)

12

Q̂
(1)

21 Q̂
(1)

22

]T [
R

(2)
1

R
(2)
2

]
=

[
R

(1)
1

0

]
and

[
Q̂

(1)

33 Q̂
(1)

34

Q̂
(1)

43 Q̂
(1)

44

]T [
R

(2)
3

R
(2)
4

]
=

[
R

(1)
3

0

]
.

Here, each Q̂
(1)

IJ is n × n.

■ Write the algebra as:

Q̂
(1)T


R̂

(2)

1

R̂
(2)

2

R̂
(2)

3

R̂
(2)

4

 =


R(1)

1

0

R(1)
3

0

 , where Q̂
(1)

=



Q̂
(1)
11 Q̂

(1)
12

I

Q̂
(1)
21 Q̂

(1)
22

I

Q̂
(1)
33 Q̂

(1)
34

I

Q̂
(1)
43 Q̂

(1)
44

I


.

43 of 55

Algebra of TSQR with binomial tree and 4 procs

■ At the root of the tree: determining a 2n × 2n orthogonal matrix that
satisfies [

Q̂
(0)

11 Q̂
(0)

13

Q̂
(0)

31 Q̂
(0)

33

]T [
R

(1)
1

R
(1)
3

]
=

[
R

(0)
1

0

]
(with the same Householder vector structure as the 2nd step) so that

Q̂
(0)T


R

(1)
1

0

R
(1)
3

0

 =


R

(0)
1

0

0

0

 , where Q̂
(0)

=


Q̂

(0)

11 Q̂
(0)

13

I

Q̂
(0)

31 Q̂
(0)

33

I

 .

44 of 55

Algebra of TSQR with binomial tree and 4 procs

■ Q̂ is represented implicitly as a product of orthogonal matrices

Q̂ = Q̂
(2)

Q̂
(1)

Q̂
(0)

=


Q̂

(2)
1

Q̂
(2)
2

Q̂
(2)
3

Q̂
(2)
4





Q̂
(1)
11 Q̂

(1)
12

I

Q̂
(1)
21 Q̂

(1)
22

I

Q̂
(1)
33 Q̂

(1)
34

I

Q̂
(1)
43 Q̂

(1)
44

I



Q̂

(0)
11 Q̂

(0)
13

I

Q̂
(0)
31 Q̂

(0)
33

I



■ For the products to make sense, dimensions of intermediate I matrices
have appropriate dimensions

45 of 55

Flexibility of TSQR

■ Reduction tree will depend on the underlying architecture, could be
chosen dynamically

A4

A3

A2

A1

→
→
→
→

R
(2)
4

R
(2)
3

R
(2)
2

R
(2)
1

↗
↘

↗
↘

R
(1)
3

R
(1)
1

↗
↘

R
(0)
1

(a) Parallel TSQR

A4

A3

A2

A1

�
�3

��1
PPq
Q
Qs

R
(0)
1

(b) Householder QR

46 of 55

TSQR

Require: A is an m × n matrix 1D-row-distributed over power-of-two P processors
Assert: Q̂R̂ = A where R̂ is upper triangular (m × n), R is its upper triangular part (n × n), and

Q̂ = Q̂
(log P) · · · Q̂(0)

Assert: R is stored on processor 1 and each Y(k) is distributed across 2k processors

1: function
[{

Y
(k)
I

}
,R
]
= ParTSQR(A)

2: I = MyProcID

3:
[
Y

(log P)
I ,R

(log P)
I

]
= HouseholderQRAI ▷ Eliminate lower triangle of local block

4: for k = log P − 1 down to 0 do
5: Break if I doesn’t have a partner proc
6: Determine J, partner proc ID
7: if I > J then
8: Send R

(k+1)
I to processor J

9: else
10: Receive R

(k+1)
J from processor J

11:
[
Y

(k)
I ,R

(k)
I

]
= HouseholderQR

([
R
(k+1)
I

R
(k+1)
J

])
▷ Eliminate Jth triangle

12: end if
13: end for
14: if I = 1 then
15: R = R

(0)
1

16: end if

17: end function

47 of 55

Strong scaling of TSQR

■ Hopper: Cray XE6 (NERSC) – 2 x 12-core AMD Magny-Cours (2.1 GHz)

■ Edison: Cray CX30 (NERSC) – 2 x 12-core Intel Ivy Bridge (2.4 GHz)

■ Effective flop rate, computed by dividing 2mn2 − 2n3/3 by measured runtime

■ 1D-pdgeqrf corresponds to Householder QR implemented in Scalapack, TSQR
corresponds to the algorithm learned in class, the other algorithms plotted in this
graph are not studied in this class.

48 of 55

In libraries

■ TSQR and its extended version for square matrices implemented in
□ Intel Data analytics library
□ GNU Scientific Library
□ ScaLAPACK
□ Spark for data mining

■ CALU (introduced in next lectures) implemented in
□ Cray’s libsci
□ To be implemented in lapack/scapalack

49 of 55

Plan

Orthogonalization processes

Gram-Schmidt (GS) orthogonalization process

Cholesky-QR

Householder QR

Communication avoiding QR factorization

Summary of cost and stability of the different algorithms

50 of 55

Summary of cost of the different algorithms

Algorithmic costs for various parallel orthogonalization routines (P < m/n)
Cost of CholQR assumes n2 ≥ P.

Algorithm # flops # words # messages

CGS 2mn2

P
O(n2 + n logP) O(n logP)

MGS 2mn2

P
O(n2 logP) O(n2 logP)

Cholesky-QR 2mn2

P
+ n3

3
O(n2) O(logP)

Householder QR 2mn2

P
O(n2) O(n logP)

TSQR 2mn2

P
+ 2n3

3
logP O(n2 logP) O(logP)

51 of 55

Summary of stability of the different algorithms

Various orthogonalization routines and their stability in terms of loss of
orthogonality, associated constraints on condition number, and references.
Note that there are dimensional constants hidden in the O(ε) factors.

Algorithm ∥I−QTQ∥ Constraint References
CGS O(ε)κ2(A) O(ε)κ2(A) < 1 [Giraud et al., 2005]
MGS O(ε)κ(A) O(ε)κ(A) < 1 [Björck, 1967]

Cholesky-QR O(ε)κ2(A) O(ε)κ2(A) < 1 [Yamamoto et al., 2015]
Householder QR O(ε) none [Wilkinson, 1965]

TSQR O(ε) none [Demmel et al., 2012],[Mori et al., 2012]

52 of 55

Acknowledgement

Many figures and algorithms taken from upcoming book on communication
avoiding algorithms with G. Ballard, E. Carson, and J. Demmel.

53 of 55

References (1)

Björck, Å. (1967).

Solving linear least squares problems by Gram-Schmidt orthogonalization.
BIT, 7:1–21.

Demmel, J. W., Grigori, L., Hoemmen, M., and Langou, J. (2012).

Communication-optimal parallel and sequential QR and LU factorizations.
SIAM J. Sci. Comput., 34(1):A206–A239.

Giraud, L., Langou, J., Rozložńık, M., and Van Den Eshof, J. (2005).

Rounding error analysis of the classical Gram-Schmidt orthogonalization process.
Numer. Math., 101:87–100.

Mori, D., Yamamoto, Y., and Zhang, S. L. (2012).

Backward error analysis of the AllReduce algorithm for Householder QR decomposition.
Jpn. J. Ind. Appl. Math., 29(1):111–130.

N.J.Higham (2002).

Accuracy and Stability of Numerical Algorithms.
SIAM, second edition.

Schreiber, R. and Loan, C. V. (1989).

A storage efficient WY representation for products of Householder transformations.
SIAM J. Sci. Stat. Comput., 10(1):53–57.

Wilkinson, J. H. (1965).

The algebraic eigenvalue problem, volume 87.
Oxford University Press.

54 of 55

References (2)

Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., and Fukaya, T. (2015).

Roundoff error analysis of the CholeskyQR2 algorithm.
Electron. Trans. Numer. Anal., 44:306–326.

55 of 55

	Orthogonalization processes
	Background on QR factorization

	Gram-Schmidt (GS) orthogonalization process
	Cholesky-QR
	Householder QR
	Compact representation

	Communication avoiding QR factorization
	TSQR: QR factorization of a tall skinny matrix

	Summary of cost and stability of the different algorithms

