Orthogonalization of a set of vectors and the QR

factorization

Laura Grigori

EPFL and PSI

September 24/31, 2024

PAUL SCHERRER INSTITUT

=PrL

Plan

Orthogonalization processes
Background on QR factorization

Gram-Schmidt (GS) orthogonalization process
Cholesky-QR

Householder QR
Compact representation

Communication avoiding QR factorization
TSQR: QR factorization of a tall skinny matrix

Summary of cost and stability of the different algorithms

2of 55 1

BLAS: optimized routines for basic linear algebra

® |ndustry standard interface
www.netlib.org/blas, www.netlib.org/blas/blast—forum

= Vendors, others supply optimized implementations

= BLAS1: 15 different operations
[vector-vector operations: dot product, saxpy (y=a*x+y)
0 not very efficient since few operations performed on each element of the
vectors, cost of data transfer through memory hierarchies is important
m BLAS2: 25 different operations

O matrix-vector operations: matrix vector multiply, etc
0 slightly faster than BLAS1

= BLAS3 : 9 different operations

T matrix-matrix operations: matrix matrix multiply, etc
0 better usage of caches, n’ operations for matrices of dimensions n x n,
potentially much faster than BLAS2 and BLAS1

3 of 55 1

LAPACk and ScalLAPACK for linear algebra

LAPACK : linear algebra package
www.netlib.org/lapack,scalapack

ScalL APACK: scalable linear algebra package

0 designed for distributed memory machines

= Vendors provide those libraries optimized

Both libraries rely as much as possible on BLAS3

4 of 55 1

Plan

Orthogonalization processes
Background on QR factorization

5 of 55 1

The QR factorization

Given a matrix A € R™*" m > n, its QR factorization is
A A ~ (R
a-at-@ @(%) -ar

where Q € R™™ s orthogonal and ReR™" s upper triangular.
The thin factorization has Q € R™*" and R € R™*".

If A has full rank, the factorization QR is essentialy unique (modulo signs of

diagonal elements of R).

= ATA=R'Risa Cholesky factorization and A = AR 'Risa QR
factorization.

A=QD: DR, D = diag(+1) is a QR factorization.

6 of 55 1

Importance of orthogonalization

= Used in many different applications, as:
11 Solving least squares problems
o1 Computing an orthogonal basis of a set of vectors as in Krylov subspace
methods (they will be discussed in later lectures)
o1 Computing the low rank approximation of a matrix

7of 55 1

Solving least squares problems

Given matrix A € R™*", rank(A) = n, vector b € R™*1,
the unique solution to arg min, ||Ax — b||5 is

x=A"b, AT =(ATA)'AT

Using the QR factorization of A

~ak-(@ () 1)

~ R
WE = [lAx—blE =] (Q o)()x—bné

- ||('§)x—<8 >b||2—||(o b>|3

~ T
IRx — Qb3+ [|Q b|3

— argmin ||Ax — b|| = argmin |[Rx — Q" b|.

8 of 55 1

Algorithms for orthogonalization

Many algorithms available. In this class we study:
® Gram-Schmidt process (GS): Classical GS (CGS), Modified GS (MGS)
= Cholesky-QR

®m Householder QR: QR factorization based on Householder transformations

9 of 55 1

Algorithms for orthogonalization

Many algorithms available. In this class we study:
® Gram-Schmidt process (GS): Classical GS (CGS), Modified GS (MGS)
= Cholesky-QR

®m Householder QR: QR factorization based on Householder transformations

Two different cases arise:

® The vectors to be orthogonalized are known all at once
o all algorithms discussed can be used

® The vectors to be orthogonalized are given progressively

o MGS, CGS could be used, Householder QR with modifications
11 Cholesky-QR cannot be used

9 of 55 1

Numerical stability

We will discuss the numerical stability of these algorithms as:
= Loss of orthogonality || — Q" Q|| and condition number of the basis x(Q)
m Accuracy of the factorization ||A — QR]|

10 of 55 1

Data distribution

We consider first the the case when A € R™*" m > n
Matrix A distributed using a 1D distribution by blocks of rows, that is:

A1 Pl
A P,
A= A is distributed on P,

A, Py

that is A; € R™/Pxn s assigned to processor P;, i=1:4

= Note that processors are numbered 1 to P, while in MPI they are
numbered 0 to P — 1,

® Matrices are 1-indexed (as in Matlab), while they are O-indexed in Python

11 of 55 1

Plan

Gram-Schmidt (GS) orthogonalization process

12 of 55 1

Gram-Schmidt (GS) orthogonalization process

Given set of linearly independent vectors A = [ay,...,a,], A € R™*",
m > n.

Construct an orthogonal basis Q = [qy, ..., q,] such that A = QR,
Q c R™*n" R € R"™%",

For each a; do
1. Given P;_; projector on span(Q(:,1: j — 1))*, compute
qJ L q17"'7qj—1 as

q; = Fj-1a;

2. Normalize q;
End For

13 of 55 1

Orthogonal projector

P i = 1-Q(1:j-1)(Q(,1:j-1)"Q(,1:j—-1)'Q(;,1:j—-1)"
I-Q(;,1:j-1)Q(:,1:j—1)f

= Expensive to compute, hence two different projectors very used, leading
to:

o Classical Gram-Schmidt
© Modified Gram-Schmidt

14 of 55 1

Projectors P; used in Gram-Schmidt

m Classical Gram-Schmidt (CGS): BLAS-2 matrix-vector operations

U one synchronization for each new vector a;
Pi=1-Q(,1:j-1)Q(:,1:j—1)"
0 Numerical stability: assume O(e)x?(A) < 1

I = Q" Q|2 = O(e)x*(A)

Note: & machine precision, A € R™*", k(A) is condition number of A

15 of 55 1

Classical Gram-Schmidt

s |

J J J J

(a) Comp. projections (b) Update from left (c) Compute norm (d) Normalize Q(:, j)
(line 6D (line 7) (line 8) (line ‘9}

16 of 55 1

CGS: algorithm

Algorithm 1 Classical Gram-Schmidt (Left-looking, BLAS-2 version)

Require: A is an m x n matrix with m > n
Assert: QR = A where R is upper triangular
1. function [Q,R] = CGS(A)
2: R=0
R(1.1) = |AC. 1)l
Q(,1) = A1) / R(1,1)
for j =2 to ndo
R(1:j-1,j)=Q(;,1:j-1)T -A(:,))
Q(.j) = A(.j) —Q(.1:j-1) - R(1:j~1,))
Q(:.j) = Q(.J) / RU.J)
10: end for
11: end function

© o N R

17 of 55 1

Parallel Classical Gram-Schmidt

Algorithm 2 Parallel Classical Gram-Schmidt

Require: A is an m x n matrix 1D-row-distributed over P processors

Assert: QR = A where R is upper triangular and Q is m X n

Assert: R is stored redundantly on all processors and Q's distribution matches A
1: function [Q, R] = 1D-CGS(A)

I = MyProclD

3 R=0

& B=|AG D

5: All-reduce 3 over all processors, take square root, and store in R(1,1)

6: Q(:,1) =A(;,1) /R(1,1)

7.

8

9

for j =2 to ndo
F=Q(,1:j-1)" - A(:))
: All-reduce ¥ over all processors, store in R(1: j—1,;)
10: 9’(7J):A’(7J)7QI(71.]71)R(lji]'?./)

11: B =11Qi()13

12: All-reduce S over all processors, take square root, and store in R(j,)
13: QI(?J):Q/(’J)/R(JMI)

14: end for

15: end fungli'lan

Cost of parallel CGS

= Computation: each iteration j does a matrix-vector product with Q; with
m/P rows:
2mn?
75

= Communication:
all-reduce at each iteration j with data of size j — 1 and data of size 1

a- O(nlog P)+ B - O(n* + nlog P)

19 of 55 1

Projectors P; used in Gram-Schmidt

® Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations

0 (j — 1) synchronizations for each vector w;
Pir=(I = gj-1q/1) .. (I — qrgi)
U Numerical stability: assume O(e)x(W) < 1,
11 = Q7 Q|2 = O(e)w(W)

— better numerical stability, but poor efficiency

20 of 55 1

Projectors P; used in Gram-Schmidt

® Modified Gram-Schmidt (MGS) : BLAS-1 vector-vector operations

0 (j — 1) synchronizations for each vector w;
Pir=(I = gj-1q/1) .. (I — qrgi)
U Numerical stability: assume O(e)x(W) < 1,
11 = Q7 Q|2 = O(e)w(W)

— better numerical stability, but poor efficiency

Note: £ machine precision, A € R™*", k(A) is condition number of A

20 of 55 1

Parallel Modified Gram-Schmidt

Algorithm 3 Parallel Modified Gram-Schmidt

Require: A is an m x n matrix 1D-row-distributed over P processors
Assert: QR = A where R is upper triangular and Q is m x n
Assert: R is stored redundantly on all procs and Q's distribution matches A
1: function [Q,R] = 1D-MGS(A)
2: | = MyProclD

3: R=0

4. Q, =A

5: for j=1to ndo

6: fori=1toj—1do

7: p=Q(,1)"-Q))

8: All-reduce p over all processors, store in R(i,)
9: Ql(i’j):QI(HJ-)_QI(Z:’-)'R("J)

10: end for

11: B=1Qi)5

12: All-reduce 3 over all processors, take square root, and store in R(j, j)
13: QI(:yj) - Q/(:aj) / R(J7J)

14: end for

15: end function

Cost of parallel MGS

= Computation:
n?/2 inner iterations
inner loop: dot product and axpy of vectors of local dimension m/P

2mn?
P

aé
® Communication:

n?/2 inner iterations
inner loop: all-reduce of a single element

a- 0(n’log P) + 3 - O(n? log P)

22 of 55 1

Plan

Cholesky-QR

23 of 55 1

Cholesky-QR

= Cholesky-QR : BLAS-3 matrix-matrix operations
Compute A = QR as:

1. Compute the Cholesky factorization of ATA as ATA =G =R"R
2. Compute the orthogonal factor as Q = AR™?

® Numerical stability: assume O(e)x?(A) < 1, then

I1—Q"Qll2 = O(e)x*(A)

24 of 55 1

Cholesky-QR: algorithm

Algorithm 4 Parallel Cholesky-QR

Require: A is an m x n matrix 1D-row-distributed over P processors

Assert: QR = A where R is upper triangular and Q is m x n

Assert: R is stored redundantly on all processors and Q’s distribution matches
A

1: function [Q, R] = PARCHOLQR(A)

2 | = MyProclD

3 G=A/A

4: All-reduce G over all processors, store in G

5 R = Cholesky(G) > Performed redundantly on all processors
6 Q =AR"! > Local triangular solve with multiple RHS
7:_end function

25 of 55 1

Cost of Cholesky-QR

= Computation:
matrix multiplication + Cholesky factorization:

2mn?

2 + 0(n®)

® Communication:
all-reduce of Cholesky factor

o - O(log P) + 3 - O(n*) when n® > P

26 of 55 1

Plan

Householder QR
Compact representation

27 of 55 1

Householder transformation

The Householder matrix

has the following properties:
® is symmetric and orthogonal, H2=H"H = I,
® is independent of the scaling of y,

® it reflects a vector a; about the hyperplane span(y)*

2y’a
H-a; =a; — yT fy=a; — &y
y'y

= By taking £ =1 we obtainy =a; —H-a;

28 of 55 1

Householder for the QR factorization

We look for a Householder matrix that allows to annihilate the elements of a
vector ai, except first one.

H-a; =fe;, f==+|ai>

With the choice of sign made to avoid cancellation when computing
y(1) = & — 5 (where y(1),a1(1) = & are the first elements of vectors y, a;
respectively), we have

y = a—fe, [=—sign(ai(l))]ailo,
2
H

I—r1yy" 7= =
y'y

29 of 55 1

Householder based QR factorization

® Let a; be the first column of A and the Householder matrix be:

Hi = ln — 11y1y]

= Apply the same reasoning to subsequent columns.

u Consider the j-th column a; and H; that annihilates all the elements
below the diagonal,

aj(l J — 1) Oj_l
Hj.a; = (I,,,—7'jyij-T)~aj = |Xllaj(j: m)|||, where yj = aj(1) 4 sgn(aj(1))la;(j : m)ll2
aj(j +1: m)

m—j

30 0f 55 1

Householder based QR factorization

X X X X X X .
H3H2H1A = H3H2 0 x x| = H3 0 x x| =R
0 x x 0 0 x
So we have
A = HlHn|:0R :|—Q|A?,
Q = (I=Fuyuyd) - (= Bocayo 1¥e 1) = Bayays)

#flops = 2n*(m — n/3)

31 of 55 1

Error analysis of the QR factorization

Theorem ([N.J.Higham, 2002])

Let R € R™ " be the computed factor of A € R™*" obtained by using
Householder transformations. Then there is an orthogonal Q € R™*™ such
that

A + AA = QR, where ||Aajll, < O(mne)|ajlla, j=1:n,

where ¢ is machine precision, mne < 1, a; denotes the j-th column of A.

Loss of orthogonality:
= QTQH = O(g), with no constraints on x(A) (unconditionally stable)

32 of 55 1

Householder QR - algorithm

|] 7 [T] 7 [o7 [T]
R R R R
J & J J‘—L‘ J
Y Y Y Y
J J J J

(a) Norm of subcolumn (b) Scale subcolumn (c) Trailing matrix- (d) Outer product up-
(lines 5 and@ (linesﬁand vector product (line@ date (linesand 11)

330755 1

Householder QR - algorithm

Algorithm 5 Householder QR
Require: A is an m x n matrix with m > n
Assert: QR = A where R is upper triangular (m x n), R is its upper triangular part
(nx n), and Q = (1=r1y;y{) - (1=7ay,y])
1: function [Y, T, R] = HOUSEHOLDERQR(A)
2: Y=0R=0

3: for j =1 to ndo
> Compute the Householder vector

4: &=A(,))
5. B = —sgn(a)- IAG : m,j)ll2
6)=~/
7 Y(+1:m,j)=1/(G—B)-A(G+1:m,))
8: R(Ja./) =p

> Apply the Householder transformation to the trailing matrix
o: z=7() - (A(,j+1:n) +Y(+1:m,j)T - A(G+1: m,j+1: n))
10: R(j,j+1:n)=A(,j+1:n)—z
11: AG+1:m,j+1:n)=A(+1:m,j+1:n)—=Y(+1:m,j) -z
12: end for

13: end function

3401 55 -

Computational complexity

® Flops per iterations
U Dot product: 2(m — j)(n —J)
z=7() (A(G,j+1:n)+Y(G+1:m,)" - AG+1: m,j+1: n))
O Outer product and Subtraction: 2(m — j)(n — j)
AG+1:m,j+1:n)=AG+1:mj+1:n)=Y(+1:m,) z
= Flops of Householder-QR

n n
D Am=j)n—j) =4 (mn—j(m+n)+°)
j=1 j=1
~4mn® — 4(m + n)n?/2 4+ 4n*/3 = 2mn?® — 2n°/3

35 of 55 1

Applying/obtaining the Q factor

= Apply directly Q to a vector
= Sometimes necessary to obtain Q, the first n columns of Q as

QL :m1:n)=(-71yy{) - (1=Tay ¥ Nmn-

3 of 55 1

Parallelization of Householder QR

= Not discussed in the lectures

= Expensive in terms of communication since each iteration requires
computing the norm of a vector and updating the trailing matrix

® Thus number of messages is O(nlog,(P))

37 of 55 1

Compact representation

Storage efficient representation for Q [Schreiber and Loan, 1989]
Q=HiHy.. Hy=(1=Fiyy!)...(0=Boy,y))=1-YTY'

Example for k = 2

_ _ B =Byl yo5
Y=l T (¢ T

Example for combining two compact representations

= (1=Y.T. YU -Y,TY))

T, -T.Y/Y.T,
0 T,

3 of 55 1

Plan

Communication avoiding QR factorization
TSQR: QR factorization of a tall skinny matrix

39 0f 55 1

TSQR: QR factorization of a tall skinny matrix

= QR decomposition of m x n matrix A, m > n using Householder
transformations

11 P processors, block row layout
® Classic Parallel Algorithm

o Compute Householder vector for each column
o Number of messages ~ n - logs P

= Communication Avoiding TSQR Algorithm

71 Reduction operation, with QR as operator
' Number of messages log» P

40.0r 55 1

TSQR: QR factorization of a tall skinny matrix

R§2)
A1 —
Ry
Ay, | ——
RY
_—
Ay | ——
RY
Ay | ——

J. Demmel, LG, M. Hoemmen, J. Langou, 08
References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker,

Patterson, 02
41 of 55

Algebra of TSQR with binomial tree and 4 procs

® At the leaves of the binomial tree, perform in parallel 4 local QR
factorizations,

A = Qsz)ﬁsz) for each processor /, 652) € R(m/9)x(m/4) and
5 (2)

RI 6R(m/4)><n_
® Write the algebra as:
a1 o
@7 [A| |RY 2) Q)
NEERCIE where Q" = ~(2)
3 R, Q;
A, ~(2)
R,
-2 _ [R?
dR, "= |1 |.
and R, [0

42 of 55 1

Algebra of TSQR with binomial tree and 4 procs

m Second level of the binomial tree, eliminate Rg) and R‘(f) in parallel,
A AW 502 1) A1) AW T50) @)
NI I IS e TR by B I S =l
Qr Qx R 0 Qi Qu R, 0

Here, each QS) is nxn.
= Write the algebra as:

Q) af
|
RO [RY S
A(l)T R2 = 0 where Q(l) = I
RO |RO) Qi Qu
R 0 [
H

430755 1

Algebra of TSQR with binomial tree and 4 procs

® At the root of the tree: determining a 2n x 2n orthogonal matrix that
A0 A7 Mo

[Q%S) Q(lg)] [Rélﬂ _ [Rgo)]
Qs Qa3 R3 0

(with the same Householder vector structure as the 2nd step) so that

satisfies

1 0 ~ (0 A (0
) Ré) R Q© QU
A (0) 0 A (0) I
| = , where Q7= o) ()
R3 0 Q31 Q33
0 0 |

440755 1

Algebra of TSQR with binomial tree and 4 procs

= Qis represented implicitly as a product of orthogonal matrices

a = a?q®a®@

Ma(l A (1
Qyy | Qyy
g A (1 (1
Qi ~(2) QY QY
_ Q; |
= A (2 A (1 Al
o’ ol el
Q;
L A (1 Al
Q) QY '

® For the products to make sense, dimensions of intermediate / matrices

have appropriate dimensions

45 0r 55 1

Flexibility of TSQR

® Reduction tree will depend on the underlying architecture, could be
chosen dynamically

A; — RPX RO A
A, —» RS T A

2 Ry () 22RO
As; — R3)\‘ R(l)/‘ ! A3 7 !
A, — R/ T3 A,

(a) Parallel TSQR (b) Householder QR

46 of 55

TSQR

Require: A is an m X n matrix 1D-row-distributed over power-of-two P processors

Assert: QR = A where R is upper triangular (m X n), R is its upper triangular part (n X n), and
Q= Q(\og Py .. Q(O)
Assert: R is stored on processor 1 and each Y s distributed across 2 processors
1: function [{Yﬁk)} , R} = PARTSQR(A)

2: | = MyProcID
3: [Ysbg P), Rsbg P)] = HouseholderQRA, > Eliminate lower triangle of local block
4: for k = log P — 1 down to 0 do
5: Break if / doesn’t have a partner proc
6: Determine J, partner proc ID
7 if | > J then
8: Send ng“) to processor J
9: else
10: Receive R(Jkﬂ) from processor J
(k+1)
11: {YSQ ng)] = HouseholderQR ([2%“1)}) > Eliminate Jth triangle
J
12: end if
13: end for
14: if | =1 then
15: R =R
16: end if

17: end function

47 of 55 1

Strong scaling of TSQR

Strong Scaling, Hopper (MKL) Strong Scaling, Edison (MKL)
294912-by-32 problem 294912-by-32 problem

x10" x10"

—TSQR

—TSQR-HR

-~ TSQR-HR-simple
1D-Yamamoto
1D-pdgeqrf

D N 0 ©
D N o ©

Effective flop rate
Effective flop rate

- N W A~ O
- N W A~ O

144 576 2304 9216 144 576 2304 9216
Number of processes Number of processes

Hopper: Cray XE6 (NERSC) — 2 x 12-core AMD Magny-Cours (2.1 GHz)
Edison: Cray CX30 (NERSC) — 2 x 12-core Intel Ivy Bridge (2.4 GHz)
Effective flop rate, computed by dividing 2mn? — 2n%/3 by measured runtime

1D-pdgeqrf corresponds to Householder QR implemented in Scalapack, TSQR
corresponds to the algorithm learned in class, the other algorithms plotted in this
graph are not studied in this class.

48 of 55

In libraries

® TSQR and its extended version for square matrices implemented in
7 Intel Data analytics library
o GNU Scientific Library
0 ScaLAPACK
o Spark for data mining
® CALU (introduced in next lectures) implemented in

o Cray's libsci
01 To be implemented in lapack/scapalack

49 0r 55 1

Plan

Summary of cost and stability of the different algorithms

50 0f 55 1

Summary of cost of the different algorithms

Algorithmic costs for various parallel orthogonalization routines (P < m/n)
Cost of CholQR assumes n? > P.

Algorithm # flops # words # messages
CGS 2mn? O(n* + nlog P) | O(nlog P)
MGS @ O(n?log P) O(n? log P)
Cholesky-QR 2mn® 4 o o(r?) O(log P)
Householder QR | 2m° o(n?) O(nlog P)
TSQR 2m® | 20 og P | O(n’ log P) O(log P)

51 of 55 1

Summary of stability of the different algorithms

Various orthogonalization routines and their stability in terms of loss of
orthogonality, associated constraints on condition number, and references.
Note that there are dimensional constants hidden in the O(g) factors.

Algorithm IN—Q7Q| Constraint References
CGS O(e)x?(A) | O(e)x?(A) < 1 [Giraud et al., 2005]
MGS O(e)r(A) O(e)r(A) <1 [Bjorck, 1967]
Cholesky-QR O(e)x%(A) | O(e)x?(A) <1 [Yamamoto et al., 2015]
Householder QR O(e) none [Wilkinson, 1965]
TSQR O(e) none [Demmel et al., 2012],[Mori et al., 2012]

52 of 55

Acknowledgement

Many figures and algorithms taken from upcoming book on communication
avoiding algorithms with G. Ballard, E. Carson, and J. Demmel.

53 0f 55 1

References

Bjorck, A. (1967)

Solving linear least squares problems by Gram-Schmidt orthogonalization.
BIT, 7:1-21

Demmel, J. W., Grigori, L., Hoemmen, M., and Langou, J. (2012).

Communication-optimal parallel and sequential QR and LU factorizations.
SIAM J. Sci. Comput., 34(1):A206—-A239.

Giraud, L., Langou, J., RozloZnik, M., and Van Den Eshof, J. (2005).

Rounding error analysis of the classical Gram-Schmidt orthogonalization process.
Numer. Math., 101:87-100

Mori, D., Yamamoto, Y., and Zhang, S. L. (2012)

Backward error analysis of the AllReduce algorithm for Householder QR decomposition.
Jpn. J. Ind. Appl. Math., 29(1):111-130

N.J.Higham (2002).
Accuracy and Stability of Numerical Algorithms.
SIAM, second edition

Schreiber, R. and Loan, C. V. (1989)

A storage efficient WY representation for products of Householder transformations.
SIAM J. Sci. Stat. Comput., 10(1):53-57

) & @ &) R

Wilkinson, J. H. (1965)

The algebraic eigenvalue problem, volume 87.
Oxford University Press

54 0f 55 1

References

ﬁ Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., and Fukaya, T. (2015)

Roundoff error analysis of the CholeskyQR2 algorithm.
Electron. Trans. Numer. Anal., 44:306-326.

55 of 55 1

	Orthogonalization processes
	Background on QR factorization

	Gram-Schmidt (GS) orthogonalization process
	Cholesky-QR
	Householder QR
	Compact representation

	Communication avoiding QR factorization
	TSQR: QR factorization of a tall skinny matrix

	Summary of cost and stability of the different algorithms

