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Plan
• Motivation for high performance computing

• Introduction to HPC

• Structure of the course
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Evolution of high performance architectures
• Computers get faster, but their architecture gets more complex

• From scalar (1970’s), vector machines (1976 Cray 1), computers with thousands of 
processors (1990’s, Intel paragon), distributed memory massively parallel machines 
(2000’s)

• To multi-core processors, accelerators, heterogeneous architectures

• First petascale system 2008, 1.33 Pflop/s  
• RoadRunner, IBM, LANL
• A TriBlade formed by

• Two dual-core Opterons with 16 GB of memory
• Four PowerXCell 8i CPUs with 16 GB Cell RAM

• A total of 13,824 Opteron cores + 116,640 Cell cores
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The TOP5 of the Top500, November 2023

www.top500.org

# NOVEMBER 2023 Manufacturer Computer Country Cores Rmax
[Pflops]

Power
[MW]

1 Oak Ridge
 National Laboratory HPE

Frontier
HPE Cray EX235a, 

AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11
USA 8,730,112 1,102 21.1

2 Argonne National Laboratory HPE
Aurora*

HPE Cray EX
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11

USA 4,742,808 585.3 24.6

3 Microsoft Azure Microsoft
Eagle

Microsoft NDv5
Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR

USA 1,123,200 561.2

4
RIKEN 

Center for Computational 
Science

Fujitsu
Fugaku

Supercomputer Fugaku, 
A64FX 48C 2.2GHz, Tofu interconnect D

Japan 7,630,848 442.0 29.9

5 EuroHPC / CSC HPE
LUMI

HPE Cray EX235a, 
AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11

Finland 2,069,760 309.1 6.0

6 EuroHPC / CINECA Atos
Leonardo

Atos BullSequana XH2000, 
Xeon 32C 2.6GHz, NVIDIA A100, HDR Infiniband

Italy 1,463,616 174.7 5.6

7 Oak Ridge
 National Laboratory IBM

Summit
IBM Power System, 

P9 22C 3.07GHz, Mellanox EDR, NVIDIA GV100
USA 2,414,592 148.6 10.1

8 EuroHPC/BSC EVIDEN
MareNostrum 5 ACC
BullSequana XH3000, 

Xeon Platinum 8460Y+ 40C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR200
Spain 680,960 138.20 2.5

9 NVIDIA Corporation NVIDIA
Eos NVIDIA DGX SuperPOD

NVIDIA DGX H100, 
Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400

USA 485,888 121.40

10 Lawrence Livermore 
National Laboratory IBM

Sierra
IBM Power System, 

P9 22C 3.1GHz, Mellanox EDR, NVIDIA GV100
USA 1,572,480 94.6 7.4



Page 5

The TOP5 of the Top500, June 2024

www.top500.org

# NOVEMBER 2023 Manufacturer Computer Country Cores Rmax
[Pflops]

Power
[MW]

1 Oak Ridge
 National Laboratory HPE

Frontier
HPE Cray EX235a, 

AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11
USA 8,730,112 1,102 21.1

2 Argonne National Laboratory HPE
Aurora*

HPE Cray EX
Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11

USA 4,742,808 585.3 24.6

3 Microsoft Azure Microsoft
Eagle

Microsoft NDv5
Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR

USA 1,123,200 561.2

4
RIKEN 

Center for Computational 
Science

Fujitsu
Fugaku

Supercomputer Fugaku, 
A64FX 48C 2.2GHz, Tofu interconnect D

Japan 7,630,848 442.0 29.9

5 EuroHPC / CSC HPE
LUMI

HPE Cray EX235a, 
AMD EPYC 64C 2.0GHz, Instinct MI250X, Slingshot-11

Finland 2,069,760 309.1 6.0

6 CSCS HPE
ALPS

HPE Cray EX254n, 
NVIDIA Grace 3.1GHz, Slingshot-11

Switzerl
and 1,305,600 270.0 5.1

7 EuroHPC / CINECA Atos
Leonardo

Atos BullSequana XH2000, 
Xeon 32C 2.6GHz, NVIDIA A100, HDR Infiniband

Italy 1,463,616 174.7 5.6

8 EuroHPC/BSC EVIDEN
MareNostrum 5 ACC
BullSequana XH3000, 

Xeon Platinum 8460Y+ 40C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR200
Spain 680,960 138.20 2.5

9 Oak Ridge
 National Laboratory IBM

Summit
IBM Power System, 

P9 22C 3.07GHz, Mellanox EDR, NVIDIA GV100
USA 2,414,592 148.6 10.1

10 NVIDIA Corporation NVIDIA
Eos NVIDIA DGX SuperPOD

NVIDIA DGX H100, 
Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400

USA 485,888 121.40
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Top500, Nov 2024

www.top500.org
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Top500, Nov 2024

www.top500.org
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Top500, Nov 2024

www.top500.org
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Top500, Nov 2024

www.top500.org
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Top500, Nov 2024

www.top500.org
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Frontier (#1) System Overview

System Performance
• Peak performance of 1.6 

double precision exaFLOPS 
Measured Top500 
performance (Rmax) was 
1.102 exaFLOPS

Each node has
• 3rd Gen AMD EPYC CPU with 64 cores
• 4 Purpose Built AMD Instinct 250X 

GPUs
• 4X128 GB of fast memory, 1 per GPU
• 5 terabytes of flash memory

The system 
includes
• 9,472  nodes
• Slingshot 

interconnect

Slides from CS267 Lecture, UC Berkeley 
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Fugaku (#4) System Overview

System Performance
• Peak performance of 442 

petaflops (per TOP500 
Rmax), 

• 2.0 EFLOPS on a different 
mixed-precision benchmark

Each node has
• Fujitsu A64FX CPU 

(48+4 cores) per node
• HBM2 32 GiB

The system includes
• 158,976 nodes
• Custom Tofu Interconnect D
• 1.6 TB NVMe SSD/16 nodes 

(L1)
• 150 PB Lustre Filesystem (L2)
• Cloud storage (L3)

RIKEN Center for 
Computational 
Science (R-CCS)

9/9/24

Slides from CS267 Lecture, UC Berkeley 

12
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Gordon Bell Prizes: Science at Scale

Established in 1987 with a cash award of $10,000 (since 2011),  funded by Gordon Bell, a pioneer in HPC.
For innovation in applying HPC to applications in science, engineering, and data analytics.

Slide from CS267 Lecture, UC Berkeley 

https://en.wikipedia.org/wiki/Gordon_Bell
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Gordon Bell prizes vs Top 500
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Motif/dwarf – common computational patterns
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1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Red Hot -> Blue cool
Source slide : J. Demmel CS267 UC Berkeley
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Machine learning demands

Slide from CS267 Lecture, UC Berkeley 

From 2011-2017 the 
fastest Top500 machine 
grew < 10x
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Machine learning

Slide from CS267 Lecture, UC Berkeley 

“Compute trends 
across three eras 
of machine 
learning”, Sevilla 
et al., 2022



Page 18

Analytics vs. Simulation Motifs

7 Giants of Data 7 Dwarfs of 
Simulation

Basic statistics Monte Carlo methods

Generalized N-Body Particle methods

Graph-theory Unstructured meshes

Linear algebra Dense Linear Algebra

Optimizations Sparse Linear Algebra

Integrations Spectral methods

Alignment Structured Meshes

National Academies 
2013



Page 19

Moore’s law reinterpreted

• Number of cores per chip can double every two 
years

• Clock speed will not increase (possibly 
decrease)

• Need to deal with systems with millions of 
concurrent threads

• Need to deal with inter-chip parallelism as well 
as intra-chip parallelism

Slide source: J. Demmel, CS 267  UC Berkeley
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Some Particularly Challenging Computations
• Science

• Global climate modeling
• Biology: genomics; protein folding; drug design
• Astrophysical modeling
• Computational Chemistry
• Computational Material Sciences and Nanosciences

• Engineering
• Semiconductor design
• Earthquake and structural modeling
• Computation fluid dynamics (airplane design)
• Combustion (engine design)
• Crash simulation

• Business
• Financial and economic modeling
• Transaction processing, web services and search engines

• Defense
• Nuclear weapons -- test by simulations
• Cryptography

Slide source: J. Demmel, CS 267  UC Berkeley
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Data driven science

CO2 Underground storage

Astrophysics: CMB data analysis

http://www.epm.ornl.gov/chammp/chammp.html

Climate modeling

Numerical simulations require 
increasingly computing power as 
data sets grow exponentially

Source: T. Guignon, IFPEN

http://www.scidacreview.org/0704/html/cmb.html
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CMB data analysis
• Light left over after the ever mysterious «Big Bang»,

• overall very isotropic and uniform,
• but small - 1 part in 105 - anisotropies are hidden in there …
• even smaller - 1 part in 106 or 107 - are the goal of current experiments.

• Always in need of more data
• Data sets are growing at Moore’s rate
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CMB data analysis in an (algebraic) nutshell
• CMB DA is a juxtaposition of the same algebraic operations
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise nt

• Assuming the noise properties are Gaussian and piece-wise stationary, the covariance 
matrix is N = <nt nt

T>, and N-1 is a block diagonal symmetric Toeplitz matrix.
• The solution of the generalized least squares problem is found by solving

• Spherical harmonic transform (SHT)
• Synthesize a sky image from its harmonic representation

• What is difficult about the CMB DA then ? 
Well, the data is BIG !
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Data driven science

Astrophysics: CMB data analysis

Figures from astrophysics:
• Produce and analyze multi-frequency 2D images of the universe when it was 5% of its 

current age.
• COBE (1989) collected 10 gigabytes of data, required 1 Teraflop per image analysis.
• PLANCK (2010) produced 1 terabyte of data, requires 100 Petaflops per image 

analysis.

Source: J. Borrill, LBNL, R. Stompor, Paris 7

http://www.scidacreview.org/0704/html/cmb.html
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CMB data analysis in an (algebraic) nutshell
• Map-making problem

• Find the best map x from observations d, scanning strategy A, and noise nt

• The solution of the generalized least squares problem is found by solving

• with CG, deflation techniques and optimized communication routines [Bouhargani et al., 
2021].

• O(1011) time samples per map, O(105) pixels per map
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CMB data analysis – LiteBird experiment
Satellite based experiment 2029-2032 - analyzing 100 Tbytes of data
• First analysis and maps of full volume of data (all detectors and full length of the 

mission) as expected from LiteBIRD
• Polarization maps (Q Stokes parameter) in 40, 140, and 235 GHz frequency bands
• Galactic signal predominant at equator, primordial signal predominant at the poles
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Molecular dynamics
Study time evolution of complex molecular processes with atomic-scale space-time 
resolution (solvated proteins, viruses, …)
• virtual microscope
• predict properties of new molecules

Consider molecular mechanics polarizable force fields
• Represent both intramolecular (chemical bonds) and intermolecular interactions ( 

Lennard-Jones potential, Coulomb potential )

Evaluate electrostatic energy with pairwise interactions O(N2) -> O(N log N)
• Separation of short range/long range interactions (relies on FFT)
• Compute the polarization energy requires solving
                   T x = E
     T polarization matrix, E electric field produced by permanent density of charge at 
polarizable sites
     dimension of system 3N x 3N, with N number of atoms
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Performance evaluation with Tinker-hp
8 systems considered

• 5000 time steps, 2 integrators: RESPA + 2fs (10 ps), BAOAB-RESPA1 + 10fs (50 ps)
• Tests on Jean Zay (HPE SGI, 1 node with 4 GPUs V100)
• Preconditioned CG versus preconditioned CA (s-step) CG

with O. Adjoua, L. Lagard ere, J. P. Piquemal (EMC2 ERC project)
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Principles of Parallel Computing
• Finding enough parallelism  (Amdahl’s Law)
• Granularity – how big should each parallel task be
• Locality – moving data costs more than arithmetic
• Load balance – don’t want 1K processors to wait for 

one slow one
• Coordination and synchronization – sharing data safely 
• Performance modeling/debugging/tuning

All of these things makes parallel programming 
even harder than sequential programming.

Slides from CS267 Lecture, UC Berkeley 
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Finding Enough Parallelism
• Suppose only part of an application seems parallel
• Amdahl’s law

• let s be the fraction of work done sequentially, so                                
(1-s) is fraction parallelizable

• P = number of processors

Speedup(P) = Time(1)/Time(P)

                   <= 1/(s + (1-s)/P) 

                   <= 1/s
• Even if the parallel part speeds up perfectly           

performance is limited by the sequential part

Slide source: J. Demmel, CS 267  UC Berkeley
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Overhead of Parallelism
• Given enough parallel work, this is the biggest barrier 

to getting desired speedup
• Parallelism overheads include:

• cost of starting a thread or process
• cost of communicating shared data
• cost of synchronizing
• extra (redundant) computation

• Each of these can be in the range of milliseconds   
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of 
work to run fast in parallel (i.e. large granularity), but 
not so large that there is not enough parallel work 

Slide source: J. Demmel, CS 267  UC Berkeley
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Locality and Parallelism

• Large memories are slow, fast memories are small
• Storage hierarchies are large and fast on average
• Parallel processors, collectively, have large, fast cache

• the slow accesses to “remote” data we call “communication”

• Algorithm should do most work on local data

Proc

Cache

L2 Cache

L3 Cache

Memory

Conventional 
Storage 
Hierarchy Proc

Cache

L2 Cache

L3 Cache

Memory

Proc

Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

Slide source: J. Demmel, CS 267  UC Berkeley
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Structure of the course
• Introduction to high performance computing
• Overview of state-of-the-art parallel architectures and MPI programming 

technique
• Factorization methods and communication avoiding algorithms
• Randomization for solving large scale problems
• Low rank matrix approximation algorithms, deterministic and randomized 

approaches
• Krylov subspace iterative solvers, deterministic and randomized 

approaches
• Applications to data science

Exercises:
• Python and MPI
• Usage of Scitas cluster (CPUs)
• Information provided next week
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Sources
Moodle
• https://moodle.epfl.ch/course/MATH-505
• All relevant information will be available in the moodle
• Slides of the lecture will be available before the class

Questions:
• During the lectures (encouraged)
• In the forum
• Or directly by email 

https://moodle.epfl.ch/course/MATH-505
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Grading
Grading on 2 projects and one quiz:
Project 1: orthogonalization techniques
• To be completed individually
• Subject provided in week 3
• Weight for the grade: 0.3
• Deadline to submit the report: week 8, November 5, 2024, 11:59PM CEST

Project 2: randomized Nystrom for low rank approximation
• To be done in groups of two
• Subject provided in week 7
• Weight for the grade - report: 0.3
• Weight for the grade - oral exam: 0.3
• Oral exam (individual, 5 mins with 3 slides to present the project + Q&A): during the January 

exam session
• Deadline to submit the report (one per group) + slides (individual): January 6, 

2025, 11:59PM CEST

Quiz:
• Questions taken from the last lectures on Krylov subspace methods
• Weight for the grade: 0.1
• Quiz taken during week 14
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Grading
Questions:
• All questions about projects/quiz/grading should be addressed to the 

professor

Generative AI: read the information on moodle
• Usage of Large Language Models as chatGPT, needs to be acknowledged in the report. 
• Explain the usage, as improving the english and formulation, generating some code (specify which 

algorithms and if this concerns their initial version), debugging the code, generating figures (specify 
which figures), generating text (specify which parts).


