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Randomized SVD

Exercise 1: SRHT

In the context of overdetermined least-squares problems, we need to find x ∈ Rn such that it
minimizes:

∥Wx− b∥22,

where W ∈ Rm×n, b ∈ Rm,m > n. There is a class of randomized algorithms for solving this
problem based on sketching method. Sketching methods involve using a random matrix Ω ∈ Rl×m

to project the data W (and maybe also b) to a lower dimensional space with l ≪ m. Then they
approximately solve the least-squares problem using the sketch ΩW (and/or Ωb). One relaxes the
problem to finding a vector x so that

∥Wx− b∥ ≤ (1 + ε)∥Wx∗ − b∥,

where x∗ is the optimal solution. The overview of sketching applied to solve linear least squares is:

a) Sample/build a random matrix Ω

b) Compute ΩA and Ωb

c) Output the exact solution to the problem minx ∥(ΩW )x− (Ω)b∥2.

Given a data matrix, W ∈ Rm×n, we want to reduce the dimensionality of W by defining a random
orthonormal matrix Ω ∈ Rl×m with l ≪ m. For m = 2q, q ∈ N, the Subsampled Randomized
Hadamard Transform (SRHT) algorithm defined a l ×m matrix as:

Ω =

√
m

l
PHmD,

where:

• D ∈ Rm×m is a diagonal matrix whose elements are independent random signs, i.e. it’s
diagonal entries are just −1 or 1.
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• H ∈ Rm×m is a normalized Walsh-Hadamard matrix. If you’re going to use a library that
implements this transform then check that it implements the normalized Walsh-Hadamard
matrix. This matrix is defined recursively as:

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
H2 =

[
1 1
1 −1

]
H =

1√
m
Hm ∈ Rm×m.

• P ∈ Rl×m is a subset of randomly sampled l columns from the m × m identity matrix.
The purpose of using P is to uniformly sample r columns from the rotated data matrix
Xrot = HmDX.

The following theorem help us get an idea for the size of l.

Theorem 1 (Subsampled Randomized Hadamard Transform) Let Ω =
√

m
l PHmD as pre-

viously defined. Then if

l ≥ O((ε−2 log(n))(
√
n+

√
logm)2)

with probability 0, 99 for any fixed U ∈ Rm×n with orthonormal columns:

∥I − U⊤ΩΩ⊤U∥2 ≤ ε.

Further, for any vector x ∈ Rm,Ωx can be computed in O(n log l) time.

Choose a data set from [https://www.kaggle.com/datasets?tags=13405-Linear+Regression]. Com-
pare the randomized least squarx=es fit using SRHT vs the deterministic least squares fit. Use
the previous theorem to estimate l. Hint: you can use the fast Hadamard transform from scipy or
pytorch

Exercise 2: Randomized SVD
Consider the following algorithm to compute a randomized SVD factorization:

Algorithm 1 Randomized SVD q = 1

Input: A ∈ Rm×n, desired rank k, l = p+ k
Output: Approximation Ak = QU,Σ, V
Sample an n× l test matrix Ω1 with intependend mean-zero, unit-variance Gaussian entries.
Compute Y = (AA⊤)AΩ1

Construct Q ∈ Rm×l with columns forming an orthonormal basis for the range of Y .
Compute B = Q⊤A,B ∈ Rl×n

Compute the rank-k truncated SVD of B as UΣV ⊤, U ∈ Rl×k, V ∈ Rn×k

Remember the following theorem:

Theorem 2 If Ω is chosen to be i.i.d. N (0, 1), k, p ≥ 2, then the expectation with respect to the
random matrix Ω is:

E(∥A−QQ⊤A∥2) ≤
(
1 +

4
√
k + p

p− 1

√
min(m,n)

)
σk+1(A)
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and the probability that the error satisfies

∥A−QQ⊤A∥2 ≤
(
1 + 11

√
k + p

√
min(m,n)

)
σk+1(A)

is at least 1− 6/pp. For p = 6, the probability becomes 0, 99.

Construct a rank−k approximation with k = 10, p = 6 to a matrix A ∈ Rm×2m via its SVD, the
matrix A is defined as follows

A = U (A)Σ(A)V (A)⊤,

where:

• U ∈ Rm×m is a Hadamard matrix

• V ∈ R2m×2m is a Hadamard matrix

• Σ ∈ Rm×2m is a diagonal matrix whose diagonal entries are defined as:

Σjj = σj = (σk+1)
⌊j/2⌋/5,

for j = 1, 2, ..., 9, 10 and

Σjj = σj = σk+1
m− j

m− 11
,

for j = 11, 12, ...,m− 1,m. Thus σ1 = 1 and σk = σk+1.

Test this algorithm for m = 211, σk+1 = 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001. Plot the decay
of the singular values of A and compare such decay with the accuracy of the approximation, ∥A−
QQ⊤A∥2. Compare it with the theorem presented above.
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