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Randomized SVD

Exercise 1: SRHT

In the context of overdetermined least-squares problems, we need to find x € R"™ such that it
minimizes:
2

W — |3,
where W € R™*"™ b € R™ m > n. There is a class of randomized algorithms for solving this
problem based on sketching method. Sketching methods involve using a random matrix € R>*™
to project the data W (and maybe also b) to a lower dimensional space with [ < m. Then they
approximately solve the least-squares problem using the sketch QW (and/or £2b). One relaxes the
problem to finding a vector x so that

Wz bl < (1+¢e)[[Wz* b,

where z* is the optimal solution. The overview of sketching applied to solve linear least squares is:
a) Sample/build a random matrix

b) Compute QA and Qb

c¢) Output the exact solution to the problem ming ||[(QW)x — (©2)b]|2.

Given a data matrix, W € R™*" we want to reduce the dimensionality of W by defining a random
orthonormal matrix Q € R>™ with | < m. For m = 29,¢q € N, the Subsampled Randomized
Hadamard Transform (SRHT) algorithm defined a [ x m matrix as:

0= 1/?PHmD,

e D € R™™ is a diagonal matrix whose elements are independent random signs, i.e. it’s
diagonal entries are just —1 or 1.

where:




e H € R™*™ is a normalized Walsh-Hadamard matrix. If you're going to use a library that
implements this transform then check that it implements the normalized Walsh-Hadamard
matrix. This matrix is defined recursively as:

_ Hm/2 Hm/2 N 1 1
Hm = |:Hm/2 —Hm/2 Ha = I -1
H= iHm € R™*™,

Jm

e P ¢ R™¥™ is a subset of randomly sampled [ columns from the m x m identity matrix.
The purpose of using P is to uniformly sample r columns from the rotated data matrix
Xiot = HpDX.

The following theorem help us get an idea for the size of [.

Theorem 1 (Subsampled Randomized Hadamard Transform) Let = /7 PHy,D as pre-
viously defined. Then if

1> O((e 2log(n))(vn + v/logm)?)
with probability 0,99 for any fited U € R™*™ with orthonormal columns:
II-UTQQ Uy <e.

Further, for any vector x € R™,Qx can be computed in O(nlogl) time.

Choose a data set from [https://www.kaggle.com/datasets?tags=13405-Linear+Regression]. Com-
pare the randomized least squarx=es fit using SRHT vs the deterministic least squares fit. Use
the previous theorem to estimate [. Hint: you can use the fast Hadamard transform from scipy or
pytorch

Exercise 2: Randomized SVD
Consider the following algorithm to compute a randomized SVD factorization:

Algorithm 1 Randomized SVD q =1

Input: A € R™*", desired rank k, l =p+ k

Output: Approximation Ay = QU, X,V
Sample an n x [ test matrix 2 with intependend mean-zero, unit-variance Gaussian entries.
Compute Y = (AAT) A
Construct @Q € R™*! with columns forming an orthonormal basis for the range of Y.
Compute B= QT A, B € R
Compute the rank-k truncated SVD of B as ULV T, U € R*k 7 ¢ R7¥F

Remember the following theorem:

Theorem 2 If Q is chosen to be i.i.d. N(0,1), k,p > 2, then the expectation with respect to the
random matriz € is:

E(|A—-QQTA|9) < (1 + lek_—:p\/min(m,n)> ok+1(A)



https://www.kaggle.com/datasets?tags=13405-Linear+Regression

and the probability that the error satisfies

|A—QQTA|: < (1 + 11k +p\/min(m,n)> or+1(A)
is at least 1 — 6/pP. For p = 6, the probability becomes 0,99.

Construct a rank—k approximation with & = 10,p = 6 to a matrix A € R™*?™ via its SVD, the
matrix A is defined as follows

A= U(A)E(A)V(A)T7
where:
o U € R™™ is a Hadamard matrix
o V € R?™*2m ig a Hadamard matrix

e ¥ € R™*?™ s a diagonal matrix whose diagonal entries are defined as:

jj =05 = (orp) V2,

for j =1,2,...,9,10 and
m—j
Yjj=0j= Okt1 7"

for j =11,12,...,m — 1,m. Thus 01 = 1 and o} = og41.

Test this algorithm for m = 21, o4, = 0.1,0.01,0.001,0.0001, 0.00001,0.000001. Plot the decay
of the singular values of A and compare such decay with the accuracy of the approximation, ||A —
QQT Al]2. Compare it with the theorem presented above.




