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Sketching techniques

In the context of overdetermined least-squares problems, we need to find x ∈ Rn such that it
minimizes:

∥Ax− b∥22,

where A ∈ Rm×n, b ∈ Rm,m > n. There is a class of randomized algorithms for solving this
problem based on sketching methods. Sketching methods involve using a random matrix Ω ∈ Rr×m

to project the data A (and maybe also b) to a lower dimensional space with r ≪ m. This can be
used to approximately solve the least-squares problem using the sketches ΩA and Ωb. One relaxes
the problem to finding a vector x so that

∥Ax− b∥ ≤ (1 + ε)∥Ax∗ − b∥,

where x∗ is the optimal solution. The overview of sketching applied to solve linear least squares is:

a) Sample/build a random matrix Ω

b) Compute ΩA and Ωb

c) Output the exact solution to the problem minx ∥(ΩA)x− (Ω)b∥2.

Exercise 1: General properties of sketching techniques

An ε−subspace embedding for the column space of a m × n matrix A is a matrix Ω for which for
all x ∈ Rn the following property is satisfied with high probability:

(1− ε)∥Ax∥2 ≤ ∥ΩAx∥22 ≤ (1 + ε)∥Ax∥22. (1)

Let U be a matrix whose columns form an orthonormal basis for the column space of A. Prove that
the requirement of an ε− subspace embedding can be simplified to:

∥I − U⊤Ω⊤ΩU∥2 ≤ ϵ. (2)
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What does 2 mean? How does this compare to 1?
Exercise 2: Gaussian

The most “classical” sketch is a matrix Ω ∈ Rr×m with independent and identically distributed
(i.i.d.) Gaussian entries N (0, 1/r). The following theorem from [1] provides the optimal number of
rows of Ω up to a constant factor O(rϵ−2):

Theorem 1 Let 0 < ε, δ < 1 and Ω = 1√
r
R ∈ Rr×m where the entires Ri,j of R are independent

standard normal random variables. Then if r = O((n+ log(1/δ))ε−2), then for any fixed m × n
matrix A, with probability 1− δ, Ω is a (1± ε) l2-subspace embedding for A, that is, simultaneously
for all x ∈ Rn,

∥ΩAx∥2 = (1± ε)∥Ax∥2 (3)

Choose a data set from [https://www.kaggle.com/datasets?tags=13405-Linear+Regression]. Com-
pare the linear regression obtained from solving the deterministic least squares problem vs the one
obtained from the randomized least squares problem with Ω ∈ Rr×m a normal random variable.
That is, using the previous theorem with δ = 0, 99 choose different values of ε and compare the
difference between the randomized least squares fit vs the deterministic one. Check that (2) holds
for every ε you choose.

Exercise 3: SRHT

Given a data matrix, X ∈ Rm×n, we want to reduce the dimensionality of X by defining a random
orthonormal matrix Ω ∈ Rr×m with r ≪ m. For m = 2q, q ∈ N, the Subsampled Randomized
Hadamard Transform (SRHT) algorithm defined a r ×m matrix as:

Ω =

√
m

r
PHmD,

where:

• D ∈ Rm×m is a diagonal matrix whose elements are independent random signs, i.e. it’s
diagonal entries are just −1 or 1.

• H ∈ Rm×m is a normalized Walsh-Hadamard matrix. If you’re going to use a library that
implements this transform then check that it implements the normalized Walsh-Hadamard
matrix (if it doesn’t then add the normalizing factor yourself). This matrix is defined recur-
sively as:

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
H2 =

[
1 1
1 −1

]
H =

1√
m
Hm ∈ Rm×m.

• P ∈ Rr×m is a subset of randomly sampled r columns from the m × m identity matrix.
The purpose of using P is to uniformly sample r columns from the rotated data matrix
Xrot = HmDX.
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The following theorem help us get an idea for the size of r.

Theorem 2 (Subsampled Randomized Hadamard Transform) Let Ω =
√

m
r PHmD as pre-

viously defined. Then if

r ≥ O((ε−2 log(n))(
√
n+

√
logm)2)

with probability 0, 99 for any fixed U ∈ Rm×n with orthonormal columns:

∥I − U⊤ΩΩ⊤U∥2 ≤ ε.

Further, for any vector x ∈ Rm,Ωx can be computed in O(n log r) time.

Take the same data set from the previous exercise. Compare the randomized least squares fit using
SRHT, Gaussian, and the deterministic least squares fit. Use the previous theorem to estimate r.
Hint: you can use the fast Hadamard transform from scipy or pytorch
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