
HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Mart́ınez Aguilar

Session 4 – October 1st, 2024

Splitting communicators and QR Factorization

Exercise I Splitting communicators

In the previous exercise we splat the matrix in either columns or rows. But we can split such matrix
into blocks as well using the comm.Split function on MPI. It splits the communicator by color and
key.

Every process gets a color (a parameter) depending on which communicator they will be. Same
color process will end up on the same communicator. In other words, color controls the subset
assignment, processes with the same color belong to the same new communicator.

The key parameter is an indication of the rank each process will get on the new communicator. The
process with the lowest key value will get rank 0, the process with the second lowest will get rank
1, and so on. By default, if you don’t care about the order of the processes, you can simply pass
their rank in the original communicator as key, this way, the processes will retain the same order.
In other words, key controls the rank assignment.

Run the following script on 4 processors, how is the communicator being split? What is the difference
between new comm0, new comm1 and new comm2? In this case, what is key doing?

�
from mpi4py import MPI
import numpy as np

Testing what comm.Split() does

Initialize MPI (world)
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

Defining the subset assignment
if rank == 0:

color0 = 0
else:

1

color0 = 1
if rank%2 == 0:

color1 = 0
else:

color1 = 1
if int(rank/2) == 0:

color2 = 0
else:

color2 = 1

new comm0 = comm.Split(color = color0)
new rank0 = new comm0.Get rank()
new size0 = new comm0.Get size()

new comm1 = comm.Split(color = color1, key = rank)
new rank1 = new comm1.Get rank()
new size1 = new comm1.Get size()

new comm2 = comm.Split(color = color2, key = rank)
new rank2 = new comm2.Get rank()
new size2 = new comm2.Get size()

print("Original rank: ", rank,
" color0: ", color0,
" new rank0: ", new rank0,
" color1: ", color1,
" new rank1: ", new rank1,
" color2: ", color2,
" new rank2: ", new rank2)� �

Exercise II Getting submatrices

Suppose that you are given a matrix A ∈ R2n×2n, for n ∈ N:

A =

[
A0 A1

A2 A3

]
,

where Ak ∈ Rn×n. Write a Python script using MPI such that:

• In the root process it defines a matrix A ∈ R2n×2n, with n the number of processors.

• Using comm.Split and comm.Scatter distributes the matrix into 4 square sub-blocks by first
splitting the matrix into columns and then splitting those columns into rows.

• Prints the sub-blocks in the correct sub-communicator.

Hint: if we want to distribute a matrix A ∈ Rm×n first by columns and then by rows, we would need
to split the communicator twice. Is there another way of doing this?

Exercise III 2D distribution for matrix vector multiplication

Consider a matrix A ∈ Rn×n. We can write this matrix as blocks:

2

A =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
...

. . .
...

Ap,1 Ap,2 . . . Ap,p

 ,

where p ≤ n. With this notation, not all blocks necessarily have the same dimensions. Then we
can write the block version of the matrix-vector multiplication:

y = Ax =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p

...
...

. . .
...

Ap,1 Ap,2 . . . Ap,p



x1
x2
...
xp

 =


∑p

k=1A1,kxk∑p
k=1A2,kxk

...∑p
k=1Ap,kxk

 .

First let p = 2n where n is the number of processors being used. With your answer from the
previous exercise, write a Python script such that:

• In the root process defines the matrix A and the vector x

• Using comm.Split distributes the blocks of both the matrix and the vector accordingly, the
matrix should be split first by columns and then into rows (like on the previous exercise)

• Computes the matrix-vector multiplication using broadcast, scatter, and/or reduction, both
on a subset of processors (this is a 2D blocked layout for matrix-vector multiplication)

Exercise IV Reminder of QR

If we recall what a QR factorization is, given a matrix A ∈ Rm×n, with rank(A) = n, its QR
factorization is

A = Q̂R̂ =
[
Q Q̃

] [R
0

]
= QR,

where Q̂ ∈ Rm×n orthogonal and R̂ ∈ Rm×n upper triangular. Note that A can be seen as a map
W : Rn → Rm.

a) Using this factorization, state an orthonormal basis for the span ofW and one for the nullspace
of W .

b) Consider the code below, it computes Q without using MPI. Try running the code with the
two matrices defined. Do you notice any problems with CGS here? What could be improved
when building the projector P? Compute ∥I − QQ⊤∥, κ(A), and κ(Q). State the time it
takes for this code to run. Compare this implementation with numpy’s QR function. What
would happen if we just use Python’s built in matrix-matrix/vector multiply @ instead of the
user-defined matrixVectorMultiply and matrixMatrixMultiply?

�
import numpy as np
from numpy.linalg import norm
import time

3

Non paralell implementation of QR algorithm (just get Q)

def matrixVectorMultiply(A, x):
'''
Serial implementation of matrix vector multiply
'''
m = A.shape[0]
y = np.zeros((m,), dtype = 'd')
for i in range(m):

y[i] = A[i, :]@x
return y

def matrixMatrixMultiply(A, B):
'''
Computes the product C = A@B with outer
product summation
'''
m = A.shape[0]
n = A.shape[1]
p = B.shape[1]
C = np.zeros((m, p), dtype = 'd')
for i in range(n):

C += A[:, i]@B[i, :]
return C

wt = time.time() # We are going to time this

Define the matrix
TEST1: MATRIX1
size = 4
m = 50*size
n = 20*size
W = np.arange(1, m*n + 1, 1, dtype = 'd')
W = np.reshape(W, (m, n))
W = W + np.eye(m, n) # Make this full rank
TEST2: MATRIX2
m = 4
n = 3
ep = 1e−12
W = np.array([[1, 1, 1], [ep, 0, 0], [0, ep, 0], [0, 0, ep]])

I = np.eye(m, m, dtype = 'd')
Q = np.zeros((m,n), dtype = 'd')

First column
qk = W[:, 0]
qk = qk/norm(qk)
Q[:, 0] = qk

Start itarating through the columns of W
for k in range(1, n):

Build the projector
Is there a better way of defining this projector?
P = I − matrixMatrixMultiply(Q, np.transpose(Q))
qk = matrixVectorMultiply(P, W[:, k]) # project
qk = qk/norm(qk) # Normalize
Q[:, k] = qk

wt = time.time() − wt

4

#print(Q)
print("Time taken: ", wt)

wt = time.time()
Q, R = np.linalg.qr(W)
wt = time.time() − wt
print("Time with numpy's QR: ", wt)� �

Exercise V CGS and MPI

Consider the script given above. Which parts could benefit from using MPI? Which information
do you need to scatter/broadcast? In this section we are going to implement CGS, this means that
for every qk we need to define the following projector:

Pj−1 = I −Qj−1Q
⊤
j−1.

Notice that because of this, every time we want to project a column of A, Ak we need one synchro-
nization. Take this into consideration for your code. There are different ways of implementing this,
below is a rough sketch you could use to guide yourself. Using different values for m and n, compute
∥I − QQ⊤∥, κ(A), and κ(Q). State the time it takes for this code to run. Compute the speedup
and compare the computation time with numpy’s QR function.

�
from mpi4py import MPI
import numpy as np
from numpy.linalg import norm

CSG (first attempt, just calculate Q)

Initialize MPI
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

m = 3*size
n = 2*size
local size = int(m/size) # Dividing by rows

Define
W = None
Q = None
QT = None
P = None
if rank == 0:

W = np.arange(1, m*n + 1, 1, dtype = 'd')
W = np.reshape(W, (m, n))
W = W + np.eye(m, n) # Make this full rank
Q = np.zeros((m,n), dtype = 'd')
QT = np.zeros((n,m), dtype = 'd')
P = np.eye(m, m, dtype = 'd') # first projector is just I

In here: we first build Q and then we build R
Decide what needs to be scattered/broadcast
W local =
q local =

5

QT local =
P local =
W local =
comm.Scatterv(P, P local, root = 0)

For the first column
q local = P local@W local[:, 0]
Normalize, put this column in Q (and row in QT)

Start interating in the columns

for k in range(1, n):
We've already built column 0 so we move to column 1
First: we must build the projector P, using SUMMA
localMult = # What needs to go here so that we can do a reduce?
comm.Reduce(localMult, P, op = MPI.SUM, root = 0) # Projector
comm.Scatterv(P, P local, root = 0) # scatter rows of projector
q local = P local@W local[:, k] # project the k−th column of W
Normalize, put this column in Q (and row in QT)
Update the part of Q and QT that is in each processor
comm.Scatterv(QT, QT local, root = 0)

Print in rank = 0
if(rank == 0):

print("Q: \n", Q)� �

6

