
HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Mart́ınez Aguilar

Session 3 – October 3, 2023

Dense linear algebra and MPI

Exercise I Collective communication - all-to-all and reduce

• Run the following code on 4 processors:

from mpi4py import MPI
import numpy as np

comm = MPI.COMM WORLD
size = comm.Get size()
rank = comm.Get rank()

senddata = rank*np.ones(size, dtype = int)

recvdata = comm.alltoall(senddata)

print(" process ", rank, " sending ", senddata, " receiving ", recvdata)

• What is comm.alltoall doing? Compare it to comm.scatter.

• In this exercise we are going to use reduction operations on MPI. Run the following code on
4 processors:

from mpi4py import MPI
import numpy as np

comm = MPI.COMM WORLD
size = comm.Get size()
rank = comm.Get rank()

senddata = rank*np.ones(size, dtype = int)

global result1 = comm.reduce(senddata, op = MPI.SUM, root = 0)
global result2 = comm.reduce(rank, op = MPI.MAX, root = 0)

1

#Print
print(" process ", rank, " sending ", senddata)

#Print the result on the root process
if rank == 0:

print(" Reduction operation1: ", global result1,
"\n Reduction operation2: ", global result2)

What is a reduction operation? What is the difference between this and comm.gather?

• In the previous code, change comm.reduce to comm.allreduce. What is the difference between
the two? (Note, comm.allreduce doesn’t use the argument root).

Exercise II Reminder of matrix vector multiplication in Python

Suppose that we want to compute the matrix-vector multiplication y = Ax, where A ∈ Rn×n and
x, y ∈ Rn. If Ai ∈ R1×n is the i-th row of A then the entries of y can be written as inner products:

y = Ax =


A1

A2

...
An

x =


A1x
A2x
...

Anx

 .

If Ai denotes the i-th column of A then the matrix multiplication can be written as the weighted
sum of A’s columns:

y = Ax =
[
A1 A2 . . . An

]

x1
x2
...
xn

 =
n∑

i=1

Aixi.

Note that Ai ∈ Rn×1 and xi ∈ R, thus Aixi ∈ Rn×1.

If we have p processors then we can distribute the columns/rows of A in such way that each
processor has n/p columns/rows. We call this one dimensional distribution. This is done with
comm.Scatterv. Then we use comm.Gatherv to gather data to one process from all other processes
in a group providing different amount of data and displacements at the receiving sides.
Consider the code below (also note that we are printing the time it takes for the code to execute):

�
from mpi4py import MPI
import numpy as np

Function to perform matrix−vector multiplication
def matrix vector multiplication(matrix, vector):

result = matrix@vector
return result

Initialize MPI
comm = MPI.COMM WORLD
rank = comm.Get rank()
size = comm.Get size()

2

wt = MPI.Wtime() # We are going to time this

Define the matrix and vector
cols = 4
rows = 8
num rows block = int(rows/size)

matrix = None
vector = None
Try changing dtype below to see what happens!
global result = np.empty((rows, 1), dtype = 'int')

if rank == 0:
matrix = np.array([[1, 2, 3, 4],

[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24],
[25, 26, 27, 28],
[29, 30, 31, 32]])

vector = np.array([7, 8, 9, 10])

Define the buffer where we are going to receive the block of the matrix
submatrix = np.empty((num rows block, cols), dtype='int')
Scatterv: Scatter Vector, scatter data from one process to all other
processes in a group providing different amount of data and displacements
at the sending side
comm.Scatterv(matrix, submatrix, root=0)
vector = comm.bcast(vector, root = 0)

Compute local multiplication
local result = matrix vector multiplication(submatrix, vector)

Gather results on the root process
Gatherv: Gather Vector, gather data to one process from all
other processes in a group providing different amount of
data and displacements at the receiving sides
comm.Gatherv(local result, global result, root = 0)

Print the result on the root process
if rank == 0:

wt = MPI.Wtime() − wt
print("Matrix:")
print(matrix)
print("Vector:")
print(vector)
print("Result:")
print(global result)
print("Time taken: ")
print(wt)� �

a) Is this script distributing A’s columns or rows?

b) If your previous answer was ”rows” then write a Python script to compute the matrix mul-
tiplication Ax but distributing A’s columns on different processors. If your previous answer
was ”columns” then write a Python script to compute the matrix multiplication Ax but
distributing A’s rows on different processors.

3

Exercise III Deciding what to use - Mid point rule

Numerical integration describes a family of algorithms for calculating the value of definite integrals.
One of the simplest algorithms to do so is called the Mid Point Rule. Assume that f(x) is continous
on [a, b]. Let n be a positive integer and h = (b − a)/n. If [a, b] is divided into n subintervals,
{x0, x1, ..., xn−1}, then if mi = (xi + xi+1)/2 is the midpoint of the i-th subinterval, set:

Mn =
n∑

i=1

f(mi)h.

Then:

lim
n→∞

Mn =

∫ b

a
f(x)dx.

Thus, for a fixed n, we can approximate this integral as:∫ b

a
f(x)dx ≈

n∑
i=1

f(mi)h

Set n = s ∗ 500, f(x) = cos(x), a = 0, b = π/2. Write a Python script such that:

• Defines a function that given xi, h, n first calculates 500 mid points on a subinterval [xi, xi+1]
and returns the approximation of the integral on this subinterval.

• Using MPI approximates the integral of f on [a, b]

• Run your script on s processors

to approximate the integral of f .

4

