

HPC for numerical methods and data analysis

Fall Semester 2024

Prof. Laura Grigori

Assistant: Mariana Martínez Aguilar

Session 13 – December 10, 2024

Arnoldi Process and application to GMRES

Exercise 1: Randomized GS

Consider the Randomized Gram-Schmidt algorithm (RGS) from Oleg and Grigori, https://arxiv.org/pdf/2011.05090.pdf.

Algorithm 1 Randomized Gram-Schmidt algorithm (RGS)

Input: $n \times m$ W and sketching matrix Ω of size $k \times n$ with $m \leq k \leq n$

Output: $n \times m$ factor Q and $m \times m$ upper triangular factor R.

for $j = 1 : m \ do$

Sketch $w_i: p_i = \Omega w_i$

Solve the $k \times (i-1)$ least squares problem:

$$R_{1:i-1,i} = \arg\min_{y} ||S_{i-1}y - p_i||.$$

Compute the projection of $w_i : q'_i = w_i - Q_{i-1}R_{1:i-1,i}$.

Sketch $q_i': s_i' = \Omega q_i'$.

Compute the sketched norm $r_{i,i} = ||s_i'||$.

Scale vector $s_i = s'_i/r_{i,i}$.

Scale vector $q_i = q_i'/r_{i,i}$

end for

Suppose you have an orthonormal set $Q_r = \{q_1, q_2, ..., q_r\}$. Implement this algorithm in such way that it orthogonalizes a vector w_i against Q_r .

Exercise 2: GMRES

Recall that the Arnoldi process can be used to find eigenvalues. It can also be used to solve systems of equations $Ax^* = b$. The following diagram might be useful:

	Ax = b	$Ax = \lambda x$
$A = A^*$	CG	Lanczos
$A \neq A^*$	GMRES CGN BCG et al.	Arnoldi

This was taken from Trefethen and Bau's book http://www.stat.uchicago.edu/~lekheng/courses/309/books/Trefethen-Bau.pdf.

At each step GMRES approximates the solution x^* by a vector in the Krylov subspace $x_n \in \mathcal{K}_n$ that minimizes the residual $r_n = b - Ax_n$. This week we are going to implement GMRES from the lecture slides in a sequential fashion. Next week we are going to modify them so that they are implemented using MPI.

- a) Implement Algorithm 2.
- b) Test this method with the following matrices:
 - ullet A from the file VG_mat.csv and b from the file VG_b.csv
 - A from the file CTT_mat.csv and b from the file CTT_b.csv
 - A and b = f from session 9. Such matrix and vector had to do with kernel regression using the MNIST data set.
- c) Plot the number of GMRES iterations vs L_2 error
- d) Let $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ be the eigenvalues of A. Plot $\max_j \lambda_j / \lambda_{j+1}$ vs the L_2 error.

To recall these algorithms:

Algorithm 2 Algorithm 2 GMRES with MGS

```
Input: A, x_0, b, \max_{\text{iter}} = m

Output: x^* approximation to the solution of Ax^* = b

r_0 = b - Ax_0, \ \beta = \|r_0\|_2, q_1 = r_0/\beta

for j = 1 : m - 1 do

w_{j+1} = Aq_j

MGS to orthogonalize w_{j+1} against \{q_1, ..., q_j\}

Obtain [r_0, AQ_j] = Q_{j+1}[\|r_0\|_2 e_1 \bar{H}_j]

end for

Solve y_m = \arg\min_y \|\beta e_1 - \bar{H}_m y\|_2
```

You can find the data here: https://www.dropbox.com/scl/fi/fissuao7legmz5cv588sv/Data.zip?rlkey=ccjry3318bmfaxqwp0odwsby3&dl=0