EPFL

HPC for numerical methods and data analysis
Fall Semester 202
Prof. Laura Grigori

Assistant: Mariana Martinez Aguilar

Session 12 — December 3rd, 2023

Randomized rank revealing factorizations for low rank
approximation

Exercise 1: Column selection with randomized QRCP

The truncated SVD provides the best low rank approximation in terms of the Frobenius and L2
norms. Sometimes we don’t want to compute the full SVD because it might be expensive to do so.
Last week we implemented a deterministic rank revealing factorization using either strong RRQR
or just column pivoting. We were able to detect columns of A, Ipy from which to construct a low
rank approximation.

This was based on the fact that for a given matrix A € R™*" there is a permutation P. and an
integer k such that the QR factorization with column pivoting:

ar=qr=[or @ |3t 1

reveals the numerical rank k£ of A. The upper k x k triangular matrix Ry; is well conditioned, || Roz||2
is small and Rj» is linearly dependent on Ry with coefficients bounded by a low-degree polynomial
in n. In our case we used a binary tree of depth log, (n/k) . This gives us the following bound:

n\ logz(V2/k)
\/12—k<)lg ka.

IR Ri2lmax < k:

Notice that if this is the case then we can build a low rank approximation to A as follows:

Ay =Q1[Ri1 Ria] P| =Q1Q{ A.

We have the following bounds for the singular values:

0i(A) 0j(Ra) —
~ oi(’l) opi(A) < Vit fPhin =)

(Note: if you are confused with what f is refer to the lecture notes)

The downside of this algorithm is that is (much) more expensive than regular QR factorization
without column pivoting. It has been shown that their randomized counterparts, RQRCP can be
as reliable with failure probabilities exponentially decaying in oversampling size. This week we are
going to implement a rather simple version of RQRCP based on last week’s code.

The idea is as follows:

Algorithm 1 RQRCP

Input: A€ R™" Qe R>™ k1>k

Output: Iy, indices of the columns of A from which to build the low rank approximation
Compute B = QA, B € R*",
Compute k steps of QRCP on B and select k& columns.
Return k selected columns, with indices saved in Ijs.

With this setup with have the following bounds for 1 < j < k:

UJZ(A) < UJZ ([Ri1 Ri2]) + |Ra2ll3 (1)

[Raz2l2 < 91927/ (1 + 1)(n = Dor11(A) (2)

where:

[14+¢
<
g1 = 1—¢
2(1 +¢) T
15 €
g < —— | 1+4/ —
1—¢ 1—¢

e€(0,1)
4 2nk

For more about this, check Xiao, Gu, and Langou’s paper Fast Parallel Randomized QR with Column
Pivoting Algorithms for Reliable Low-rank Matrix Approximations.

a) Consider a matrix A partitioned into 4 column blocks. Each processor has one of these blocks.
b) Implement RQRCP using your code from last week.
c¢) Test your method with two different matrices and different values of [(keep k fixed):

o A = HnDH,—ll— , where H,, is the normalized Hadamard matrix of dimension n, D is a
diagonal matrix of your choice. Pick n to be ”small”.

e Load the normalized MNIST data set and build A as in the project (or last week’s
exercises). Select a few columns and rows.

d) Comment your results with the different matrices. Do you notice any significant differences
with deterministic QRCP?

e) Build a low rank approximation of A. Check the L2 norm of the error with respect to the
error of the truncated SVD.

f) Check if the singular values of these selected columns approximate well the singular values of

A.

g) Check if the diagonal elements of R;; approximate well the singular values of A.

