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Deterministic rank revealing factorizations for low rank
approximation

Exercise 0 (Optional): Numerical stability of randomized Nystrom

Just as in last week’s exercise, consider the MNIST data set and the matrix A as defined in the
project or in last week’s exercise sheet (with a fixed value of c). You’ll have to be careful with
this data set here and in your project because you have to make sure the data set is
normalized, i.e. all the entries are between 0 and 1. Take a relatively small sample of the
training set. In this section you can use either last week’s code or your code from your project.
Consider two different types of sketching matrices, Ω1,Ω2 (for example Gaussian and SRHT). For
different sketching dimensions of both types of matrices, compute the relative error of the low rank
approximation in terms of the nuclear norm. Provide a graph that compares these errors. Comment
on your findings.

Exercise 1: Tournament pivoting

The truncated SVD provides the best low rank approximation in terms of the Frobenius and L2
norms. The QR decomposition with column pivoting relies on a permutation matrix Πc and com-
putes the decomposition AΠc = QR, where A ∈ Rm×m, Q ∈ Rm×n, R ∈ Rn×n. There are many ways
of building such permutational matrix. The strong rank revealing QR, (Strong RRQR) is designed
to more effectively identify the numerical rank of a matrix and ensure a robust separation between
the significant and insignificant columns in the matrix. For A ∈ Rm×n the QR decomposition with
column pivoting AΠc = QR can be written as

AΠc =
[
Q1 Q2

] [R11 R12

0 R22

]
, (1)

where Q1 ∈ Rm×k, Q2 ∈ Rm×(n−k), R11 ∈ Rk×k, R12 ∈ Rk×(n−k), R22 ∈ R(n−k)×(n−k). Let the
singular values of A be ordered as

σmax(A) = σ1(A) ≥ ... ≥ σmin(A) = σn(A).
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The factorization in ( 1 ) is strong rank revealing if for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k we have

1 ≤ σi(A)

σi(R11)

σj(R22)

σk+j(A)
≤ γ1(n, k)

∥R−1
11 R12∥max ≤ γ2(n, k),

where γ1, γ2 are low degree polynomials in n and k.
Recall tournament pivoting for deterministic column selection. (Refer to the image below).

a) Consider a matrix A partitioned into 4 column blocks. Each processor has one of these blocks.

b) Optional: Implement strong RRQR. There is a MATLAB implementation, you can use that as
a template for building your own Python implementation but if you use ChatGPT to convert
MATLAB code into Python be careful of the changes in the index notation.

c) For each block of columns, select k columns using either strong RRQR or column pivoting,
save their indices in Ii0. Be careful with these indices, you might have to deal with “global”
and “local” indices.

d) In each processor output these indices I00, I10, I20, I30.

e) Test your method with three different matrices:

• A = HnDH⊤
n , where Hn is the normalized Hadamard matrix of dimension n, D is a

diagonal matrix of your choice. Pick n to be ”small”.

• Load the normalized MNIST data set and build A as in the project (or last week’s
exercises). Select a few columns and rows.

• Build A from the MNIST data set with 211 data points.

f) Comment your results with the different matrices. Do you notice a problem when you take
more rows and columns using the MNIST data set?

g) Using I00, I10, I20, I30 build a low rank approximation of A. Check the L2 norm of the error
with respect to the error of the truncated SVD.

h) Check if the singular values of these selected columns approximate well the singular values of
A.

i) Check if the diagonal elements of R11 approximate well the singular values of A.
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