Communication cost model and collective

communication operations

Laura Grigori

EPFL and PSI

September 17, 2024

PAUL SCHERRER INSTITUT

=PrL

Plan

Abstract model of a parallel machine

MPI collective communication
Main MPI collectives
Example of implementation in MPI
Cost of collectives on P procs

Introduction to using the EPFL cluster
Clusters
Remote access and file transfer
Submitting a job

20f 44 1

Abstract model of a parallel machine

= Consider a simple model of a parallel machine formed by a collection of
homogeneous processors connected through a fast network

B ~: time to compute one flop

® «: interprocessor latency, time to send one word between two processors
= 3. inverse of the interprocessor bandwidth
CPU CcPU
msmory memory

Figure: Abstract model of a parallel machine

3 of 44

Simplifying assumptions of the abstract model

= Time required to compute one flop per processor is constant
0 Model ignores the memory hierarchy of each processor
= Communication cost is independent of:

0 topology of the interconnect network
o physical distance between processors
I ignores network contention

= At a given time, a processor can send and can receive a message

Any subset of disjoint pair of processors can communicate simultaneously
and the links in the network are assumed to be bidirectional

o Communication cost of exchanging a message of n words between a pair of
processors is estimated as
a—+ np

4of a4 1

Abstract model of a parallel machine

= Time of a parallel algorithm estimated with o — 3 — v model:
T =~ - # flops + 3 - # words + « - # messages, (1)

where

0 #flops: computation on the critical path of the algorithm,

o #words volume of communication,

U #messages number of messages exchanged on the critical path of the
parallel algorithm

A A A

Figure: abstract model of a parallel machine

5 of 44

Plan

MPI collective communication
Main MPI collectives
Example of implementation in MPI
Cost of collectives on P procs

6 of 44 1

MPI collective communication

= Many routines available: we will discuss the most used ones

= Collectives involve all processors in a specified communicator
® The default communicator when program starts is MPI_.COMM_WORLD
= Some routines specify a root processor:

Broadcast, Gather, Gatherv, Reduce, Reduce_scatter, Scan, Scatter,

Scatterv

u Other routines (All versions) deliver results to all participating processes:
Allgather, Allgatherv, Allreduce, Alltoall, Alltoallv

m V versions allow the chunks to have variable sizes.

® Allreduce, Reduce, Reduce_scatter, and Scan take both built-in and
user-defined combiner functions

Routines that specify a root processor

More details about 4 routines:

® broadcast, scatter and gather, reduce

8 of 44 1

Broadcast

A root broadcasts n words to all P processors

(o)

(0

Figure: Broadcast

9 of 44

Scatter and Gather

A root scatters n words, each
processor receives n/P words

AN

10 of 44

@I

Figure: Scatter

Each processor sends n/P words,
which are gathered on root

(0

Bl

L

[AIBICD]

Figure: Gather

Reduce

Reduction on n words from each processor, result returned on root

0
A [Ad] A Al

Figure: Reduce

11 of 44

Routines that do not specify a root processor

More details about 4 routines that return results on all processors:
® Reduce_scatter, Allgather, Allreduce, Alltoall

Reduce_scatter

Reduction on n words from each processor, result scattered on all processors

[AlBo[GDo] AIBIUGID)| [ABGIDs| [As]Bs[GIDs]

|

o)
2o Ad

Figure: Reduce_scatter

13of 44 1

Allgather

Each processor sends n/P words, which are gathered on all processors

0
Bl (D]
0
ABICID) @ABICD ABICD [ABICID]

Figure: Allgather

Allreduce

Reduction on n words from each processor, result returned on all processors

©
Al

o)

Figure: Allreduce

sora

Alltoall

Each processor sends different n/P words to every other processor

AdAiAs A3l [BaBilBa[Bs] [GIGIGIG] [Do]Di[Do[Ds)

[G[Do] [AdBIGID:| [AAB]GID.] [As[Bs[GIDs]

Figure: Alltoall

16 of 44 1

Call of collective routines

® All collective operations must be called by all processes in the
communicator

m For example, MPI_Broadcast is called by both the sender (called the root
process) and the processes that are to receive the broadcast

= “root” argument is the rank of the sender; this tells MPI which process
originates the broadcast and which receive

® |n our examples, Processor O is the root

MPI Built-in Collective Computation Operations

MPI_MAX Maximum
MPI_MIN Minimum
MPI_PROD Product
MPI_SUM Sum
MPI_LAND Logical and
MPI_LOR Logical or
MPI_LXOR Logical exclusive or
MPI_BAND Binary and
MPI_BOR Binary or
MPI_BXOR Binary exclusive or
MPI_MAXLOC | Maximum and location
MPI_MINLOC | Minimum and location

18 of 44 1

Scatter: implementation in MPI

A root scatters n words, each processor receives n/P words
Recursive halving:
First step, root 0 sends 2nd half of data to g; ©

continue recursively with 0 and g as new roots. 2
p-1 @// \\
a-log,P+5-n 5 ~oa-log,P+5-n

/
/
/
/

J .’

Figure: Binomial tree communication scheme

19 of 44

Gather: implementation in MPI

Each processor sends n/P words, which are gathered on root
Recursive doubling (oposite of scatter):

First step, even procs receive n/P data from odd procs; B

continue recursively on even procs.

20 of 44

a-log,P+B-n EIBICID)

©

g
: G

Figure: Binomial tree communication scheme

Allgather: implementation in MPI

Each processor sends n/P words, which are gathered on all processors

Recursive doubling algorithm with butterfly scheme:

® At time t, process i exchanges (sends/receives) all its current data (its
original data plus anything received until then) with process i + 2'. In the
first step, i is even, and the pattern continues accordingly in subsequent
steps.

= Exchange 5,27,... up to 2°&2P~114 data in the last step.
a-log, P+ 5-n — ~a-log,P+5-n

@>< >< >< @><

Figure: Butterfly communication scheme
21 of 44

Reduce_scatter: implementation in MPI

Reduction on n words from each processor, result scattered on all processors
m First step: each proc i s.t. 0 </ < P/2 exchanges n/2 words with

processor i + P/2

m All processors compute the reduction operation between the n/2 words
they owned originally and the received data

= Proceed recursively on each half of processors simultaneously

a-log,P+B3-n+vy-n
© ©
X XX

Figure: Butterfly communication scheme

22 of 44

Implementation of collectives in MPI: Broadcast

Broadcast based on Scatter/Allgather

m Scatter the n words among processors using binomial tree
0 Shrink message size from n to n/P

m Allgather n/P words among processors using recursive doubling and
butterfly communication scheme
) Grow message size from n/P to n

a-2logy P+ 5-2n

Figure: Broadcast

23 of 44

Other collectives in MPI

Reduce: reduction on n words from each processor, result returned on root
Reduce_scatter followed by a Gather

a-2logyP+pB-2n+~-n

Allreduce: reduction on n words from each processor, result returned on all
processors
Reduce scatter followed by an Allgather (both implemented with the
butterfly scheme)

a-2logo P+ 5-2n+v-n

Alltoall: each process sends different 5 data to every other process
Based on a butterfly algorithm:

a-log2P+6-glog2P

Cost of collectives on P procs

Routine Description and cost of efficient algorithm

Scatter a root scatters n words, each processor receives n/P words
a - logymin(n, P)+ 8- n

Gather each processor sends n/P words, which are gathered on root

Reduce_scatter

Allgather

Reduce

Broadcast

Allreduce

Alltoall

o - logy min(n, P)+ 3 -n
reduction on n words from each processor, result scattered on all processors

a-logyP+B-n4+~v-n when n > P,
a-logy P+ B (n+logy(P/n)) +~ - (n+logy(P/n)) otherwise
each processor sends n/P words, which are gathered on all processors
a-logyP+B-n when n > P
o -logy, P+ B - (n+logy(P/n)) otherwise
reduction on n words from each processor, result returned on root
a-2logob P+ B-2n+~v-n when n > P,

o -logy(Pn) + B - (2n+ logy(P/n)) +~ - (n+ logy(P/n)) otherwise
a root broadcasts n words to all processors

a-2logy, P+ 3-2n when n > P,
a - logy(Pn) + B - (2n + logy(P/n)) otherwise

reduction on n words from each processor, result returned on all processors
a-2logoy P+B-2n+~v-n when n > P,

a-2logy, P+ B-2(n+logy(P/n)) + - (n+logy(P/n)) otherwise
each processor sends different n/P words to every other processor
a-logy P+ - 5 log, P

25 0f 44 1

MPI_Comm_split

® |t is possible to create communicators for subsets of processors

int MPI_Comm_split(MPI_Comm comm,
int color,
int key,
MPI_Comm *newcomm)
MPI’s internal Algorithm:
= Use MPI_Allgather to get the color and key from each process

= Count the number of processes with the same color; create a
communicator with that many processes. If this process has
MPI_UNDEFINED as the color, create a process with a single member.

m Use key to order the ranks

Color: controls assignment to new communicator
Key: controls rank assignment within new communicator

260f 44 1

Synchronization

MPI_Barrier(comm)
= Blocks until all processes in the group of the communicator comm call it.
= Almost never required in a parallel program

= QOccasionally useful in measuring performance and load balancing

Plan

Introduction to using the EPFL cluster
Clusters
Remote access and file transfer
Submitting a job

260f 44 1

What is a cluster?

29 of 44

What is a cluster?

Compute nodes (back-end) «

User

L

[
i
]

-
g
S

29 of 44

What is a cluster?

Scheduler

4 Compute nodes (back-end)
===
1141 1111 g 11T

29 of 44

3

User

L

What is a cluster?

Scheduler

Login nodes (font-end)

29 of 44

What is a cluster?

Scheduler

HPC - cluster

Login nodes (font-end)

= N
Cluster filesystem:
/scratch E_ E
—=
HLLE 171 Q11 User
A L L
===
AL 111 111
AN J/

29 of 44

What is a cluster?

Shared filesystems:
/home
Iwork

Scheduler

HPC - cluster

Login nodes (font-end)

A
e ——
Cluster filesystem:
/scratch E_E_E
= —=
HLLE 111 1 User
A L L
== =25
ML) 11 111
. J

29 of 44

EPFL cluster used in this class

Login Nodes Cores RAM Network
hostname # # x GHz GB Gbit/s
helvetios.epfl.ch 287 2x18x23 192 100 (IB)

300f 44 1

EPFL clusters storage

® The simulation data is written on the storage systems. At SCITAS:

U /home: store source files, input data, small files
U /work: collaboration space for a group
0 /scratch: temporary huge result files

u Please, note that only /home and /work have backups!
m /scratch data can be erased at any moment!

31 of 44

Connecting to remote machines

First step

® Connect to a remote cluster to get a shell
® SSH: Secure SHell

How to use

$ ssh -1 <username> <hostname>
$ ssh <username>Q@<hostname>

2of 44 1

Connecting to remote machines

First step

® Connect to a remote cluster to get a shell
® SSH: Secure SHell

How to use

$ ssh -1 <username> <hostname>
$ ssh <username>Q@<hostname>

For windows users
Just install git, and use git bash

2of 44 1

Getting a remote shell

ssh connection

<username>
———— LT

> |—

Bof s 1

Getting a remote shell

<password> ?

=]

Bof s 1

Getting a remote shell

<password>

> |—

———— [T

Bof s 1

Getting a remote shell

Shell
‘ > —at
1]

———— [T

Bof s 1

Simple connection

To connect to the front node of a cluster

$ ssh -1 jdoe helvetios.epfl.ch
$ ssh jdoe@helvetios.epfl.ch

Front nodes
u helvetios [CPU (OpenMP/MPI)]

= Connect to helvetios front node
u Check the different folders /home /scratch

3aof 44 1

Using scp

How to use scp/pscp.exe

Send data to remote machine:

$ scp [-r] <local_path> <username>@<remote>:<remote_path>

Retrieve data from remote machine:

$ scp [-r] <username>@<remote>:<remote_path> <local_path>

Note: [t is always easier to “send to” and “receive from” the clusters since
they have a fix ip/name

= Copy a file from your machine to the cluster.

® Modify the file (e.g., using vim, nano) and retrieve it from the cluster
onto your machine

350f 44 1

Using modules

What are modules
= A way to dynamically modify the environment

® The contain configurations to use an application/a library

How to use them

® module avail list all possible modules

® module load module_name load a module

® module unload module_name unload a module
® module purge unload all the modules

® module list list all loaded modules

3601 44 1

Scheduler

Shared filesystems:
/home
Iwork

/scratch

Scheduler

Cluster filesystem:

HPC - cluster

Login nodes (font-end)

i

1|

|

38 of 44

User

Scheduler

Shared filesystems: Scheduler

/home

Iwork HPC - cluster
Submit

Login nodes (font-end)

job

Cluster filesystem:
/scratch

i

User

1|

|

38 of 44

Scheduler

Shared filesystems: Scheduler
/home
Iwork

HPC - cluster

Login nodes (font-end)

Schedule
job

-

Cluster filesystem:
/scratch

i
i
N

User

1|
[TH|
|

|
|
|

38 of 44

Scheduler

Shared filesystems:
/home
Iwork

Cluster filesystem:
/scratch

Scheduler

HPC - cluster

Login nodes (font-end)

38 of 44

User

SLURM

What is SLURM

® Simple Linux Utility for Resource Management
® Job scheduler

Basic commands

= sbatch submit a job to the queue

= salloc allocates resources

® squeue visualize the state of the queue

3901 44 1

SLURM: common options

SLURM options

® -A / --account=account_name name of your SLURM account
For this class you are in math-505 Further details on moodle

B -u / --user=username_name defines the user

d0of 4 1

SLURM: common options

SLURM options
-t / --time=HH:MM:SS set a limit on the total run time of the job

-N / --nodes=N request that a minimum of N nodes be allocated to
the job

® -n / --tasks=n dvise SLURM that this job will launch a maximum of n,
in the MPI sense

® -c / --cpus-per-task=ncpus advises SLURM that job will require ncpus
per task

® --ntasks-per-node=ntasks number of tasks per node
® --mem=size[units] defines the quantity of memory per node requested

Need more help? Have a look at the
https://slurm.schedmd.com/sbatch.html

https://slurm.schedmd.com/sbatch.html

SLURM: common options

Or you can put everything in a file: srun to execute a code with 38 MPI
ranks over two nodes, 1 thread per rank, 7000 MB of RAM per node, so in
total the job gets 14’000 MB, 20 minutes for the job, parallel QOS

{mysimulation. job}
#!/bin/bash -1
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=19
#SBATCH --cpus-per-task=1
#SBATCH --mem=7000
#SBATCH --time=20:00
#SBATCH --qos=parallel
#SBATCH --account=math-505
module load gcc openmpi python py-mpidpy
srun ./my_python_script.py

and submit the job
$ sbatch mysimulation.job

To continue

during exercise sessions !
To simplify the execution and understanding of results:

= Allocate one MPI process per core
® use 1 thread per MPI process (rank) - no multithreading

= MPI will use explicite communication, independently if the processes are
run on a same node or not

cou I

Acknowledgement

® Introduction to using the EPFL cluster: slides from P. Antolin, N.
Richart, E. Lanti, V. Keller's lecture notes

44.0f 44 1

	Abstract model of a parallel machine
	MPI collective communication
	Main MPI collectives
	Example of implementation in MPI
	Cost of collectives on P procs

	Introduction to using the EPFL cluster
	Clusters
	Remote access and file transfer
	Submitting a job

