
Communication cost model and collective
communication operations

Laura Grigori

EPFL and PSI

September 17, 2024



Plan

Abstract model of a parallel machine

MPI collective communication
Main MPI collectives
Example of implementation in MPI
Cost of collectives on P procs

Introduction to using the EPFL cluster
Clusters
Remote access and file transfer
Submitting a job

2 of 44



Abstract model of a parallel machine

■ Consider a simple model of a parallel machine formed by a collection of
homogeneous processors connected through a fast network

■ γ: time to compute one flop

■ α: interprocessor latency, time to send one word between two processors

■ β: inverse of the interprocessor bandwidth

Figure: Abstract model of a parallel machine

3 of 44



Simplifying assumptions of the abstract model

■ Time required to compute one flop per processor is constant
□ Model ignores the memory hierarchy of each processor

■ Communication cost is independent of:
□ topology of the interconnect network
□ physical distance between processors
□ ignores network contention

■ At a given time, a processor can send and can receive a message

■ Any subset of disjoint pair of processors can communicate simultaneously
and the links in the network are assumed to be bidirectional
□ Communication cost of exchanging a message of n words between a pair of

processors is estimated as
α+ nβ

4 of 44



Abstract model of a parallel machine

■ Time of a parallel algorithm estimated with α− β − γ model:

T = γ ·# flops+ β ·# words+ α ·# messages, (1)

where
□ #flops: computation on the critical path of the algorithm,
□ #words volume of communication,
□ #messages number of messages exchanged on the critical path of the

parallel algorithm

Figure: abstract model of a parallel machine

5 of 44



Plan

Abstract model of a parallel machine

MPI collective communication
Main MPI collectives
Example of implementation in MPI
Cost of collectives on P procs

Introduction to using the EPFL cluster
Clusters
Remote access and file transfer
Submitting a job

6 of 44



MPI collective communication

■ Many routines available: we will discuss the most used ones

■ Collectives involve all processors in a specified communicator

■ The default communicator when program starts is MPI COMM WORLD

■ Some routines specify a root processor:
Broadcast, Gather, Gatherv, Reduce, Reduce scatter, Scan, Scatter,
Scatterv

■ Other routines (All versions) deliver results to all participating processes:
Allgather, Allgatherv, Allreduce, Alltoall, Alltoallv

■ V versions allow the chunks to have variable sizes.

■ Allreduce, Reduce, Reduce scatter, and Scan take both built-in and
user-defined combiner functions

7 of 44



Routines that specify a root processor

More details about 4 routines:

■ broadcast, scatter and gather, reduce

8 of 44



Broadcast

A root broadcasts n words to all P processors

0 1 2 3

A A A A

0

A

Figure: Broadcast

9 of 44



Scatter and Gather

A root scatters n words, each
processor receives n/P words

0 1 2 3

A B C D

0

A B C D

Figure: Scatter

Each processor sends n/P words,
which are gathered on root

0 1 2 3

A B C D

0

A B C D

Figure: Gather

10 of 44



Reduce

Reduction on n words from each processor, result returned on root

0 1 2 3

A0 A1 A2 A3

0∑
k Ak

Figure: Reduce

11 of 44



Routines that do not specify a root processor

More details about 4 routines that return results on all processors:

■ Reduce scatter, Allgather, Allreduce, Alltoall

12 of 44



Reduce scatter

Reduction on n words from each processor, result scattered on all processors

0

0

1

1

2

2

3

3

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3

∑
k Ak

∑
k Bk

∑
k Ck

∑
k Dk

Figure: Reduce scatter

13 of 44



Allgather

Each processor sends n/P words, which are gathered on all processors

0

0

1

1

2

2

3

3

A B C D

A B C D A B C D A B C D A B C D

Figure: Allgather

14 of 44



Allreduce

Reduction on n words from each processor, result returned on all processors

0

0

1

1

2

2

3

3

A0 A1 A2 A3

∑
k Ak

∑
k Ak

∑
k Ak

∑
k Ak

Figure: Allreduce

15 of 44



Alltoall

Each processor sends different n/P words to every other processor

0

0

1

1

2

2

3

3

A0 A1 A2 A3 B0 B1 B2 B3 C0 C1 C2 C3 D0 D1 D2 D3

A0 B0 C0 D0 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3

Figure: Alltoall

16 of 44



Call of collective routines

■ All collective operations must be called by all processes in the
communicator

■ For example, MPI Broadcast is called by both the sender (called the root
process) and the processes that are to receive the broadcast

■ “root” argument is the rank of the sender; this tells MPI which process
originates the broadcast and which receive

■ In our examples, Processor 0 is the root

17 of 44



MPI Built-in Collective Computation Operations

MPI MAX Maximum
MPI MIN Minimum
MPI PROD Product
MPI SUM Sum
MPI LAND Logical and
MPI LOR Logical or
MPI LXOR Logical exclusive or
MPI BAND Binary and
MPI BOR Binary or
MPI BXOR Binary exclusive or

MPI MAXLOC Maximum and location
MPI MINLOC Minimum and location

18 of 44



Scatter: implementation in MPI

A root scatters n words, each processor receives n/P words
Recursive halving:
First step, root 0 sends 2nd half of data to P

2
;

continue recursively with 0 and P
2
as new roots.

α · log2 P + β · nP − 1

P
≈ α · log2 P + β · n 0 1 2 3

A B C D

0

A B C D

0

1

2

3

4

5

6

7

Figure: Binomial tree communication scheme

19 of 44



Gather: implementation in MPI

Each processor sends n/P words, which are gathered on root
Recursive doubling (oposite of scatter):
First step, even procs receive n/P data from odd procs;
continue recursively on even procs.

α · log2 P + β · n

0 1 2 3

A B C D

0

A B C D

0

1

2

3

4

5

6

7

Figure: Binomial tree communication scheme

20 of 44



Allgather: implementation in MPI

Each processor sends n/P words, which are gathered on all processors
Recursive doubling algorithm with butterfly scheme:
■ At time t, process i exchanges (sends/receives) all its current data (its

original data plus anything received until then) with process i +2t . In the
first step, i is even, and the pattern continues accordingly in subsequent
steps.

■ Exchange n
P ,

2n
P , . . . up to 2log2 P−1 n

P data in the last step.

α · log2 P + β · nP − 1

P
≈ α · log2 P + β · n

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

Figure: Butterfly communication scheme
21 of 44



Reduce scatter: implementation in MPI

Reduction on n words from each processor, result scattered on all processors
■ First step: each proc i s.t. 0 ≤ i < P/2 exchanges n/2 words with

processor i + P/2
■ All processors compute the reduction operation between the n/2 words

they owned originally and the received data
■ Proceed recursively on each half of processors simultaneously

α · log2 P + β · n + γ · n

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

Figure: Butterfly communication scheme

22 of 44



Implementation of collectives in MPI: Broadcast

Broadcast based on Scatter/Allgather
■ Scatter the n words among processors using binomial tree

□ Shrink message size from n to n/P
■ Allgather n/P words among processors using recursive doubling and

butterfly communication scheme
□ Grow message size from n/P to n

α · 2 log2 P + β · 2n

0 1 2 3

A A A A

0

A

Figure: Broadcast

23 of 44



Other collectives in MPI

Reduce: reduction on n words from each processor, result returned on root
Reduce scatter followed by a Gather

α · 2 log2 P + β · 2n + γ · n

Allreduce: reduction on n words from each processor, result returned on all
processors
Reduce scatter followed by an Allgather (both implemented with the
butterfly scheme)

α · 2 log2 P + β · 2n + γ · n

Alltoall: each process sends different n
P data to every other process

Based on a butterfly algorithm:

α · log2 P + β · n
2
log2 P

24 of 44



Cost of collectives on P procs

Routine Description and cost of efficient algorithm
Scatter a root scatters n words, each processor receives n/P words

α · log2 min(n,P) + β · n
Gather each processor sends n/P words, which are gathered on root

α · log2 min(n,P) + β · n
Reduce scatter reduction on n words from each processor, result scattered on all processors

α · log2 P + β · n + γ · n when n ≥ P,
α · log2 P + β · (n + log2(P/n)) + γ · (n + log2(P/n)) otherwise

Allgather each processor sends n/P words, which are gathered on all processors
α · log2 P + β · n when n ≥ P
α · log2 P + β · (n + log2(P/n)) otherwise

Reduce reduction on n words from each processor, result returned on root
α · 2 log2 P + β · 2n + γ · n when n ≥ P,
α · log2(Pn) + β · (2n + log2(P/n)) + γ · (n + log2(P/n)) otherwise

Broadcast a root broadcasts n words to all processors
α · 2 log2 P + β · 2n when n ≥ P,
α · log2(Pn) + β · (2n + log2(P/n)) otherwise

Allreduce reduction on n words from each processor, result returned on all processors
α · 2 log2 P + β · 2n + γ · n when n ≥ P,
α · 2 log2 P + β · 2(n + log2(P/n)) + γ · (n + log2(P/n)) otherwise

Alltoall each processor sends different n/P words to every other processor
α · log2 P + β · n

2
log2 P

25 of 44



MPI Comm split

■ It is possible to create communicators for subsets of processors

int MPI_Comm_split(MPI_Comm comm,

int color,

int key,

MPI_Comm *newcomm)

MPI’s internal Algorithm:

■ Use MPI Allgather to get the color and key from each process

■ Count the number of processes with the same color; create a
communicator with that many processes. If this process has
MPI UNDEFINED as the color, create a process with a single member.

■ Use key to order the ranks

Color: controls assignment to new communicator
Key: controls rank assignment within new communicator

26 of 44



Synchronization

MPI Barrier( comm )

■ Blocks until all processes in the group of the communicator comm call it.

■ Almost never required in a parallel program

■ Occasionally useful in measuring performance and load balancing

27 of 44



Plan

Abstract model of a parallel machine

MPI collective communication
Main MPI collectives
Example of implementation in MPI
Cost of collectives on P procs

Introduction to using the EPFL cluster
Clusters
Remote access and file transfer
Submitting a job

28 of 44



What is a cluster?

29 of 44



What is a cluster?

29 of 44



What is a cluster?

29 of 44



What is a cluster?

29 of 44



What is a cluster?

29 of 44



What is a cluster?

29 of 44



EPFL cluster used in this class

Login Nodes Cores RAM Network
hostname # # x GHz GB Gbit/s
helvetios.epfl.ch 287 2 x 18 x2.3 192 100 (IB)

30 of 44



EPFL clusters storage

■ The simulation data is written on the storage systems. At SCITAS:
□ /home: store source files, input data, small files
□ /work: collaboration space for a group
□ /scratch: temporary huge result files

■ Please, note that only /home and /work have backups!

■ /scratch data can be erased at any moment!

31 of 44



Connecting to remote machines

First step

■ Connect to a remote cluster to get a shell

■ SSH: Secure SHell

How to use

$ ssh -l <username> <hostname>

$ ssh <username>@<hostname>

For windows users
Just install git, and use git bash

32 of 44



Connecting to remote machines

First step

■ Connect to a remote cluster to get a shell

■ SSH: Secure SHell

How to use

$ ssh -l <username> <hostname>

$ ssh <username>@<hostname>

For windows users
Just install git, and use git bash

32 of 44



Getting a remote shell

ssh connection

<username>

33 of 44



Getting a remote shell

<password> ?

33 of 44



Getting a remote shell

<password>

33 of 44



Getting a remote shell

Shell

33 of 44



Simple connection

To connect to the front node of a cluster

$ ssh -l jdoe helvetios.epfl.ch

$ ssh jdoe@helvetios.epfl.ch

Front nodes
■ helvetios [CPU (OpenMP/MPI)]

■ Connect to helvetios front node

■ Check the different folders /home /scratch

34 of 44



Using scp

How to use scp/pscp.exe
Send data to remote machine:

$ scp [-r] <local_path> <username>@<remote>:<remote_path>

Retrieve data from remote machine:

$ scp [-r] <username>@<remote>:<remote_path> <local_path>

Note: It is always easier to “send to” and “receive from” the clusters since
they have a fix ip/name

■ Copy a file from your machine to the cluster.

■ Modify the file (e.g., using vim, nano) and retrieve it from the cluster
onto your machine

35 of 44



Using modules

What are modules
■ A way to dynamically modify the environment

■ The contain configurations to use an application/a library

How to use them
■ module avail list all possible modules

■ module load module name load a module

■ module unload module name unload a module

■ module purge unload all the modules

■ module list list all loaded modules

36 of 44



SLURM

37 of 44



Scheduler

38 of 44



Scheduler

Submit
job

38 of 44



Scheduler

Schedule
job

38 of 44



Scheduler

Run

38 of 44



SLURM

What is SLURM
■ Simple Linux Utility for Resource Management

■ Job scheduler

Basic commands
■ sbatch submit a job to the queue

■ salloc allocates resources

■ squeue visualize the state of the queue

39 of 44



SLURM: common options

SLURM options

■ -A / --account=account name name of your SLURM account
For this class you are in math-505 Further details on moodle

■ -u / --user=username name defines the user

40 of 44



SLURM: common options

SLURM options

■ -t / --time=HH:MM:SS set a limit on the total run time of the job

■ -N / --nodes=N request that a minimum of N nodes be allocated to
the job

■ -n / --tasks=n dvise SLURM that this job will launch a maximum of n,
in the MPI sense

■ -c / --cpus-per-task=ncpus advises SLURM that job will require ncpus
per task

■ --ntasks-per-node=ntasks number of tasks per node

■ --mem=size[units] defines the quantity of memory per node requested

Need more help? Have a look at the
https://slurm.schedmd.com/sbatch.html

41 of 44

https://slurm.schedmd.com/sbatch.html


SLURM: common options

Or you can put everything in a file: srun to execute a code with 38 MPI
ranks over two nodes, 1 thread per rank, 7000 MB of RAM per node, so in
total the job gets 14’000 MB, 20 minutes for the job, parallel QOS

{mysimulation.job}

#!/bin/bash -l

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=19

#SBATCH --cpus-per-task=1

#SBATCH --mem=7000

#SBATCH --time=20:00

#SBATCH --qos=parallel

#SBATCH --account=math-505

module load gcc openmpi python py-mpi4py

srun ./my_python_script.py

and submit the job

$ sbatch mysimulation.job

42 of 44



To continue

during exercise sessions !
To simplify the execution and understanding of results:

■ Allocate one MPI process per core

■ use 1 thread per MPI process (rank) - no multithreading

■ MPI will use explicite communication, independently if the processes are
run on a same node or not

43 of 44



Acknowledgement

■ Introduction to using the EPFL cluster: slides from P. Antolin, N.
Richart, E. Lanti, V. Keller’s lecture notes

44 of 44


	Abstract model of a parallel machine
	MPI collective communication
	Main MPI collectives
	Example of implementation in MPI
	Cost of collectives on P procs

	Introduction to using the EPFL cluster
	Clusters
	Remote access and file transfer
	Submitting a job


